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1. ABSTRACT 
 

The existence of carrier proteins located in the 
basolateral and apical membranes of hepatocytes, 
cholangiocytes and epithelial cells of the ileal mucosa, 
together with their more or less broad substrate specificities 
-implying their ability to transport many different drugs, 
including anticancer drugs- has important pharmacological 
repercussions. These vary from the existence of interactions 
of drugs with endogenous and xenobiotic substances to the 
possibility of using these transporters in the targeting of 
drug delivery systems, which can be useful either to direct 
anticancer drugs towards tumors located in the 
hepatobiliary system or to facilitate their hepatobiliary 
excretion. This justifies the growing interest in bile acid 
derivatives as targeted pharmacological tools, in general, 
and in anticancer chemotherapy, in particular. Moreover, 
interactions of antitumor drugs with hepatobiliary 
transporters may account for the appearance of toxic side 
effects associated with the use of these drugs. The present 
review covers these aspects of the pharmacology and 
toxicology of hepatobiliary transport systems in relation to 
anticancer drugs. 

 
 
 
 
 
2. INTRODUCTION  
 

The elimination of drugs by the liver is the result 
of a series of complex events that include uptake across the 
sinusoidal membrane of hepatocytes (phase 0 of the 
detoxification process). In some cases, this is followed by 
intracellular biotransformation, either by oxidoreduction 
reactions (phase I), or conjugation with polyatomic groups 
(phase II). Phase III processes involve the extrusion of 
native or biotransformed compounds across the canalicular 
membrane into the bile (phase IIIa) or, alternatively, across 
the sinusoidal membrane back into the blood (phase IIIb), 
which, for instance in cholestasis, may become a major 
pathway for exporting towards the kidney compounds that 
must be detoxified and eliminated from the body. 
 
3. HEPATOBILIARY TRANSPORT OF 
ANTICANCER DRUGS  
 
In the liver, phase 0 is accounted for by sodium-
independent transporters of organic anions and cations as 
well as by very efficient sodium-dependent systems. 
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Table 1. Carriers involved in the uptake and export of anticancer drugs by parenchymal liver cells 
Group Typical 

compounds 
Action mechanism Uptake Carrier (Reference) Export Pump (Reference) 

Nitrogen mustards Chlorambucil 
Melphalan 

Alkylating agents SLC7A5 (Melphalan; 55,56,57) MRP1 (101) MRP2 (Chlorambucil; 93) 

Oxazaphosphorines 
 

Cyclophosphamide 
Ifosfamide 

Alkylating agents 
 

 BCRP, MRP1, MRP2, MRP4 (94) 

Acyclic nucleoside 
phosphonates 

Adefovir  
Cidofovir 

Antimetabolites 
 

OAT1 (32) 
 

MRP4 (105) MRP8 (117) 

Pteridines Methotrexate Antimetabolites OATP1A2 (7) OATP1B3 (8) OAT2 
(25) OAT1, OAT3, OAT4 (28) 

MDR1 (71) MRP1, MRP2 (95) MRP3 (109) 
MRP4 (107) MRP8 (115) BCRP (130,131) 

Purine-base 
analogs 

6-Mercaptopurine 
Thioguanine 

Antimetabolites OAT3 (31) CNT3 (46) ENT2 
(46,47) 

MDR1 (72) MRP4 (106) MRP5 (110) 

Pyrimidine-base 
analogs 

Fluorouracil 
Gemcitabine 

Antimetabolites OAT2 (Fluorouracil; 29) CNT1, 
ENT1, ENT2 (Gemcitabine; 48, 49, 
50)  

MRP8 (116) 

Urea derivatives Hydroxyurea Antimetabolites Oatp1a4 (12)  
Taxoids Paclitaxel Antimitotic agents OAT2 (29) OATP1B3 (10,11) MDR1 (73) MDR3 (84) MRP7 (114) 
Vinca alkaloids Vincristine  

Vinblastine 
Antimitotic agents  MDR1 (68) MDR3 (84) mBsep (88) MRP1 

(104) MRP2 (96) MRP7 (114) 
Platinum  
compounds 

Cisplatin   
Oxaliplatin 

Cross-linking reagents CTR1 (Cisplatin; 52,53) OCT1
(Oxaliplatin; 36) OCT2 (Cisplatin;
38) 

MRP2 (97) MRP6 (113) 

Flavonoids Flavopiridol Cyclin-dependent 
kinase inhibitors 

 BCRP (132) 

Stilbenes Tamoxifen Estrogen receptor 
modulators 

OATs (Raloxifene; 30) 
 

MDR1 (74) MRP2 (30) BCRP (133) 

Glycopeptide 
antibiotics 

Bleomycin DNA-damaging agents Polyamine transport system in yeast 
(39) Its ortholog in humans is 
probably OCT1 (40) 

 

Aminoacridines Amsacrine Intercalating agents  MDR1 (75) 
Anthracenyl 
hydrazones 

Bisantrene 
 

Intercalating agents  MDR1 (76) BCRP (121) 

Anthracyclines Doxorubicin Intercalating agents SLC22A16 (42) Non carrier-
mediated (58, 59) 

ABCA8 (62) MDR1 (66) MRP1 (104) 
MRP2 (97) MRP6 (113) BCRP (123,134) 

Anthraquinones Mitoxantrone Intercalating agents OCT1 (33) Non carrier-mediated 
(59) 

MDR1 (75) MRP1 (102) BCRP (123,134) 

Camptothecin  
analogs 

Irinotecan  
Topotecan 

Topoisomerase I 
inhibitors 

OATP1B1 (Irinotecan; 9) MDR1 (77) MRP1 (103) MRP2 (98) MRP4 
(108) BCRP (135,136) 

Podophyllotoxins Etoposide  
Teniposide 

Topoisomerase II 
inhibitors 

 MDR1 (68) MRP1 (104) MRP2 (97) MRP3 
(109) MRP6 (113) BCRP (137) 

2-Phenylamino 
pyrimidines 

Imatinib Tyrosine kinase 
inhibitors 

OCT1 (41) 
 

MDR1 (78) BCRP (138) 
 

 
Regarding phase IIIa, there are several ATP-dependent 
mechanisms that account for the biliary secretion of 
anticancer drugs, whereas ATP-dependent and -
independent systems account for phase IIIb, i.e. the transfer 
of anticancer drugs from cells towards the blood. These 
carriers are also involved in the transport of endogenous 
substances, such as bile acids, biliary pigments, 
nucleotides, nucleosides, steroid hormones and their 
metabolites, etc.  
 
3.1. Transporters involved in the liver uptake of 
antineoplastic drugs  

The basolateral transport proteins belonging to 
the gene superfamily of solute carriers, SLC, play a 
primordial role in the uptake of anticancer drugs by liver 
cells. Table 1 summarizes the transport systems that have 
been reported to be involved in the uptake of these 
compounds, classified according to their chemical 
structures and mechanisms of action.  
 
3.1.1. OATPs (SLCO family) 

An important role in the liver uptake of drugs is 
played by members of the organic anion transporting 
polypeptide (OATP) family, whose gene symbol was 
initially designated SLC21A, but was latter renamed as

 
SLCO (1). The isoforms expressed in human hepatocytes 
are OATP-A/1A2, OATP-B/2B1, OATP-C/1B1 and 
OATP8/1B3 (2). The natural substrates of these 
transporters include several organic anions, such as bile 
acids, conjugated bilirubin (3), unconjugated bilirubin (4), 
as well as some neutral steroids and bulky type-II cations, 
such as quinidine. Although all isoforms share some 
substrate specificity, there are also peculiarities for each 
transporter in regard to this characteristic. Thus, OATP-
C/1B1 is quantitatively the most important transporter 
involved in sodium-independent bile acid uptake by the 
liver. In contrast, OATP-B/2B1 is not able to transport bile 
acids (5). Although OATP-A/1A2, when expressed in 
Xenopus laevis oocytes is able to transport bile acids, 
owing to the very low expression of this protein in normal 
liver cells (2,6), its role in this function is probably minor 
as compared to those played by OATP-C/1B1 and the 
sodium-taurocholate cotransporting polypeptide NTCP 
(gene symbol SLC10A1). 
 

Regarding anticancer drugs (Table 1), OATP-
A/1A2 (7) and OATP8/1B3 (8) are able to transport the 
antimetabolite methotrexate, whereas 7-ethyl-10-
hydroxycamptothecin (SN-38), an active metabolite of 
irinotecan, is a substrate for OATP-C/1B1. Thus, genetic 
polymorphisms in this transporter might contribute to the 
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well-known interindividual variability regarding the 
bioavailability of this topoisomerase inhibitor (9). 
OATP8/1B3, but not OATP-C/1B1, is able to transport 
paclitaxel with high affinity. However, it has not been 
possible to establish an association between the most 
frequent polymorphisms in the SLCO1B3 gene, and the 
variations in the pharmacokinetics of this taxoid (10,11). 
Finally, it has been reported that Oatp2/1a4 is involved the 
transport of the antimetabolite hydroxyurea across the 
guinea-pig blood-brain barrier (12). 
 
3.1.2. NTCP and ASBT  (SLC10A family) 

Members of the SLC10A gene family, such as the 
liver-specific NTCP, are able to carry out bile acid 
transport very efficiently (13,14). In particular, NTCP takes 
up bile acids across the sinusoidal membrane of 
hepatocytes with a stoichiometry of two Na+ ions per 
molecule of bile acid, thanks to the sodium gradient 
maintained by Na+,K+-ATPase, located in the same 
membrane. NTCP is the main transporter accounting for 
the liver uptake of conjugated bile acids (e.g., taurocholate, 
tauroursodeoxycholate and taurochenodeoxycolate), but it 
is also able to transport, although with less efficiency, non 
conjugated bile acids (e.g., cholate), as well as other non-
bile acid compounds, such as sulfated steroids (e.g., 
dehydroepiandrosterone sulfate and estrone sulfate), 
bromosulfophthalein and thyroid hormones (15,16). 

 
Another member of this family of transporters, 

the apical sodium-dependent bile acid transporter (ASBT, 
gene symbol SLC10A2), is expressed in the apical 
membrane of cholangiocytes. This transporter is not liver-
specific; the expression of ASBT has been also detected in 
the apical membrane of epithelial cells of the ileum of the 
hamster (17), rat (18), and humans (19), and of the 
proximal tubule in the kidney of rats (20) and humans (21). 

 
Despite the fact that to date no anticancer drug 

has been reported to be a substrate of SLC10A transporters, 
these carriers are relevant for the issues addressed in the 
present review. This is because owing to their high 
efficiency in bile acid transport they are good candidates 
for use in drug targeting toward the liver (using NTCP) or 
intestine (using ASBT), as will be commented below. 
NTCP is able to transport chlorambucil if this is conjugated 
with taurocholate  (22). Similarly, NTCP has been reported 
to transport several cisplatin-bile acid derivatives  (23). 
 
3.1.3. OATs (SLC22A family) 

Anticancer drugs with very different mechanisms 
of action (Table 1) are substrates for the organic anion 
transporters (OATs) of the SLC22A family of genes (for a 
review, see 24). The first member of this family to be 
cloned was OAT1 (SLC22A6), which is expressed mainly 
in the kidney; specifically, in the basal membrane of 
proximal tubule epithelial cells. The isoforms OAT2 
(SLC22A7), OAT4 (SLC22A11) and OAT5 (SLC22A19) 
are present in human liver (25). Indeed, OAT2 is 
predominantly expressed in the basal membrane of 
hepatocytes (26). It has been suggested that under 

physiological circumstances these transporters might play a 
role as export pathways, permitting the sinusoidal extrusion 
of compounds exported by the liver (27). 

 
Several members of this family are able to 

transport methotrexate, such as the hepatic isoform OAT2 
(25), but also OAT1, OAT3 and OAT4 (28). Other 
anticancer drugs that are substrates of OAT2 include 5-
fluorouracil and paclitaxel (29). There is also evidence that 
OATs may be involved in determining the bioavailability 
of raloxifene, a drug used as a chemopreventive agent for 
breast cancer owing to its activity as a selective modulator 
of estrogen receptors (30).      

 
OATs are also involved in transport of 

antineoplastic drugs in other tissues. For example, the rat 
isoform Oat3 has been reported to be involved in the 
transport across the blood-brain barrier of 6-
mercaptopurine as well as other thiopurines (31). The 
cytotoxicity of the nucleotide analogs adefovir and 
cidofovir is enhanced in cells transfected with the renal 
isoform OAT1, suggesting that this carrier plays a role in 
the nephrotoxicity associated with treatments based on 
these antiviral agents (32).   
 
3.1.4. OCTs and OCTNs (SLC22A family) 

Organic cation transporters (OCTs) also belong 
to the SLC22A family. They carry out the Na+-independent 
electrogenic transport of small cations (type I), such as 
tetraethylammonium (for a review, see 33,34). Three 
isoforms have been identified in humans: OCT1, OCT2 and 
OCT3 (SLC22A1, SLC22A2, SLC22A3, respectively). 
OCT1 is expressed in the basolateral membrane of 
hepatocytes (34,35). The family of SLC22A genes also 
includes the carnitine and cation transporters OCTN1 
(SLC22A4) and OCT6 (SLC22A16) and the Na+-carnitine 
cotransporter OCTN2 (SLC22A5), which can also behave 
as a Na+-independent transporter of organic cations. 
OCTN1 and OCTN2 are expressed in human liver (33).  

 
The accumulation, and hence toxicity, of 

oxaliplatin, but not that of cisplatin or carboplatin, has been 
reported to be markedly increased in cells transfected with 
OCT1, suggesting that oxaliplatin could be a good substrate 
for this transporter (36). OCT2, expressed in the nephron 
proximal tubule, is able to transport cisplatin, and has been 
suggested to be a major determinant in the nephrotoxicity 
induced by this cytostatic drug (37,38). Bleomycin, an 
antibiotic with anticancer activity, is transported in yeasts 
by a polyamine transport system (39), whose human 
ortholog is probably OCT1 (40). Imatinib, a 
phenylaminopyrimidine derivative commonly used to treat 
chronic myeloid leukemia, is also a substrate for OCT1, 
and it has been reported that the efficiency of OCT1-
mediated imatinib uptake is a key determinant of the 
cellular response to this drug (41). There is also evidence 
that mitoxantrone is also transported by OCT1 (33). 

 
OCT6 is involved in doxorubicin uptake, and 

indeed leukemia cells that over-express this transporter are 
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markedly more sensitive to the cytostatic activity of the 
drug (42). Although the expression of OCT6 is not 
detectable in human adult liver, this transporter is found in 
fetal liver as well as in several cell lines derived from 
human liver cancer (42). 
 
3.1.5. Nucleoside transporters CNTs and ENTs (SLC28 
and SLC29 families) 

Nitrogenated base derivatives constitute an 
important group of anticancer drugs. Thus, purine-base 
analogs, such as 6-mercaptopurine and 6-thioguanine, and 
pyrimidine-base analogs, such as 5-fluorouracil and 
gemcitabine, are commonly used in the treatment of several 
types of cancer, including lymphocytic leukemia and acute 
myelocytic leukemia (43). Moreover, gemcitabine is 
efficient in the treatment of several cancers derived from 
epithelial cells located in the lung, pancreas, breast, 
bladder, ovaries and head and neck (44). As commented 
above, some of these agents are substrates of OATs 
(29,31). However, owing to their structural characteristics 
nucleoside transporters also play an important role in the 
uptake of these drugs by the liver (Table 1). Concentrative 
nucleoside transporters (CNTs), which belong to the SLC28 
gene family, are able to carry out the high-affinity sodium-
dependent cotransport of nucleosides, whereas equilibrative 
nucleoside transporters (ENTs, gene family SLC29) are 
involved in the low-affinity uptake of a broad variety of 
nucleosides and their derivatives. Hepatocytes express 
CNT1 (SLC28A1) and CNT2 (SLC28A2), which have a 
certain preference for pyrimidine and purine nucleosides, 
respectively (45). These cells also express ENT1 
(SLC29A1) and ENT2 (SLC29A2), which transport both 
purine and pyrimidine nucleosides. Thus, both 6-
mercaptopurine and thioguanine are substrates of ENT2 
(46,47) and CNT3 (46). Accordingly, a low expression of 
these carriers in tumor cells implies a reduced uptake and 
hence a certain resistance to these drugs (46). ENT2 does 
not transport 5-fluorouracil (47) but it does transport 
another pyrimidine analog, gemcitabine, which is a 
substrate of both ENT1 and ENT2, although that drug is 
transported with much higher affinity by CNT1 (48-50). 
CNT1 is probably also the transporter responsible for the 
uptake of 5´-deoxy-5-fluorouridine, the active metabolite of 
the oral anticancer drug capecitabine, a direct precursor of 
5-fluorouracil (51). 
 
3.1.6. Other transport systems involved in the uptake of 
antineoplastic drugs 

In addition to those reported above, other 
members of the SLC superfamily play a role in the uptake 
of anticancer drugs. Among them, some examples will be 
described below. The copper transporter CTR1 (gene 
symbol SLC31A1) is involved in the uptake of platinum-
related drugs, such as cisplatin, carboplatin and oxaliplatin 
(52). Reducing or abolishing the expression of this 
transporter in yeasts and in murine tumor cell lines results 
in an impaired intracellular accumulation of cisplatin and 
hence an enhanced resistance to this drug (53). Induction of 
resistance to cisplatin by continuous exposure in human 
colon carcinoma cells is accompanied by a down-regulation 
of CTR1 (54). 

Melphalan, an alkylating phenylalanine 
derivative, is taken up via the L-type aminoacid 
transporter-1 (LAT-1, gene symbol SLC7A5) (55-57). 
 
Finally is noteworthy that several antineoplastic 
compounds with lipophilic characteristics are able to cross 
the plasma membrane by simple diffusion without the 
intervention of any carrier protein. This seems to be the 
case of anthracyclines, such as doxorubicin and 
daunorubicin, or mitoxantrone. These are amphipatic 
molecules with a positive charge, which means that they 
may be recognized as substrates by OCTs (33,42) but also, 
because of their lipophilicity, they could be emplaced on 
the surface of membranes and cross them through a “flip-
flop” process (58,59). 
 
3.2. TRANSPORTERS INVOLVED IN THE EXPORT 
OF ANTICANCER DRUGS BY LIVER CELLS 
 

Although they are not the only route determining 
the export of xenobiotics from liver cells towards the bile 
or the blood, several members of the superfamily of ATP-
binding cassette (ABC) proteins account for the majority of 
these processes. Below we shall review those related to the 
role of members of several ABC families in the export of 
anticancer drugs, one of the most important mechanisms of 
resistance to chemotherapy. Table 1 summarizes the list of 
transport systems involved in the efflux of these 
compounds.  
 
3.2.1. The ABCA family 

So far, twelve members of this family have been 
identified in humans. However, only six of them are clearly 
expressed in the liver. These are ABCA1, 5, 6, 8, 9 and 10 
(60,61). Their main physiological role is the transport of 
lipids across the plasma membrane and across the 
membrane of intracellular organelles. However, a role of 
these proteins in resistance to chemotherapy has been 
suggested based on the following data: i) some of them are 
able to transport cytostatic drugs, as is the case of ABCA8, 
which transports doxorubicin (62); ii) moreover, in 
chemotherapy-resistant cell lines an up-regulation of 
ABCA2 (63), ABCA3 (64) and ABCA6 (65) occurs. These 
findings suggest that ABCA transporters could play a role 
in enhancing the transfer of cytostatic drugs out from the 
cells or towards intracellular organelles, hence favoring 
their biotransformation or storage (61). 
 
3.2.2. The ABCB family 

This family of ABC proteins plays a key role 
among the mechanisms responsible for the export of 
potentially toxic endogenous and xenobiotic compounds. 
The multidrug resistance protein-1 (MDR1), or P-
glycoprotein (gene symbol ABCB1), was the first to be 
identified and is the best studied (66). MDR1 is expressed 
in hepatocytes, cholangiocytes, lung, placenta, kidney and 
intestine, and also in many tumors of epithelial origin (67). 
In the latter case, its over-expression results in resistance to 
a large variety of compounds with very different structures 
and mechanisms of action (68). Thus, MDR1 is able to 
transport relatively hydrophobic organic cations (69), 
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cardiotonic glucosides, antihistaminics, analgesics, 
narcotics and immunosuppressants (for a review, see 
67,70). Among the MDR1 substrates with antitumor 
activity (Table 1) are methotrexate (71), purine-base 
analogs (72), paclitaxel (73), vinca alkaloids (68), 
tamoxifen (74), amsacrine (75), bisantrene (76), 
anthracyclines (66), mitoxantrone (75), camptothecins (77), 
podophyllotoxins (68) and imatinib (78). Several 
polymorphisms in the ABCB1 gene have been identified, 
some of which impair MDR1 function and modify the 
bioavailability of many drugs (79). Moreover, MDR1-
dependent transport activity parallels the biotransforming 
activity of phase I and phase II enzymes (80). As an 
example, the CYP3A4 isoform of the cytochrome P450 
system, which is one of the most abundant in the liver, 
together with MDR1 are key elements determining overall 
drug bioavailability (81). Thus, the coordinated action of 
both systems can reduce the bioavailability of certain drugs 
to less than 50% (82). 

 
Although the main function of MDR3 (gene 

symbol ABCB4) in human hepatocytes, and its ortholog 
Mdr2 in rodents, is the translocation of phosphatidylcholine 
from the inner layer to the outer layer of the canalicular 
membrane (83), which is needed to neutralize the detergent 
effect of bile acids, this transporter is also involved in the 
transport of xenobiotics, including paclitaxel and 
vinblastine, although with less efficiency than MDR1 (84). 
This is probably why these compounds can impair MDR3-
mediated phospholipid secretion, which is particularly 
evident in the presence of mutations that limit the 
functionality of this transporter (84). 

 
The bile salt export pump (BSEP; gene symbol 

ABCB11) is the main mechanism responsible for bile acid 
secretion into bile (85). Like most ABC proteins, this pump 
uses the energy of ATP hydrolysis to transport 
monoanionic bile acids across the canalicular membrane 
into the bile with high affinity and efficiency (86,87).  In 
addition to this physiological role, it has been shown that 
LLC-PK1 and MDCKII cells transfected with mouse Bsep 
are able to export some typical MDR1 substrates, such as 
vinblastine, but not daunorubicin or paclitaxel (88).  
 
3.2.3. The ABCC family 

Among the multidrug resistance-associated ABC 
proteins (MRPs) belonging to the ABCC family, the most 
abundantly expressed in the liver is MRP2 (gene symbol 
ABCC2). This transporter is expressed in the apical 
membrane of polarized cells, such as hepatocytes, but also 
in the renal tubule epithelium and intestinal mucosa. In the 
liver, this transporter plays an important role in the biliary 
secretion of endogenous and xenobiotic organic anions 
(89). Although it has broad substrate specificity, MRP2 has 
a higher affinity for compounds conjugated with 
glutathione, glucuronic acid, or sulfate and lipophilic 
compounds, such as leukotrien C4, bilirubin and some 
steroids (for review, see 90). At least rat Mrp2 has been 
shown to be able to transport dianionic bile acid species, 
either sulfated (91) or conjugated with glucuronic acid (92). 
Nonetheless, among MRP2 substrates there are also non-
conjugated compounds, such as bromosulfophthalein and 

methotrexate, as well as glutathione, both reduced and 
oxidized. MRP2 is also able to transport several anticancer 
drugs (Table 1), such as chlorambucil (93), 
cyclophosphamide (94), methotrexate (95), vinca alkaloids 
(96), cisplatin (97), tamoxifen (30), anthracyclines (97), 
camptothecins (98) and podophyllotoxins (97). In addition 
to normal liver tissue, MRP2 is also expressed in many 
solid tumors, such as hepatocellular carcinoma, colorectal 
cancer, and cancers of lung, kidney and ovaries (99). This, 
together with its ability to confer resistance to many 
different drugs, explains the marked relevance of this 
transporter in clinical practice. 

 
In addition to the canalicular isoform MRP2, 

there are also transporters of the MRP family expressed at 
the basal membrane of hepatocytes. These include MRP1 
(ABCC1), MRP3 (ABCC3) and MRP4 (ABCC4), whose 
expression levels under physiological circumstances are 
low but that may increase in pathological conditions such 
as the Dubin-Johnson syndrome due to the existence of 
mutations in ABCC2 gene or to cholestasis (100). These 
transporters may play a role in the extrusion of toxic 
compounds from normal hepatocytes and of anticancer 
drugs from tumor cells (Table 1). MRP1 is able to transport 
nitrogen mustards (101), oxazaphosphorines (94), 
methotrexate (95), mitoxantrone (102), camptothecins 
(103), vinca alkaloids, anthracyclines and etoposide (104). 
Among substrates of MRP4 are oxazaphosphorines (94), 
acyclic nucleosides (105), purine-base analogs (106), 
methotrexate (107) and camptothecins (108). Regarding 
antineoplastic drugs, MRP3 can transport methotrexate 
(109), whereas the also basolateral isoform MRP5 (gene 
symbol ABCC5) is able to transport purine-base analogs 
(110). 

 
MRP6 (gene symbol ABCC6) is also expressed 

in hepatocytes (111) but its ability to behave as a drug-
exporting system is probably low (112). MRP6 does not 
transport products resulting from phase I biotransformation 
(sulfated, glucuronidated or conjugated with glutathione), 
but does show a certain ability to transport cisplatin, 
doxorubicin and etoposide (113).  

 
Other less studied members of this family are 

MRP7 and MRP8 (gene symbols ABCC10 and ABCC11, 
respectively). The presence of MRP7 mRNA in many 
different tissues, including the liver, has been reported 
(114). When this transporter is transfected in cells in vitro, 
its ability to transport anticancer drugs such as paclitaxel 
and vincristine has been observed (114). Although at low 
levels, MRP8 mRNA has been also found in the liver, and 
this transporter has been shown to be able to transport 
methotrexate (115), fluorouracil (116) and acyclic 
nucleosides (117). 
 
3.2.4. The ABCG family 

Most members of the ABCG family are involved 
in sterol, mainly cholesterol, transport. This is the case of 
ABCG1, ABCG4, ABCG5 and ABCG8 (118). Among 
these, those with the highest expression levels in 
hepatocytes are ABCG5 and ABCG8, which form a 
heterodimeric protein located in the canalicular membrane 
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that is able to secrete cholesterol and other neutral sterols, 
such as sitosterols, into the bile (119,120).  

 
The breast cancer resistance protein (BCRP; 

gene symbol ABCG2) shows broader substrate specificity 
than the rest of members of the ABCG family. Owing to 
the fact that among its substrates there are many anticancer 
drugs, the over-expression of this protein is considered to 
be a relevant problem in the treatment of solid tumors 
(118). The structure of BCRP consists of six 
transmembrane domains that include a single ATP-binding 
site (121). Thus, BCRP is considered a "half-transporter" 
that forms homodimers or oligomers (of up to twelve units) 
stabilized by disulfide bridges (122). In addition to the 
liver, prostate, small intestine and colon (123), ABCG2 is 
also highly expressed in placenta (124,125). Using 
immunohistochemistry techniques, the presence of BCRP 
in the apical membrane of hepatocytes, trophoblast cells, 
and epithelial cells of the intestinal mucosa has been 
detected (126,125). 

 
Among the endogenous compounds transported 

by BCRP are porphyrins (127) and several sulfated 
steroids, including bile acids, estrone 3-sulfate and 
dehydroepiandrosterone sulfate (128,129). Moreover, 
BCRP can transport anticancer drugs such as 
oxazaphosphorines (94), methotrexate (130) and its 
glutamylated metabolites (131), flavopiridol (132), 
tamoxifen (133), bisantrene (121), doxorubicin and 
mitoxantrone (123,134), irinotecan and topotecan 
(135,136), etoposide (137) and imatinib (138). 

 
Several mutations in the ABCG2 gene have been 

reported. Most of them have been detected in tumor cells. 
These alter the expression, localization and transport 
activity of BCRP, which affect the pharmacokinetics of its 
substrates and the spectrum of anticancer drug resistance 
(139,140). Thus, cells expressing variant BCRP with the 
R482G and R482T mutations display enhanced resistance 
to anthracyclins and rhodamine 123 (141), but lack the 
ability to transport methotrexate (129). A frequent 
polymorphism, mainly in the Japanese population, is 
C421A, which is accompanied by a lower protein 
expression and a reduced ability to transport topotecan and 
irinotecan (142,143). In clinical practice, after the 
administration of diflomotecan, a topoisomerase I inhibitor, 
patients bearing this mutation present higher serum 
concentrations of this drug than people bearing wild-type 
BCRP (144). Another common polymorphism in this gene 
is G34A, which causes an alteration in protein targeting to 
the plasma membrane and reduces drug export ability of 
BCRP when expressed in cultured cells (143). 
 
4. CHANGES IN THE FUNCTION OF BILIARY 
TRANSPORTERS INDUCED BY INTERACTIONS 
WITH ANTICANCER DRUGS 
 

Owing to the broad substrate specificity of 
hepatobiliary transporters, there are many possible 
competitive effects between the substances that are 
transported by these carriers. This accounts for the 
interactions of the types: drug-drug, drug-food component 

and drug-endogenous substance. Some examples of these 
interaction involving anticancer drugs are reviewed below. 
 
4.1. Drug-drug interactions 

The fact that both the uptake and export systems 
for anticancer drugs share some degree of substrate 
specificity explains the possibility of drug-drug interactions 
at both levels. Some examples illustrating this situation are 
that OATP-C/1B1 is involved in the liver handling of the 
active metabolite of irinotecan SN-38 (9), which is 
exported by MDR1, MRP1, MRP2 and BCRP (98,145). 
Paclitaxel is also transported by OATP8/1B3 (10) and 
eliminated from the cells by MDR1 and MRP (146,114). 
The overall result of interactions with these transporters 
depends on the differential effect between uptake and 
export mechanisms. 

 
As mentioned above, MDR1, MDR3, BSEP, 

MRP2 and BCRP are responsible for the biliary secretion 
of many different xenobiotics, including anticancer drugs 
(146-149). Most of them are eliminated from the body, 
mainly by the liver, after biotransformation. However, 
some anticancer drugs are partly excreted by the kidney, 
with or without previous biotransformation. The existence 
of drug-drug interactions could modify the proportion of 
the dose administered that is eliminated by the kidney, and 
the amount of drug that actually reaches the tumor cells, 
and which is then accumulated in them with ability to carry 
out its pharmacological activity. The existence of potential 
drug-drug interactions has been the basis of the 
development of novel strategies to overcome resistance to 
chemotherapy. This consists of the use of inhibitors of 
ABC proteins, named chemosensitizers because they are 
aimed at reducing drug efflux (excretion) and hence 
increasing effective intratumor levels. Most reported 
chemosensitizers are able to interfere with the function of 
MDR1 by inducing a competitive or non-competitive 
inhibition of this transporter, without being transported 
themselves (150). Among these modulating agents are 
verapamil, cyclosporine, valspodar, GF120918 and 
LY357739 (151,152). However, impaired ABC protein-
mediated excretory function may also enhance the toxicity 
of anticancer drugs to healthy tissues, thus favoring the 
appearance of noxious side effects and limiting the 
usefulness of this strategy. Owing to the expression of 
MDR1 in the intestinal mucosa, the use of chemosensitizers 
for this transporter results in marked changes in the 
bioavailability of anticancer drugs when given orally. Thus, 
it has been reported that the administration of MDR1 
inhibitors such as cyclosporine enhances the oral 
bioavailability of paclitaxel (153), etoposide (154) and 
doxorubicin (155) in humans. Verapamil increases the 
plasma concentrations of paclitaxel in women with breast 
cancer when both drugs are co-administered (156). 
Moreover, the oral administration of R101933 combined 
with i.v. administration of docetaxel has been assayed in 
humans with promising results, because the inhibition of 
MDR1 is not accompanied by major side effects or 
pharmacokinetic interactions in serum (157). In rodents, 
GF120918 increases the oral bioavailability of topotecan 
(158). MDR1 expression and function can be also 
modulated in an indirect manner, for instance, by 



Liver transport of anticancer drugs 

4263 

modifying the interaction with plasma membrane lipids 
(159) or the inhibition of protein kinase C (160).  

 
It has been also proposed that the inhibition of 

bile secretion via Mrp and/or Mdr1 using cyclosporine A 
and probenecid increases the serum concentrations of 
irinotecan and their metabolites in rats (161-163). 
Moreover, probenecid-induced inhibition of rat Mrp2 
reduces the biliary secretion of methotrexate  (164). 

 
Regarding BSEP, it has been suggested that 

BSEP-mediated resistance to paclitaxel in human ovary 
cancer cells can be reversed by cyclosporine A, PSC833 
and verapamil (165). 

 
The expression of hepatobiliary transporters can 

be modified by certain xenobiotics, which, in turn, can 
affect the bioavailability of anticancer drugs; either 
reducing their efficacy or enhancing their side effects. 
MDR1 expression in liver cells can be up-regulated by 
many different xenobiotics, such as carcinogens (e.g., 2-
acethylaminofluorene, polycyclic hydrocarbon aromatics, 
3-methylcholanthrene, benzo(α)pyreno, aflatoxin B1, 
methylmethane sulfonate and diethylnitrosamine) (166-
170), phenothiazines and bromocriptine (166,171).  

 
MRP2 expression can be induced by 2-

acetylaminofluorene (172), the barbiturate phenobarbital 
(172,173), which also induces MRP3 (174,175), the 
chemopreventive agent oltipraz (176), the herbicide and 
peroxisome proliferator agent 2,4,5- trichlorophenoxyacetic 
acid (177), the anti-tuberculosis drug rifampicin, and the 
anti-estrogen tamoxifen (178). Cycloheximide is able to 
induce the expression of Mdr1b and Mrp2 in rat liver cells 
(179,180). Most of these compounds also induce up-
regulation of detoxifying enzymes, which may result in 
more complex changes in the bioavailability of anticancer 
drugs in response to these xenobiotics (166). It is 
noteworthy that certain xenobiotics have the opposite 
effect, i.e., they inhibit the expression of export pumps. 
Thus, cytochalasin and colchicine reduce mRNA Mdr1b 
levels in primary rat hepatocytes (181), whereas nocodazol 
down-regulates human MRP2 in human hepatoma HepG2 
cells (174).  
 
4.2. Drug-nutrient interactions 

Certain food components may also interact with 
hepatobiliary transporters, hence altering the bioavailability 
of anticancer drugs. Some of these interactions best studied 
are due to the inhibition of MDR1, MRPs and BCRP by 
flavonoids (182-185). Thus, quercetin inhibits doxorubicin 
transport in human breast cancer cells (186). In contrast, 
kaempferol, galangin and quercetin are able to stimulate 
doxorubicin export via MDR1 in human colon carcinoma 
cells (187). The reason for these apparent controversial 
results is not known. Genistein inhibits MDR1-mediated 
daunorubicin transport in human breast cancer cells (188). 
Both biochanin A and silymarin enhance the accumulation 
of daunomycin and doxorubicin in human breast cancer 
cells, and inhibit vinblastine efflux from Caco-2 cells (189). 
This is due to changes in MDR1 activity, without affecting 
its expression levels (190). 

The interaction of flavonoids with MDR1 may 
also modify the distribution of drugs across normal 
epithelia, such as the blood brain barrier. Thus, at low 
concentrations, quercetin and kaempferol decrease the 
accumulation of vincristine in capillary endothelial cells 
from mouse brain, whereas at high levels these compounds 
have the opposite effect (191). Regarding in vivo studies, it 
has been demonstrated that flavone (192) and quercetin 
(193) enhance the bioavailability of paclitaxel in rats. An 
interesting coincidence is that most of the drugs that are 
transported by MDR1 are also substrates of CYP3A. It is 
also noteworthy that flavonoids can also inhibit CYP3A 
activity, which makes it difficult to distinguish whether 
drug-drug interactions affect one or both of these elements 
of the detoxification machinery when determining the 
overall pharmacological activity.  

 
Interactions between flavonoids and MRP1 were 

first described by Versantvoort (194,195), who reported 
that genistein, biochanin A, apigenin and quercetin were 
able to inhibit MRP1-mediated daunorubicin transport in 
cancer cells. Some flavonoids present in the diet are able to 
modulate the transport of conjugates of glutathione with 
organic anions, drug resistance, and the ATPase activity of 
MRP1 (183). Thus, in human pancreatic adenocarcinoma 
cells, the flavonoids morin, chalcone, silymarin, phloretin, 
genistein, quercetin, biochanin A and kaempferol are able 
to inhibit the MRP1-mediated transport of daunomycin and 
vinblastine, which may be due to a direct interaction with 
MRP1 or to changes in the intracellular concentration of 
glutathione (196). Although MRP1 and MRP2 share a 
certain degree of substrate specificity, the structural 
requirements for flavonoids to be able to interact with these 
proteins are different, which account for the fact that fewer 
flavonoids are able to carry out a strong inhibition of MRP2 
(197).  

 
Regarding BCRP, the ability of many flavonoids 

to interact with this transporter has also been reported. 
Thus, silymarin, hesperetin, quercetin and daidzein, as well 
as stilbene resveratrol enhance the intracellular 
accumulation of mitoxantrone, whose extrusion is mediated 
by BCRP (198). This has been confirmed in different 
studies addressing the effect of 20 flavonoids potentially 
present in foods (apigenin, biochanin A, chrysin, daidzein, 
epigallocatechin, epigallocatechin-3-gallate, fisetin, 
genistein, hesperetin, kaempferol, luteolin, morin, 
myricetin, naringenin, naringin, phloretin, phloridzin, 
quercetin, silybin and silymarin) on BCRP-mediated 
mitoxantrone transport in human lung and breast cancer 
cells. Most of these compounds were found to be able to 
increase intracellular concentrations of mitoxantrone and 
overcome resistance to this drug. Chrysin and biochanin A 
seem to be the strongest BCRP inhibitors (185). It has been 
also shown that the flavonoids genistein, naringenin, 
hesperetin, acacetin, apigenin, chrysin, diosmetin, luteolin, 
galangin, kaempferide and kaempferol enhance the 
cytotoxicity of SN-38 and mitoxantrone in human leukemia 
cells expressing BCRP (199). To adequately evaluate the 
potential effect of food components, it is necessary to 
consider that they very often are present together and hence 
may have combined effects. Thus, when combined effects 
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of several flavonoids (apigenin, biochanin A, chrysin, 
genistein, kaempferol, hesperetin, naringenin and 
silymarin) on BCRP-mediated mitoxantrone transport were 
evaluated in human breast cancer cells, an additive effect 
was observed (184). This has lead to the suggestion that 
“flavonoid cocktails” may be useful to overcome drug 
resistance in cancer chemotherapy. Moreover, the 
combined effects with other non-flavonoid food 
components that may also inhibit BCRP, such as 
isothiocyanates, must also be considered (200). In vivo 
studies have shown that although chrysin and benzoflavone 
inhibit BCRP-mediated topotecan transport in human breast 
cancer cells, combined treatment of chrysin and 
benzoflavone fails to further enhance the oral 
bioavailability of this compound in rats and Mdr1a/1b 
knock-out mice (158). The reason for such results is 
probably the low sensitivity of rodent Bcrp to inhibition by 
flavonoids, as has been demonstrated in transfected MDCK 
kidney cells. 

 
Grapefruit juice, which contains high levels of 

flavonoids, may impair intestinal MDR1 activity without 
affecting its expression. Thus, grapefruit juice can inhibit 
MDR1-mediated vinblastine efflux from Caco-2 cells 
(201). Moreover, grapefruit juice stimulates the efflux of 
vinblastine and other MDR1 substrates across the basal 
membrane of MDCK cells. In humans, grapefruit juice has 
been reported to reduce the bioavailability of etoposide 
(202) and other drugs (203). It should be considered that 
flavonoid-rich food, such as grapefruit, may also affect the 
overall uptake of drugs by interaction with OATP-C/1B1 
(204). 
 
4.3. Interactions between drugs and endogenous 
compounds  

The interaction between anticancer drugs and 
hepatobiliary transporters may also affect the liver uptake 
and biliary secretion of endogenous compounds. In this 
sense, jaundice has been reported after combined 
administration to patients of cyclosporine with 
daunorubicin (205), doxorubicin (155) or etoposide (154). 
Inversely, the elevated levels of certain endogenous 
substances may affect the handling of anticancer drugs by 
hepatobiliary transporters. Thus, bile acids reduce the 
overall hepatobiliary elimination of cisplatin in rats, even 
though they induce a more marked secretion of cisplatin 
from hepatocytes into bile (206). 

 
Several hormones may affect the expression of 

the pumps involved in drug elimination into bile, such as 
MDR1, BSEP and MRP2 (207). Hydroxylated steroids, 
including cortisol, dexamethasone, aldosterone and 
corticosterone, can be exported by MDR1, whereas 
progesterone cannot be transported by this pump (208), but 
behaves as a modulator of the activity of this transporter 
(209). MDR1-dependent resistance of several cell lines to 
vinblastine and doxorubicin can be overcome by anti-
estrogens, such as tamoxifen and toremifen (210), and anti-
progestins, such as RU 486 (211). Other hormones able to 
modulate these transporters and that might affect the 
bioavailability of anticancer drugs are insulin (212), 
insulin-like growth factor-I (213) and some pituitary 

hormones (214) able to induce Mdr1 expression in rodent 
liver cells. In rat hepatocytes, glucocorticoids induce an up-
regulation of Mrp2 (215) and Bsep (216), whereas prolactin 
enhances Bsep expression in the livers of ovariectomized 
rats (217,218).  

 
Conjugation with glutathione followed by 

extrusion of the conjugates via MRPs is an important 
detoxification pathway for many anticancer drugs. Indeed, 
the levels of glutathione, conjugating enzymes and MRP 
expression are increased in many types of drug-resistant 
cancer cells. This suggests that glutathione levels might 
modify the cellular response to treatment with anticancer 
drugs. In general, a decrease in the cellular content of 
glutathione would enhance the accumulation of active drug, 
whereas high intracellular glutathione levels would favor 
the efflux process (219). Some anticancer drugs, such as 
vincristine can be co-transported with glutathione by MRP1 
(220).  
 
5. EFFECT OF ANTICANCER DRUGS ON THE 
EXPRESSION OF HEPATOBILIARY 
TRANSPORTERS 
 

Another interesting aspect of the relationship 
between anticancer drugs and hepatobiliary transporters is 
that the expression of these proteins can be modified by 
exposure to these drugs. Thus, MDR1 has been found to be 
up-regulated in the liver of patients treated with 
antineoplastic agents, possibly reflecting an adaptive 
response aimed at increasing the biliary elimination of the 
drug and its metabolites (221,222).  

 
The expression of ABC proteins can be increased 

in response to exposure to very structurally different 
compounds. Even compounds that are not substrates of 
MDR1 have been found to increase the levels of MDR1 
mRNA in tumor cell lines, resulting in a multidrug 
resistance phenotype (223). For instance, in primary 
cultures of rat hepatocytes acute treatment with 
anthracyclins, such as doxorubicin or daunorubicin, or with 
mitoxantrone, stimulate the expression of Mdr1b (224,225). 
Mitoxantrone has also been found to induce an up-
regulation of Mdr1 in vivo both in the liver and intestine of 
rats but not those of mice (224).  

 
Cultured rat hepatocytes up-regulate Mrp2 when 

they are exposed to cisplatin (180). This agent is also able 
to induce the expression of MRP2, MRP3 and MRP5 in 
human cell lines of hepatic origin (226). Tamoxifen is also 
able to induce MRP2 expression in the liver of non-human 
primates (178). The mechanism accounting for these 
changes is not well known, but it has been suggested that 
reactive oxygen species would trigger, either directly or 
through an alteration of intracellular macromolecules such 
as DNA, the defensive response (227). In support of this 
concept is the fact that the daunorubicin-induced up-
regulation of rat Mdr1b is dependent on p53 (228). 

 
Over the past few years, the key role played by 

nuclear receptors in the control of the expression of 
hepatobiliary transporters has become evident. Some 
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members of this superfamily of transcription factors are 
dependent on the interaction with a ligand, which, in some 
cases, could be a xenobiotic compound, suggesting that 
they would behave as “xenosensors” (for a review, see 
229). This is the case of the constitutive androstane 
receptor (CAR) and the steroid and xenobiotic X 
receptor/pregnane X receptor (SXR/PXR). Both form 
heterodimeric complexes with the retinoid X receptor 
(RXR) to activate the promoters of the enzymes and 
transporters involved in the detoxification of the ligand by 
the liver (for a review, see 230). Thus, CAR activators, 
such as phenobarbital, induce the expression of MRP2 
(231) and MRP4 (232), and probably also MDR1 (233). 
Rifampicin and other PXR ligands stimulate the expression 
in the liver of MDR1 (234,235), MRP2 (231), MRP3 
(236,237) and Oatp2/1a4 (238).  

 
Among the ligands of these nuclear receptors are 

several drugs with anticancer activity, such as cisplatin and 
paclitaxel. In contrast to the structurally related carboplatin and 
docetaxel, respectively, the former are able to strongly activate 
PXR, and hence induce the expression of MDR1 (235,239). 
Other anticancer drugs with the ability to activate PXR are 
topotecan and etoposide (240). 

 
The opposite effect has also been described. Thus, 

ecteinascidin-743 (ET-743), a strong cytostatic agent of marine 
origin that has been used in clinical practice to treat sarcoma 
and breast and ovary cancer, has been found to down-regulate 
MDR1 by antagonizing human PXR in vitro (235). However, 
these findings are not consistent with those obtained in vivo 
using rats treated with ET-743. In these animals, an up-
regulation of hepatic Mdr1a and Mdr1b has been found (241).  

 
Diallyl sulfide is a chemopreventive agent obtained 

from garlic that affords efficient protection against stomach 
and colon cancer. Moreover, diallyl sulfide induces the 
expression of Mrp2 in rat kidney, an effect that is enhanced 
when it is administered in combination with cisplatin, which 
may constitute an additional stimulus for a defensive response 
to be elicited (242). Response to diallyl sulfide has been 
reported to be mediated by the activation of CAR (243). 

 
Finally, it should be mentioned that several 

cytostatic drugs are direct ligands of RXR. This is the case of 
bexaroten (Targretin), which is a potent selective ligand of 
RXR (244). Since RXR is the mandatory partner of other 
nuclear receptors, such as PXR, CAR and the bile acid sensor 
farnexoid X receptor (FXR), changes in RXR could have more 
profound and complex repercussions in the expression of 
hepatobiliary transporters. Indeed, in the liver of rats treated 
with bexaroten up-regulation of canalicular Bsep has been 
found (245), this carrier being known to be activated by the 
heterodimer FXR:RXR  (246). 
 
6. EXPRESSION OF HEPATOBILIARY 
TRANSPORTERS IN TUMORS OF THE 
ENTEROHEPATIC CIRCUIT 
 

The expression of hepatobiliary transporters in 
tumors of the liver, gallbladder, biliary tree and intestine 
can be markedly different to that present in normal tissues. 

Owing to the phenotypic diversity of the tumors affecting 
these organs it is not possible to establish a common pattern 
of reduction or loss of transporters involved in the uptake 
and export of cholephilic organic anions. 

 
Several tumor cell lines of hepatic origin 

maintain the expression of NTCP and some members of the 
OATP family, although the ability to transport, for instance 
bile acids, is usually reduced (247-250). Thus, using 
HepG2 cells, which are derived from human 
hepatoblastoma, different groups have demonstrated that in 
spite of the detectable presence of the mRNA of OATP-
C/1B1, OATP8/1B3 and OATP3A1, although at lower 
levels than in healthy tissue  (251), none of these isoforms 
could be detected by immunohistochemistry, whereas the 
expression of OATP-B/2B1, OAT2 and OAT3 were 
maintained or even increased (252). 

 
When rat liver cells were obtained after 

undergoing chemical induction of hepatocarcinogenesis, 
these cells were able to take up bile acids. Sodium-
independent mechanisms were better preserved than 
sodium-dependent processes, which suggest that during 
carcinogenesis the expression of sodium-independent 
uptake transporters of organic anions is more resistant to 
the loss of phenotypic characteristics typical of healthy 
adult hepatocytes (253). 

 
In agreement with these findings, other authors 

have reported that the expression of NTCP in human 
hepatocellular carcinoma is lower than that in the 
surrounding healthy tissue. In contrast, that of OATP is 
similar in both healthy and tumor liver tissue (22). 
However, more recently, other groups have reported a 
markedly reduced expression of both NTCP and OATP-
C/1B1 in the majority of hepatocellular carcinomas assayed 
(254). Similar results were found for OATP8/1B3 
(251,252). None of these isoforms of OATPs were found 
expressed in cholangiocarcinomas or metastatic liver 
cancer (251). However, the abundance of the mRNA of 
some hepatobiliary transporters in colorectal adenomas and 
carcinomas has been found to be consistent with possible 
transport ability. Indeed, when total mRNA was injected 
into Xenopus laevis oocytes, this conferred them the 
capability to take up bile acids and cytostatic bile acids 
derivatives (255).  

 
In non-cirrhotic livers with hepatocellular 

adenomas, the expression of OATP-C/1B1 and 
OATP8/1B3 is very low or absent, whereas in focal nodular 
hyperplasia these isoforms are up-regulated, although their 
expression is dispersed, as observed by 
immunohistochemistry (256). NTCP, OATP-C/1B1 and 
OATP8/1B3 expression was reduced in patients with 
primary biliary cirrhosis (257,258), in parallel with the 
degree of injury and jaundice.  

 
It is important to highlight that in spite of the 

reduction in the expression or/and functionality of transport 
proteins in tumor cells, the overall load of substrates (e.g., 
cytostatic drugs) could be enhanced due to the lack of 
polarity, which could prolong the intracellular residence of 
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the compounds taken up. Thus, when platinated bile acid 
derivatives were administered to nude mice bearing an 
orthotopically implanted liver tumor of murine origin from 
Hepa 1-6 cells, the amount of drug found in the tumor was 
higher than that measured in the surrounding healthy tissue 
(259). This is important, because there is a relationship 
between the efficacy and intracellular concentrations of 
these drugs (260). 

 
Regarding export mechanisms, it has been 

reported that the expression of both canalicular MDR1, 
MDR3 and BSEP and basolateral MRP3 is reduced in a 
highly variable pattern among the different types of 
hepatocellular carcinoma. Marked variability also exists 
among individuals within the same type of tumor (254). In 
contrast, in hepatocellular carcinoma the expression levels 
of MRP2 are generally maintained or even show a trend 
towards increased levels (254).  
 
7. TARGETING OF CYTOSTATIC DRUGS USING 
HEPATOBILIARY TRANSPORTERS 
 

The goal of the targeting of anticancer drugs is to 
increase the concentration of pharmacologically active 
agents in tumor cells and, if possible, to reduce the 
exposure of healthy tissues and hence minimize the side 
effects of the treatment. One of the different strategies 
devised is based on the specificity of interactions 
between macromolecules (e.g., receptors, transporters, 
enzymes, etc) and smaller biomolecules, which have 
been used as Trojan Horses to shuttle cytostatic agents. 
Much effort has been devoted to taking advantage of the 
efficient uptake of cholephilic organic anions, such as 
bile acids, by transporters expressed in both hepatic and 
intestinal cells for use as molecular targets for directing 
anticancer drugs towards tumors of the enterohepatic 
circuit (261). The usefulness of bile acids in obtaining 
targeted drugs is based on their versatile derivatization 
possibilities, rigid steroidal backbone, enantiomeric 
purity, availability, and the low cost of natural bile acids 
for use in chemical reactions (for a review, see 262-
264). This pharmacological tool has been investigated 
for the targeting of very different types of drugs; not 
only anticancer agents (265-268). Bile acids are 
versatile building blocks to which many different 
substances can be attached at different positions of the 
steroidal skeleton or on the side chain via different 
chemical bonds, which can be further varied by linkers 
with different structures, lengths, stereochemistries, 
polarities, and/or functional groups. A key aspect in 
designing these drugs is to know which regions of the 
bile acid interact with the carrier and which ones might 
be used for chemical derivatization to bind the active 
agent. In principle, the possibilities for conjugating a 
drug to a bile acid include hydroxyl groups, in particular 
the one located at the 3α-position, and the carboxyl 
group on the side chain. 
 

Members of the SLC10A family, such as NTCP 
in hepatocytes and ASBT in cells of the intestinal 
epithelium and cholangiocytes, which are highly efficient 
in transporting bile acids, have been reported to interact 

with the region of the bile acid that contains its side chain 
(269). Consequently, to target bile acid derivatives to 
tissues expressing these transporters, this part of the 
molecule must not be used to bind the active agent. 
Although the efficiency is lower, the expression of OATPs 
is in general better preserved in tumor cells. Several 
members of the human OATP family have been shown to 
be able to transport bile acid derivatives obtained by 
coupling an active agent to the bile acid side chain (23).  

 
Both strategies have been used to obtain 

cytostatic bile acid derivatives carrying a coupling agent, 
such as chlorambucil (270), and other organic moieties 
(271) as well as inorganic agents, such as platinum- and 
gold-based drugs (for a review, see 262). The latter are 
particularly interesting because of the small size of the 
resulting molecule, which would increase the probability of 
maintaining both substrate properties as regards bile acid 
transporters and reactivity versus DNA, and hence the 
antiproliferative effect of these metals, in particular 
platinum(II) such as in cisplatin - cis-diamminedichloro 
platinum(II) - (272). Two of the best studied and most 
promising compounds of this family of drugs are cis-
diamminechloro-cholylglycinate platinum(II) (Bamet-R2) 
(273) and the more active and less toxic antitumor agent 
cis-diammine-bisursodeoxycholate platinum(II) (Bamet-
UD2) (274). Derivatives containing transition metal atoms 
other than platinum, such as gold (275), are less efficient 
cytostatic agents than those containing platinum(II) in the 
reactive moiety. Regarding the organic moiety of the 
molecule, different derivatives have been obtained by 
changing either the bile acid moiety or the linker between 
this and the DNA-reactive moiety (261). The list of these 
derivatives has been expanded by the synthesis of several 
carboplatin-bile acid derivatives (276).  
 

Although cytostatic bile acid derivatives were 
first synthesized to enhance their water miscibility (277) or 
to target antitumor agents toward tumors located in tissues 
of the enterohepatic circuit (261) they have the additional 
advantage of being efficiently taken up by the liver and 
eliminated into bile. This reduces the amount of drug that, 
escaping from the tumor, might reach the general 
circulation during regional therapy (278,279). 
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