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1. ABSTRACT 
 

The adaptive effector CD4+ T helper-mediated 
immune response is highly heterogeneous, based on the 
development of distinct subsets that are characterized by 
the expression of different profiles of cell surface markers. 
Functional impairment of T cells is characteristic of many 
chronic mouse and human viral infections. Excessive 
induction of apoptosis in infected and uninfected CD4+ T 
cells has been proposed as one of the pathogenic 
mechanisms that may impair the immune response and 
cause the development of acquired immune deficiency 
syndrome (AIDS). Thus, the death of effector/memory 
CD4+ T cells during both the acute and chronic phase 
represents one the main characteristic of such viral 
infection that predicts disease outcome. Improving our 
understanding of the molecular mechanisms leading to the 
death of memory CD4+ T cells should enable us to improve 
vaccination protocols and treatments, by combining them 
with antiretroviral drugs and molecules designed to 
decrease apoptotic phenomena.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Programmed cell death and its main phenotype, 
apoptosis, is a cell suicide program essential for 
development and for adult tissue homeostasis of all 
metazoan animals (1). The stereotypical death throes of a 
cell undergoing apoptosis include DNA fragmentation, 
nuclear condensation, cell shrinkage, blebbing, and 
phosphatidylserine externalization (2-4), all features that 
promote the physiologically silent removal of the cell by its 
phagocytic neighbors.  

 
Mitochondria are implicated in the two major 

apoptotic pathways currently accepted as the model (s) for 
cell death. The death receptor-mediated pathway 
(« extrinsic pathway ») involves mitochondria mainly as an 
amplification loop, whereas cellular deprival and stress-
mediated apoptosis is regulated predominantly at the 
mitochondrial level (« intrinsic pathway »). In both 
pathways, the involvement of the mitochondria is 
manifested by the release of cytochrome c. The release of 
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apoptogenic factors from the mitochondria is regulated by 
the members of the Bcl-2 family (5-8). Members of the 
Bcl-2 family proteins can be subdivided into three distinct 
groups: (i) anti-apoptotic members such as Bcl-2 and Bcl-
XL with sequence homology at BH1 (Bcl-2 homology 
region), BH2, BH3, and BH4 domains; (ii) pro-apoptotic 
molecules, such as Bax and Bak, with sequence homology 
at BH1, BH2 and BH3; and (iii) pro-apoptotic proteins that 
share homology only at the BH3 domain, such as Bid, Bik, 
Noxa, and Bim (5). 

 
Defaults (inhibition or exacerbation) in 

programmed cell death are involved in several pathologies 
like neurodegenerative diseases, cancers or AIDS (9-11). 
 
3. THE LEVEL OF APOPTOSIS PREDICTS 
FURTHER PROGRESSION TO AIDS 
 

The depletion of CD4+ T cells is a major 
determinant of pathogenicity in human immunodeficiency 
virus type 1 (HIV-1) infection. CD4+ T cell depletion is 
associated with high viral turnover (12), and is preceded by 
the progressive loss of T-cell-mediated immunity (13). T 
cell apoptosis may be one of the mechanisms that is 
responsible for T cell depletion during HIV infection. 
Several studies have found that abnormal levels of 
apoptosis occur both in vitro (9, 14-20) and in vivo (21, 22) 
in CD4+ and CD8+ T cells from HIV-1-infected persons. 
Excessive induction of apoptosis in infected and uninfected 
T cells (22) has been proposed as one of the pathogenic 
mechanisms that may impair the immune response and 
cause the development of immune deficiency. The 
magnitude of apoptosis observed in HIV-infected 
individuals correlates well with the stage of HIV disease 
(23-28) and changes in apoptosis during antiretroviral 
therapy confirm the link between disease progression and 
apoptosis (29). Finally, it has been shown excessive 
apoptosis in patients treated with drugs in which despite 
having undetectable plasma viral loads they display 
persistent low CD4+ T cell counts. This result suggests that 
apoptosis may represent a mechanism responsible for the 
low level of reconstitution in these patients (30). 

 
Several studies have found that HIV originally 

resulted from viruses circulating in African non human 
primates (NHP) So far, thirty distinct African NHP species 
have been shown to carry SIV (31). Interestingly, these 
natural hosts for SIV do not show any signs of AIDS (32-
36). The lack of induction of AIDS in the natural hosts 
contrasts with their capacity to support SIV replication. 
Importantly, transmission of SIV from natural hosts, ie 
sooty mangabeys (SMs) or African green monkeys (AGMs, 
C. aethiops), to Asian NHP, such as pigtailed macaques, 
induces AIDS. This demonstrates that the lack of induction 
of AIDS is not due to viral attenuation, but that host 
specific responses play a crucial role in protection. 

 
Studies performed in pathogenic and non-

pathogenic primate models of HIV or simian (SIV) 
immunodeficiency virus infection have identified during 
the chronic phase a correlation between the induction of 
enhanced in vitro T cell apoptosis and the in vivo 

pathogenic nature of the retroviral infection (16, 19, 33, 37-
39). Thus, enhanced levels of apoptosis in CD4+ T cells 
were observed in the models leading to AIDS: HIV-1-
infected human individuals, Rhesus Macaques (RMs) 
infected with a pathogenic strain of SIVmac, and 
chimpanzees infected with a pathogenic strain of SIVcpz 
(37, 40). In contrary, no apoptosis was observed in AGMs 
or SMs (19, 33). 

 
The primary acute phase of HIV and SIV 

infections is characterized by an early burst in viral 
replication, an exponential rise in plasma viral load, the 
dissemination and seeding of the virus in all the peripheral 
lymphoid organs (41-45). The steady state plasma viral 
load levels that are reached at the end of this primary phase 
around 2 months after infection predict the progression 
towards disease, ranging from rapid development of AIDS 
to long term slow progressive infection (46-49). Several 
observations indicate that the early induction of an effective 
immune response against the virus plays a role in 
determining levels of viral load at the end of the primary 
phase (i.e., set-point) Importantly, the early stages of non-
pathogenic SIV infection of AGMs and SMs are also 
characterized by a peak of virus replication in peripheral 
blood accompanied by rapid dissemination of the virus and 
depletion of CD4+ T-cells from the MALT (50, 51). 

 
T cells from peripheral blood of SIV-infected 

macaques were more prone to die during primary infection 
(52). Moreover, cell death in tissues was higher in animals 
infected with pathogenic SIV than in those infected with 
the attenuated strain SIV∆nef (53, 54). We also found that 
the extent of T cell death in LNs during primary infection 
predicts disease progression (55) and increase of apoptosis 
was also seen in lamina propria (56). Interestingly, SIVmac 
infection is milder in Chinese RMs as compared to Indian 
RMs. It has been initially proposed that this may have 
resulted in the selection of viral variants that are adapted 
for more efficient replication and/or increased 
pathogenicity for these animals (57). Thus, the SIVmac 
strains were propagated either in vivo or in vitro in cells 
derived from Indian monkeys (57, 58). We showed by 
using a SIVmac251 propagated on cells of Chinese origin 
that the levels of apoptosis correlated with the extent of 
viral replication and the rate of disease progression to 
AIDS (59). Thus, the extent of apoptosis was higher in 
RMs of Indian genetic background when compared to those 
of Chinese origin. This demonstrated that increased 
pathogenicity is due to host factors. In stark contrast, no 
changes in the levels of lymphocyte apoptosis were 
observed during primary infection in the non-pathogenic 
model of SIVagm-sab infection of AGMs despite similarly 
high viral replication (59-61). 
 
4. EFFECTOR MEMORY T CELL 
SUBPOPULATION EXPRESSING CCR5 IS THE 
MAIN POPULATION PRONE TO DIE BY 
APOPTOSIS 
 

During antigenic stimulation, T cell 
differentiation takes place according to the following 
sequence: naive T cells (CD45RA+ CD62L+) forming a 
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population of “central” (central-memory T cells, TCM) or 
early memory T cells that lose the CD45RA molecule. 
Further stimulation of central-memory T cells leads to 
proliferation of intermediate memory cells that have lost 
CCR7 followed by the production of “effector” (effector 
memory T cells, TEM) which lack CD62L expression. 
These effector-memory T cells may re-express the 
CD45RA molecule, in response to antigen stimulation, 
becoming “terminal differentiated” effector T cells (TDT). 
We have previously shown that the response to recall-
antigens (for example, BCG) is lost at an early stage 
following SIV-infection (55, 62, 63). In humans, it has 
been shown that CD4+ T cell differentiation was abortive 
and HIV-specific CD4+ T cells died during the 
asymptomatic phase (64) and that early highly active 
antiretroviral therapy (HAART) preserved CD4+ T cell 
immune response (65, 66). We recently demonstrated that 
effector memory CD4+ T cells (TEM) were more prone to 
apoptosis during primary infection (62), explaining, at least 
in part, how HIV and SIV infections impair the immune 
response very early. Interestingly, variable rates of T cell 
death were observed amongst the individual animals, 
despite the fact that they received the same batch of virus 
and the same dose via the same route. These results suggest 
the existence of individual host factors that predispose to 
AIDS. 

 
Among host factors, it has been shown that 

chemokine receptors may contribute to AIDS. The risk of 
progressing to AIDS in SIV-infected Indian RMs is 
associated with a rapid and sustained depletion of 
circulating and mucosal CD4+CCR5+ memory T-cells 
(67-71). This observation represents a somewhat 
striking difference with HIV infection, as several studies 
reported that, in HIV-infected individuals, the 
proportion of CD4+ T-cells expressing CCR5 greatly 
increases following HIV infection (72, 73) and that this 
increase in CD4+CCR5+ T-cells is a marker of disease 
progression associated with apoptosis (74-76). 
Collectively, these findings raise the concern that, 
beyond a series of obvious similarities, the SIVmac-
infected RM model does not reproduce correctly the 
pathogenic events occurring during HIV infection, 
particularly with respect to the dynamics of the 
CD4+CCR5+ T-cell subset. To this end, it should be 
noted that the two main driving forces behind the 
dynamics of CD4+CCR5+ T-cells during SIV infection 
are viral replication (that tends to reduce the number of 
these cells) (67-69) and the immune activation that 
promotes the expression of CCR5 (and thus increases 
the number of CCR5+ T-cells) (77, 78). As such, the 
differences in CD4+CCR5+ T-cell dynamics observed 
between humans and RMs of Indian origin may reflect a 
different contribution of the two above-described 
mechanisms by which a retroviral infection affects this 
cellular subset. In this context, we demonstrated that the 
dynamics of CD4+CCR5+ T-cells in SIV-infected 
Chinese RMs are more similar to those in HIV-infected 
humans (63). Thus, we have proposed that SIV infection 
of Chinese RMs may be an extremely useful and 
particularly relevant model to study AIDS pathogenesis 
and vaccines.  

5. PRODUCTIVE HIV-1 INFECTION MEDIATES 
CD4 T CELL DEATH 
 

Excessive induction of apoptosis in infected and 
uninfected T cells (22) has been proposed as one of the 
pathogenic mechanisms that may impair the immune 
response and cause the development of immune deficiency. 
Thus, despite intensive investigations, several important 
questions remain about the mechanisms through which 
HIV infection induces CD4+ T cell death. Classical 
apoptosis with its hallmarks (cell shrinkage, strong 
chromatin condensation, OMM rupture and caspase 
activation) has long been viewed as the major cell death 
mechanism affecting the cells of HIV-1-infected CD4+ T 
cell cultures (79). However, several studies with 
productively HIV-1-infected primary CD4+ T cell cultures 
described a programmed death pathway insensitive to the 
peptide z-VAD-fmk (a broad-spectrum caspase inhibitor) 
and to reagents that specifically inhibit the death receptors 
of the TNF-R superfamily (80, 81). This suggests that a 
caspase-independent death pathway, also operating in 
infected cells, could substitute for the caspase-dependent 
one. In a number of cell death models, lysosomal 
destabilization and ensuing efflux of cathepsins play an 
early and important role in the destruction of the cells (82, 
83). Cathepsin-B, which is an essential mediator of TNF-α-
induced cell death in murine embryonic fibroblasts, 
depends on caspase-9-induced lysosomal membrane 
permeabilization (84). On the contrary, Cathepsin-D, which 
is primarily involved in oxidative stress and staurosporine 
(STS)-induced apoptosis in human fibroblasts, acts 
upstream from cytochrome c release and caspase activation 
(85). Released Cat-D has been shown important by 
promoting Bax activation and insertion into the OMM (86). 
Thus, we demonstrated that lysosomes are rapidly 
permeabilized in CD4+ T lymphocytes productively 
infected with HIV-1, resulting in the release of cathepsins 
into the cytosol, and that the permeabilization of lysosomes 
precedes that of mitochondria (87). During early 
commitment to apoptosis, released Cathepsin-D acts 
upstream from Bax conformational change and subsequent 
Bax insertion into the OMM. Inhibition of Cathepsin-D 
activity confers a transient survival advantage upon 
infected cells, indicating that Cathepsin-D behaves as an 
early trigger of apoptosis. 

 
Among the factors encoded by HIV-1, the Nef 

protein is essential for AIDS pathogenesis, promoting high-
level viral replication (88). Nef has multiple effects, 
including the downregulation of cell surface proteins such 
as CD4, MHC class I, CD28 (reviewed in (89)) and 
chemokine receptors (90). Studies with cell lines stably 
expressing nef have shown that Nef also enhances the 
apoptotic responses to a number of cell death agonists (91). 
In mice, nef transgene expression alone induces the 
development of a severe AIDS-like disease, whereas vpu, 
vpr or tat transgene expression are dispensable for the 
emergence of this disease phenotype (92). Interestingly, the 
transfection of activated CD4+ T lymphocytes with a Nef 
expression vector rapidly induced the permeabilization of 
lysosomes and the release of Cat-D (87). Thus, Nef HIV-1 
protein in activated CD4+ T lymphocytes is sufficient to 
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trigger lysosomal membrane permeabilization and its 
effects. 
 
6. EXPOSURE TO HIV VIRAL PARTICLES PRIMES 
MEMORY CD4 T CELLS FOR APOPTOSIS 
 

The increased level of T cell apoptosis observed 
in HIV-infected human individuals is associated with 
enhanced expression of the CD95 receptor and its ligand 
(CD95L), and increased sensitivity of T cells to apoptosis 
mediated by CD95 ligation using either agonistic CD95 
monoclonal antibodies (mAb) or recombinant CD95L (19, 
93-105). Other members of the TNF-receptor ligand family 
(TRAIL, TNF-α) have also been implicated in the 
increased T cell apoptosis seen in HIV-1 infected 
individuals (106-110). Similarly, T cells from macaques 
infected with a pathogenic strain (SIVmac251) are more 
prone to undergo apoptosis following ligation of CD95/Fas 
than the other death receptors (111). 

 
CD95/CD95L interactions play a significant role 

in peripheral T cell homeostasis. Several reports have 
reported that CD95L is significantly expressed by 
macrophages independently of posttranslational 
mechanisms following HIV infection (27, 107, 112, 113). 
Thus, macrophages can provide a source for CD95L, 
following HIV infection and can thus participate in CD4+ T 
cell depletion in HIV-infected individuals. Moreover, we 
also demonstrated the presence of CD95L within vesicles 
derived from apoptotic cells capable to induce the death of 
uninfected CD4+ T cells (114). Thus, cell death induced in 
vivo during HIV-1 infection may by itself provide an 
amplification loop in AIDS pathogenesis. 

 
Ligation of CD95/Fas by its counterpart CD95L, 

induces the aggregation of several proteins from the death-
inducing signaling complex (DISC) leading to the 
activation of the initiator caspase-8 (115). In macaque as 
well as in humans, zVAD-fmk prevents CD95-mediated T 
cell death. Interestingly, the enhancement in CD95-
mediated T cell death in rhesus macaques is not associated 
with either an up-regulation of caspase-3 and caspase-8 or a 
decrease of FLIP-L and FLIP-S (111). Similarly, Badley et 
al. (116) found that death of T cells of HIV-infected 
individuals was not associated with a change in the amount 
of FLIP. T cell activation occurring in the course of 
immune responses has been shown to increase sensitivity to 
CD95 induced apoptosis, and may be involved. 
Antiretroviral therapy show a significant decrease in CD95-
induced, activation-induced, and spontaneous apoptosis in 
ex vivo cultured PBLs which correlates with decreased 
immune activation (29). Thus, effective viral suppression 
decreases apoptosis, which in turn may contribute to 
immune reconstitution. 

 
The envelope glycoprotein complex (Env) 

appears to be one of the dominant apoptosis-inducing 
molecules encoded by the HIV-1 genome. The gp120 is 
present on the surface of infected cells, on viral particles, or 
as a soluble protein and can bind to and cross-link CD4. 
The interaction of the gp 120 with the CD4 molecule can 
prime CD4+ and CD8+ T cells for apoptosis (106, 117-122). 

Thus, contact of primary uninfected CD4+ T cells with 
HIV-infected or HIV envelope glycoprotein-expressing 
cells results in apoptotic cell death (123). Cytoskeletal 
components play a major role in HIV-1 infection. In fact, it 
has been shown that gp120 is able to induce cytoskeleton-
driven polarization, thus sensitizing T cells to CD95-
mediated apoptosis. In particular, an early and stable ezrin 
activation through phosphorylation, consistent with a role 
of ezrin in CD95 sensitization was reported (124). The HIV 
envelope protein has also been reported to cause apoptosis 
by binding to chemokine co-receptor (125-128). We 
demonstrated that incubation of resting CD4+ T cells from 
healthy donors with HIV-1 or macaque cells with 
SIVmac251, even in the presence of an inhibitor of the 
viral replication, is sufficient to prime CD4+ T cells for 
apoptosis (62, 129, 130) and sensitizing T cells to CD95-
mediated apoptosis. It has been shown that apoptosis can be 
induced by conformationally noninfectious HIV particles 
suggesting that immunopathogenesis may not depend 
solely on direct cytopathic effects of HIV replication but 
that HIV-1 virions may also contribute importantly (131, 
132). 

 
Individual variations in chemokine receptor 

expression (133, 134) may also determine CD4+ T cell 
death because the sensitivity of CD4+ T cells to die in vitro 
depends on the levels and on the nature of the chemokine 
receptors expressed (117, 129, 130, 135, 136). In peripheral 
blood mononuclear cells, syncytium-inducing (SI, X4-
tropic strains) human immunodeficiency virus type 1 (HIV-
1) infects and depletes all CD4+ T cells, including naive T 
cells. Non-SI HIV-1 infects and depletes only the CCR5-
expressing T-cell subset. This may explain the 
accelerated CD4+ T cell loss after SI conversion in vivo, 
and associated with a poor prognostic and aids outcome. 
It has been proposed that ligation of the CXCR4 
molecule, the main coreceptor of syncytia inducing (SI) 
virus, alone causes p38 activation and apoptosis (“direct 
effect”) (137). Moreover, we found that a strain of SIV 
that uses CCR5 and BOB/GPR15 as co-receptors causes 
also death of noncycling primary CD4+ T cells (62). 
Thus, the extent of in vivo expression of BOB/GRP15 
and of CCR5 could impact on disease outcome. 
Strategies involving the use of molecules which block 
viral binding to CCR5 have been assessed in the past 
few years in the macaque model for their ability to 
prevent SIV infection or to induce a decrease in viral 
load but their efficacy is incomplete (138), suggesting 
either that the levels of CCR5 differ between individuals or 
that an alternative co-receptor is involved in cell death 
induction such as BOB/GRP15. Paradoxically, its dynamics 
is unknown. Finally, given that the engagement of co-
receptors may induce the release of interleukins that have 
been reported to exert pro-apoptotic activities, such as 
IL-10 (18, 97) and more recently type 1 interferon 
through a TRAIL-dependent pathway (139, 140), an 
indirect effect may be also operating. 

 
Therefore, as most of the HIV particles produced 

are non infectious, the simple fixation and/or penetration of 
viruses, without integration, may be sufficient to prime T 
cells for apoptosis in quiescent cells. 
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7. CYTOKINES REGULATE MEMORY CD4 T CELL 
APOPTOSIS  

 In keeping with the idea that costimulatory 
signals and cytokines play a key role in the control of T cell 
survival and T cell death during HIV infection, we and 
others have found that several cytokines exert a preventive 
effect on T cell death of HIV-infected individuals (18, 97, 
98, 141-144). Thus, the addition of antibodies to IL-10 or 
the addition of IL-12 have a preventive effect on abnormal 
programmed cell death induction in response to in vitro 
stimulation in HIV-infected persons. Moreover, IL-12, 
which up-regulates TH1 functions and prevents TCR-
mediated CD4+ T cell apoptosis, also prevents Fas-
mediated apoptosis of CD4+ T cells from HIV-infected 
persons (97, 98). In contrast, IL-10 prevents Fas-mediated 
apoptosis of CD8+ T cells from HIV-infected persons while 
having no preventive effect on CD4+ T cell death. IL-2, a 
cytokine secreted by activated T cells and involved in cell-
mediated immunity, had a preventive effect on Fas-
mediated death of both CD4+ and CD8+ T cells from HIV 
infected individuals. IL-15 can also inhibit T cell apoptosis 
and enhances the function of HIV-specific CD8+ T cells. 
Similarly, these cytokines prevent apoptosis of T cells from 
SIV-infected macaques (111). In humans, interleukin 7 (IL-
7) is involved in normal T lymphopoiesis, but also acts as a 
survival factor for peripheral T lymphocytes (145, 146). IL-
7 prevent activated T cell death in vitro via a signal thought 
to be mediated by the gamma chain receptor (147). IL-7 is 
a key cytokine in HIV pathogenesis and is associated with 
an unfavorable prognosis (148-150). Serum IL-7 
concentrations are inversely correlated with CD4+ and 
CD8+ T cell counts during HIV infection. In vitro treatment 
of naive T cells with IL-7 may favor the replication of X4 
and R5 HIV strains (151, 152) and the emergence of X4 
variants (148). We found that in vitro treatment with IL-7 
favors X4-mediated CD4+ T cell apoptosis through Fas 
(136). Moreover, IL-7 not only sensitized T lymphocytes to 
undergo apoptosis (153) but also neurons (154). Altogether 
these data suggest that IL-7 may have a deleterious effect 
on HIV pathogenesis and that exogenous IL-7 must be used 
with caution during HIV infection. 

 The protein PD-1 (programmed death 1) was 
originally isolated from a cytotoxic T-cell line CTTL-2 
following IL-2 deprival that promote apoptosis (155). 
During HIV infection, it has been proposed a defect in IL-2 
expression coincident with the progressive depletion of 
CD4+ T cells and disease outcome. Recently, in HIV-
infected individuals, it has been shown greater expression 
of PD-1, and that blocking the interaction between PD-1 
and PD-L1 increases the capacity of peripheral blood HIV-
specific T cells to proliferate and survive (156-158). We 
found in SIV-infected RMs that PD-1 is more abundantly 
expressed on T cells from Mesenteric LNs than in 
peripheral blood. Most importantly, PD-1 is higher 
expressed on cell surface of T cells from individuals that 
progress more rapidly to AIDS (“non-controllers”). 
Interestingly, we found that PD-1 expression is enhanced 
by incubation in the presence of TGF-ß (159), an 
immunosuppressive cytokine highly expressed in the 
tissues of SIV-infected monkeys. In fact, PD-1 signaling 

inhibits Akt phosphorylation by preventing CD28-mediated 
activation of phosphatidylinositol 3-kinase (PI3K) favoring 
cell death (160). In addition to PD-1, it has been shown that 
the inhibitory immunoregulatory receptor CTLA-4 
signaling inhibits Akt phosphorylation. CTLA-4 was 
selectively upregulated in human immunodeficiency virus 
(HIV)-specific CD4+ T cells but not CD8 T cells and 
CTLA-4 expression correlated positively with disease 
progression and negatively with the capacity of CD4+ T 
cells to produce interleukin 2 in response to viral antigen 
(161). Thus, several molecules expressed on the surface of 
T cells that may impact cell signaling in inducing 
apoptosis. 
 
8. DEATH OF MEMORY CD4 T CELL IS 
ASSOCIATED WITH MITOCHONDRIAL 
PERMEABILIZATION 

 
Spontaneous T cell apoptosis is associated with a 

loss of the inner mitochondrial transmembrane potential 
(∆ψm), suggesting that changes in mitochondrial 
permeability could be a central event in the regulation of T 
cell death in HIV-infected individuals (162) and in SIV-
infected RMS (62, 111). Thus, the rate of spontaneous 
CD4+ T cell apoptosis early after SIV infection post-
infection is predictive of progression towards AIDS, and 
that this apoptotic process follows the intrinsic (rather than 
the extrinsic) cell death pathway (62). Indeed, the broad 
caspase inhibitor zVAD-fmk has no preventive effect on T 
cell death (62, 111). AIF has been proposed as a major 
effector released from the mitochondria into the cytosol in 
a caspase-independent pathway (163). However, this 
observation remains controversial (164). During SIV-
infection, no major changes in the release of AIF from the 
mitochondria was observed (62). Bax and Bak, in the 
regulation of death-by-neglect and loss of mitochondrial 
homeostasis, represent the main actors controlling 
mitochondria (165). Because Bax and Bak affects the 
mitochondria electron transport (following cytochrome c 
release and loss of ATP), which results in the disruption of 
the mitochondrial membrane potential (166), this may 
provide at least one mechanism leading to the death of the 
CD4+ T cells during primary infection. Alteration of 
mitochondria has been observed in peripheral blood 
mononuclear cells from HIV-infected individuals (167). 
During SIV-infection, both during the acute and the chronic 
phase, greater expression of Bak in CD4+ T cells was 
observed (62, 111). Although, it has been reported in HIV-
infected individuals that p53 phosphorylation on serine 15 
is correlated with plasma viral load and death (168) as well 
p38 MAP kinase, we do not observed a correlation with 
p53ser15 in CD4+ T cells but in CD8+ T cells (62). The 
level of p53ser15 in CD8+ T cells is predictive of disease 
progression and viral dissemination in the body (159). 
Interestingly, IL-2 and IL-15 reduced the death rate of 
CD4+ and CD8+ T cells from SIVmac251-infected 
macaques suggesting that cytokines prevent mitochondrial 
outer membrane permeabilization (169, 170). 

 
Bim is required for efficient death-by-neglect (growth 

factor deprival), as Bim-/- mice have lymphoid hyperplasia 
and lymphocytes display partial resistance to death-by-
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neglect (171, 172). The cell death observed in multiple 
tissues of Bcl-2-/- mice also require Bim activity, because 
Bim deficiency can rescue some aspects of Bcl-2-
deficiency. Bim is localized to intracellular membranes to 
regulate Bcl-2 and Bcl-XL. More recently, a cooperation 
between Bim and CD95 has been proposed in the shutdown 
of autoimmunity (173-175). During SIV infection of RMs, 
we found that in addition to the extrinsic pathway involving 
Fas, Bim is increased in T cells from SIV-infected monkeys 
(111). More recently, it has been proposed a role of the 
transcription factor Foxo3a in the regulation of Bim and T cell 
apoptosis in HIV-infected individuals (176). However, the 
authors proposed a role of Bim in preventing Fas-mediated cell 
death which is a non classical cascade of event. An increased 
lymphocyte susceptibility to apoptosis, that is though to be 
related to heightened levels of immune activation, has been 
proposed as one of the main mechanisms responsible for the 
CD4+ T-cell depletion in vivo during pathogenic HIV and SIV 
infections (22, 111, 177). Thus, in non-progressing hosts such 
as SMs or AGMs, it has been shown during the chronic phase 
that the level of the immune activation remains relatively low 
when compared to RMs (19, 32, 33, 50, 51). Similarly, a 
further and early divergence between SIV-infected RMs and 
AGMs was also observed during the acute phase in terms of 
dynamics of T and B cell proliferation in lymph nodes, with 
RMs showing significantly higher levels of Ki67+ cells in the T 
cell zones, whereas AGMs displayed a low frequency of Ki67+ 
(59). Therefore, Fas and Bim could represent the two main 
components controlling the balance between survival and 
death of activated memory T cells during HIV and SIV 
infection. 

 
In conclusion, altogether these results demonstrate that 

early after infection, the death of effector memory CD4+ T 
cells is a key event in further progression to AIDS. At this 
stage, based on animal models, we can conclude that viral 
replication by itself can not support the extent of cell death, 
and therefore involves indirect mechanisms (for i.e. 
immune activation, immunosuppressive cytokines, or 
apoptogenic factors). Clearly, CD95 and Bim may 
represent potent targets to prevent T cell apoptois during 
HIV infection and must be used with caution due to the risk 
of autoimmunity. Therapies based on the used of cytokines 
or inhibitors of immunosuppressive factors as well 
represent alternative approaches to modulate the death of 
CD4+ T cells. Since the quality of the CD4+ T cells affects 
the cytotoxic CD8+ T cell response, it is likely that 
inhibiting the death of effector memory CD4+ T cells early 
after infection could favor the control of infection and 
prevent AIDS. 
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