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1. ABSTRACT 
 

Extensive efforts have been made to try to 
elucidate the pathophysiological mechanisms and the 
immunologic alterations associated with severe hemorrhage. 
A broad variety of experimental conditions have been 
established that enable investigators to study the effects of 
hypovolemic shock and to assess the potential benefits of a 
wide spectrum of treatment options. However, translating 
these experimental findings into clinically applicable 
therapy has been challenging, suggesting the need for a 
better understanding of the animal models being used. As 
certain advantages and disadvantages are associated with 
the different models of hemorrhage (such as controlled and 
uncontrolled hemorrhagic shock and combined trauma with 
hemorrhagic shock models, for this review, we have 
selected representative studies that reflect the current status 
of experimental shock research that looks at acute blood 
loss, and that may serve as a guide when considering which 
model or models to apply  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Hemorrhagic shock accounts for majority of deaths 
in both combat injuries and civilian trauma. Data from 
Vietnam War shows that around 50% of deaths are caused by 
torso and peripheral exsanguinations(1). Also, trauma and 
bleeding are the reasons for most of the deaths in young people, 
even more than all other reasons together.  

 
Most of what we know about hemorrhagic shock is 

from studies on animal models. For decades, considerable 
efforts have been made to develop experimental hemorrhagic 
shock model to investigate the pathophysiological mechanisms 
of shock and to evaluate the efficacy of different therapeutic 
options. However, transiting the experimental results to clinical 
application is challenging, and there is still a need for better 
understanding of the animal models being used.  

 
In this chapter we have reviewed currently used 

hemorrhagic shock models of different animal species and 
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for various purposes. The advantages and disadvantages of 
these models have also been discussed. 
 
3. MODELS OF HEMORRHAGIC SHOCK – 
CONTROLLED AND UNCONTROLLED 
 

Basically, there are two types of experimental 
animal model of hemorrhagic shock: controlled 
hemorrhage and uncontrolled hemorrhage. Controlled 
models are either of fixed-pressure or of fixed-volume.  
 
3.1. Fixed-pressure hemorrhagic shock model 

Many investigators today use a modification of 
the fixed-pressure model of hemorrhagic shock described 
by Wiggers(2). In this model, anesthetized animals are bled 
to a predetermined mean arterial pressure and are 
maintained at that pressure, with periodic bleeding, for a 
specified period of time based on the animal species as well 
as on the degree or outcome of hypotensive shock. Mean 
arterial pressures varying from 70 to 35 mm Hg and 
durations as short as 30 min(3,4,5,6,7,8,9,10) and as long as 
5 h have been studied. Fixed-pressure hemorrhage enables 
the investigator to regulate the intensity of hypotensive 
shock administered based on physiological and end-organ 
injury outcome, an important consideration in designing 
therapeutic interventions. This model has been used to 
study the effects of hypotensive shock on inflammatory 
responses, and on gut(11,12,13), liver(14,15), lung(16,17), 
adrenal(10), cardiovascular function alterations(18,19,20), 
immunological system changes(21,22) as well as the effects 
of various resuscitation strategies(23,24) on organ function 
and outcome . 

 
Several studies have examined the physiological 

complications of severe blood loss. Also, the significant 
advantage of fixed-pressure hemorrhagic shock model is its 
excellent reproducibility and standardization. However, this 
model does not reveal the real life situation of uncontrolled 
hemorrhage in field settings. Moreover, fixed-pressure 
model eliminates the physiological self-compensation 
mechanisms that occur as the patient bleeds.   
 
3.2. Fixed-volume hemorrhagic shock model  

Besides fixed-pressure hemorrhagic shock model, 
fixed-volume hemorrhagic shock model is another 
commonly used model by investigators. In this model, a 
fixed blood volume, usually calculated by the percentage of 
body weight, and then translated to the percentage of total 
circulating blood volume, is drawn. After withdrawal of 
certain volume of blood, the blood pressure is not 
maintained during the shock period. Although fixed-
volume bleeding can be performed without catheterization 
(for example, orbital bleed or cardiac stick), the animal 
typically is anesthetized and catheterized for blood 
withdrawal, physiological monitoring, and resuscitation 
and administration of therapy. After hemorrhage, the 
animal is either monitored or resuscitated. 

 
The shed volume varies from 20%(25,26), 

33%(27), 35%(28), 40%(29,30), 50%(31), 55%(32,33,34), 
to 60%(35) of total circulating blood volume, or 
30ml/kg(36), 45ml/kg(37) of body weight.  

This model is usually used to investigate organ 
damages such as gut(38), cardiovascular function 
alterations(26,33), subsequent central nervous system and 
spinal injuries(39), immunological changes(32) and fluid 
resuscitation(26,28,30,32,33,35,40).  

 
An advantage to this model is the ability to 

elucidate an animal's hemodynamic response specific to a 
fixed volume of blood loss. However, conversion from 
volume-to-body weight to volume-to-total circulating blood 
volume differs from species to species and even differs 
from individual to individual within same species. The 
reproducibility and standardization of this model, thus are 
not as reliable as fixed-pressure model. 

 
Both fixed-pressure and fixed-volume 

hemorrhagic shock model provide investigators with 
standardized and easy-to-handle models and allow the 
studies of shock mechanisms and therapeutic strategies 
under controlled condition. Shock severity and duration can 
be controlled to satisfy the purpose of the research.  
 
3.3. Uncontrolled hemorrhagic shock model 

Although fixed-volume and fixed-pressure 
hemorrhagic shock models offer a controlled manipulation 
of blood loss, these models do not truly resemble the 
uncontrolled hemorrhage situation observed in trauma 
patients. Of primary interest have been the timing, volume, 
and nature of resuscitation fluid given to hemorrhaging 
trauma patients. Fluid resuscitation has been studied in 
different animals by a number of investigators. 
Uncontrolled hemorrhagic shock model allows free 
bleeding from either organ transaction or aorta laceration. 
The commonly used uncontrolled hemorrhagic shock 
models include: liver injury in pigs(41,42,43,44) and 
rats(45), 75% tail amputation in rats(46,47,48), infrarenal 
aorta(49,50,51), abdominal aorta(52), or aorta(53,54) 
laceration in pigs, common iliac artery tear in pigs(55,56) 
and dogs(57), and massive splenic injury in rats(58,59). In 
some animal models, a combination of fixed-volume blood 
withdrawal and uncontrolled hemorrhage is 
generated(46,60,61). 

 
Uncontrolled hemorrhagic shock model is widely 

used to evaluate different fluid resuscitation strategies. 
Takasu et al concluded that therapeutic mild hypothermia 
prolongs animal survivability in a lethal uncontrolled 
hemorrhagic shock model in rats(62). In the rat infrarenal 
aorta puncture model, Burris et al(63) found that attempts 
to restore normal MABP (100 mmHg) lead to increased 
blood loss and mortality. Moderate improvement in MABP 
(80 mmHg) achieve better survivability and lower bleeding. 
They concluded that controlled fluid use should be 
considered when surgical care is not readily available.  

 
Stern et al(64) evaluated the effects of 

comparable and clinically relevant resuscitation regimens 
of 7.5% sodium chloride/6% dextran 70 (HSD) and 0.9% 
sodium chloride (NS) in a near-fatal uncontrolled 
hemorrhage model. The results showed that resuscitation 
with HSD or NS, administered in volumes that provided 
equivalent sodium loads at similar rates, had similar effects
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Table 1. Animals utilized for studying hemorrhagic shock 
 A. Small Animals: Mouse B. Small Animals: Rats C. Large Animals (non-

primates): Sheep, Dogs, 
Pigs, Rabbits 

D. Primates 

Advantages -Minimal genetic variability 
(inbreds, knock-outs and 
transgenics) 

-Numerous reagents for mice 
available 

-Use minimal amounts of 
precious reagents 

-Low cost 
-Rapid reproduction 

-Less genetic variability 
(inbreds) 

-Minimal physiological 
measurements 

-Large (relative to mouse) 
sample volume 

-Ease of instrumentation 
-Better reagents availability 
-Rapid reproduction 

-Can obtain most 
clinical/physiological 
measurements 

-Large sample volume (blood 
& tissue) 

-Ease of instrumentation 

-Often human reagents can be 
applied in this model 

-Can obtain most 
clinical/physiological 
measurements 

-Most genetically similar to 
humans 

Disadvantages -Physiological measurements 
difficult 

-Small sample size 
-Genetically different from 

human 

-No knockouts or 
transgenics(increasingly 
being available) 

-Fewer reagents than for mice 
-Genetically different from 

humans 

-Reagents not readily available 
for many cell/mol./immune 
assays in these models 

-Individual variability (not 
inbred) 

-Material costs- moderate to 
high 

-More numerous differences 
genetically than humans 

-Individual variability (not 
inbred) 

-Costly to conduct experiments 
-Restricted availability and usage 

Shock 
Models 
Applied 

-Fixed volume/fixed 
pressure/uncontrolled 

-Fixed volume/fixed 
pressure/uncontrolled 

-Fixed volume/fixed 
pressure/uncontrolled 

-Fixed volume/fixed 
pressure 

 
Table 2. Advantages and disadvantages of hemorrhagic shock animal models. 

Shock Model Generation of shock Advantage Disadvantage 
Fixed-Pressure Model Blood is drawn until MABP 

decreases to a certain level. The 
blood pressure is then maintained, 
with further withdrawals, for a pre-
determined period. 

High reproducibility and 
standardization. 

Does not reflect real clinic situation. Self-
compensation mechanisms are not allowed. 

Fixed-Volume Model A fixed blood volume is drawn. The 
blood pressure is not maintained 
during the shock period. 

High reproducibility and 
standardization. Self-compensation 
mechanisms are allowed. 

Does not reflect real clinic situation. 

Uncontrolled Hemorrhage 
Model 

Bleeding is allowed freely from 
either organ transaction or aorta 
laceration. 

Self-compensation mechanisms are 
allowed. It reflects real clinic 
situation. 

Low reproducibility and standardization. 

 
on mortality, hemodynamic parameters, and 
hemorrhage from the injury site. Bruttig et al52 
hypothesized that a slow rate of infusion after 
delayed resuscitation, reflecting the clinical 
environment, might improve survival in the presence 
of uncontrolled hemorrhage. They investigated 
resuscitation strategy with 30 min-delay and slow 
infusion of 4 mL/kg hypertonic saline/Dextran 
solution (over 12 min) Their results showed that slow 
infusion of hypertonic saline/Dextran solution 
significantly improved animal survivability, reduced 
blood loss, and increased cardiac output and blood 
pressure.The disadvantage of this model is also 
obvious, that is  low reproducibility and 
standardization.The advantages and disadvantages of 
each animal model utilized (Table 1) and type of 
hemorrhagic shock model (Table 2) respectively are 
summarized below. 
 
4. CONSCIOUS ANIMAL HEMORRHAGIC SHOCK 
MODEL 
 

Both controlled and uncontrolled 
hemorrhagic shock models usually operate under 
general anesthesia, which is either injectable or 
gaseous inhalation. However, it has been reported 
that anesthesia may affect the animal’s 
cardiovascular and immunological 
functions(65,66,67).  

 
Pagel et al demonstrated the cardiac depressant 

effects of various inhalational anesthetic agents(68,69). In 
hemorrhaged animals, anesthetic agents cause changes in basic 
physiologic control mechanisms, subsequently, resulting in 
alterations in blood flow, oxygen delivery, tissue oxygenation 
and even survivability(70,71,72,73,74). Therefore, the 
hemorrhagic shock model without anesthesia is worthy of 
consideration, for it most closely mimics the clinical scenario. 

 
In a model of delayed hemorrhagic shock in 

conscious rats, Shirhan et al(75) found that selective inducible 
nitric oxide synthase inhibitors significantly reduced brain 
infarct volume and improved neurological performance and 
animal survival rate. Wettstein et al(76) resuscitated 
hemorrhaged conscious rats with shed blood, hydroxyethyl 
starch and modified human hemoglobin. They found that 
modified human hemoglobin greatly improved 
microvascular blood flow and oxygen transport. In 
conscious sheep hemorrhagic shock model Landau et al 
reported that combination of military antishock trousers 
and hypertonic saline increased MABP and improved 
cardiac output and tissue perfusion. 
 
5. COMBINED HEMORRHAGIC SHOCK WITH 
MULTIPLE INJURIES 
 

In real scenario, hemorrhagic shock usually 
combines with traumatic injuries. The release of cytokines 
and other mediators from injured tissue contributes 
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significantly to organ function disorders associated with 
shock. Various combined trauma and hemorrhagic shock 
models have been developed by different investigators. 

 
5.1. Combined soft tissue injury and hemorrhagic shock  

Rupani et al(77) investigated the effects of 
combined laparotomy and hemorrhagic shock on the 
morphological and functional changes in intestine of 
rats. They found that soft tissue injury and 
hemorrhagic shock leads to changes in the intestinal 
mucus layer as well as increased villous injury, 
apoptosis and gut permeability. Additionally, 
increased gut permeability was associated with loss 
of the intestinal mucus layer suggesting that T/HS-
induced injury to the mucus layer may contribute to 
the loss of gut barrier function.  

 
The premature, mature and aged mice, both 

male and female, were challenged with trauma and 
hemorrhagic shock. Sex- and age-specific effects in 
bone marrow differentiation and immune responses 
occur after trauma-hemorrhage, which are likely to 
contribute to the sex- and age-related differences in 
the systemic immune responses under such conditions. 

 
Szalay et al(78) hypothesized that the 

induction of heat shock proteins (HSPs) contributes 
to the salutary effects of estradiol on cardiac and 
hepatic functions after trauma-hemorrhage. In rat 
laparotomy and hemorrhagic shock model, 17 beta-
estradiol increased heart/liver HSPs expression, 
ameliorated the impairment of heart/liver functions 
and significantly prevented the increase in plasma 
levels of ALT, TNF-alpha and IL-6. The ability of 
estradiol to induce HSPs expression in the heart and 
the liver suggests that HSPs, in part, mediate the 
salutary effects of 17beta-estradiol on organ 
functions. 
 
5.2. Combined traumatic brain injury (TBI) and 
hemorrhagic shock 

Atan et al(79) investigated the effects of 
nitric oxide synthase (iNOS) inhibitors in the rat 
model of combined traumatic brain injury and 
hemorrhagic shock. Aminoguanidine (AG), a 
selective iNOS inhibitor, showed a significant 
increase in mean survival time and cerebral tissue 
perfusion and decreased the number of apoptotic 
neurons. The authors asserted that treatment with AG, 
which causes the inhibition of iNOS, might 
contribute to improved physiological parameters and 
neuronal cell survival following TBI and hemorrhagic 
shock. 

 
Sanui et al(80) resuscitated TBI and 

hemorrhagic shocked pigs with crystalloid solution 
and arginine vasopressin. The results showed that 
early supplemental arginine vasopressin rapidly 
corrected cerebral perfusion pressure, improved 
cerebrovascular compliance and prevented circulatory 
collapse during fluid resuscitation after traumatic 
brain injury. 

Gibson et al(81) evaluated different 
resuscitation regiments (saline, shed blood, and blood 
substitute) for combined TBI and hemorrhagic shock 
in pigs. They reported that resuscitation with shed 
blood effectively increased arterial O2 saturation 
(SaO2), mixed venous O2 saturation (SvO2), cerebral 
perfusion pressure (CPP) and cerebral venous O2 
saturation (ScvO2), decreased intracranial pressure (ICP) 
and improved animal survival rate. Thus, whole blood was 
found to be more effective than saline for resuscitation of 
TBI/hemorrhagic shock, whereas blood substitutes were 
less effective than saline resuscitation. 

 
5.3. Combined sepsis and hemorrhagic shock (two-hit 
model)  

In laparotomy-hemorrhagic shock-sepsis 
(induced by cecal ligation and puncture) rats, Suzuki 
et al(82) found that androstenediol markedly 
decreased plasma IL-6 and TNF-alpha levels, 
prevented the increased production of IL-6 and TNF-
alpha by Kupffer cells and alveolar macrophages and 
attenuated the decrease in IL-6 and TNF-alpha 
production by splenic macrophages. The depressed 
IL-2 and IFN-gamma production by splenocytes was 
attenuated by the administration of androstenediol. 
Furthermore, survival rate was improved by 
androstenediol treatment. 

 
Schulman et al(83) investigated immune 

response and lung injury caused by hemorrhagic 
shock and sepsis. Hemorrhagic shock blunted serum 
TNF-alpha expression to lipopolysaccharide (LPS), 
but primed for increased bronchoalveolar lavage 
TNF-alpha. Elevated serum TNF-alpha corresponded 
with greater bronchoalveolar lavage neutrophil 
infiltration. 

 
Coimbra et al(84) hypothesized that 

improvements in cellular immune function after 
hypertonic saline (HTS) resuscitation alter the 
outcome of sepsis after hemorrhage. Their results 
suggest that HTS resuscitation leads to increased 
survival after hemorrhage and CLP. Marked 
improvements were observed in lung and liver injury 
compared with isotonic resuscitation. The better 
containment of the infection observed with HTS 
resuscitation corresponds to a marked decreased in 
bacteremia. HTS resuscitation stands as an alternative 
resuscitation regimen with immunomodulatory 
potential. 
 
6. CONCLUSION  
 

There are wide variety of hemorrhagic shock 
models (controlled/uncontrolled and combined 
hemorrhagic shock with poly trauma) which can 
provide investigators with more options to investigate 
the pathophysiological mechanisms and therapeutic 
strategies. However, there must be a desire to 
establish a balance between clinical relevance and the 
need to maximize experimental standardization and 
reproducibility. Therefore, it is necessary for every 



Hemorrhagic shock: an overview of animal models 

4635 

investigator to choose carefully which model to use 
to address a particular question. This chapter may 
serve as an initial guide in selecting a model or 
models of hemorrhage. In addition, we also hope to 
encourage the development of new models of 
hemorrhagic shock to better elucidate 
pathophysiological mechanisms and immunological 
alterations that shock produces, and to relieve the 
human, medical and economic burden of traumatic 
injury. 
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