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1. ABSTRACT 
 
 Diabetes is a complex disease involving multiple 
organs with dysregulation in glucose and lipid metabolism. 
Hepatic insulin insensitivity can contribute to elevated 
fasting glucose levels and impaired glucose tolerance in 
individuals with diabetes. Several currently available 
therapeutics address defects at the liver. Metformin inhibits 
glucose production, potentially through effects on AMPK. 
Thiazolidinediones activate PPAR-gamma and improve 
hepatic insulin sensitivity, primarily through indirect 
effects on lipid metabolism. Insulin analogs and 
secretagogues suppress glucose production and increase 
liver glucose utilization by both direct and indirect hepatic 
actions. Incretins, incretin mimetics, and dipeptidyl 
peptidase-4 inhibitors reduce postprandial hepatic glucose 
production by increasing insulin secretion and limiting 
glucagon release, as well as through possible direct effects 
on the liver. Pramlintide reduces the increase in plasma 
glucagon that occurs following a meal in individuals with 
diabetes, and may thereby suppress inappropriate 
stimulation of liver glucose production. Many other hepatic 
targets are being considered which may lead to alternative 
strategies for the treatment of diabetes. This review focuses 
on currently available therapeutics which target insulin 
resistance in the liver. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 Hyperglycemia in type 2 diabetes (T2D) results 
from insulin resistance coupled with impaired beta cell 
compensation. In the fasted state, the liver is the primary 
producer of endogenous glucose, whereas following 
feeding elevations in circulating glucose and insulin 
mediate a switch to hepatic glucose storage. Therefore, the 
liver plays a pivotal role in maintaining glucose 
homeostasis during both fasting and feeding, and defective 
hepatic insulin sensitivity in T2D results in impairments in 
fasting glucose levels and glucose tolerance.  

 
After an overnight fast, glucose is produced in the 

liver by two processes: glycogenolysis, from available 
glycogen stores, and gluconeogenesis, which is fueled by 
lactate, glycerol, amino acids and pyruvate. Elevated basal 
hepatic glucose production in insulin resistant individuals leads 
to fasting hyperglycemia (1, 2) and is mainly accounted for by 
an increase in gluconeogenesis related to increased production 
of gluconeogenic precursors, elevated gluconeogenic enzyme 
activity, hyperglucagonemia and increased hepatic fatty acid 
oxidation (1). In the post-absorptive state, reduced suppression 
of hepatic glucose production and abnormal liver glucose 
clearance contribute to impaired glucose tolerance and 
postprandial hyperglycemia (3).  
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Thus, hyperglycemia associated with 
impairments in the regulation of fasting glucose production 
and glucose tolerance may be improved by therapeutics 
which target insulin resistance in the liver. While some 
drugs affect glucose metabolism through direct actions at 
the liver, others improve hepatic insulin resistance through 
indirect mechanisms. The purpose of this review is to 
discuss current strategies for the inhibition of hepatic 
glucose production in T2D. 
 
3. METFORMIN 
 
 The biguanide metformin is the most common 
drug used in the treatment of T2D.  It is generally accepted 
that metformin’s primary therapeutic effect results from its 
action at the liver where it reduces glucose production (4, 
5).  In a recently published meta-analysis, based on 19 
clinical studies, it was concluded that the drug enhances 
insulin’s ability to inhibit hepatic glucose production 
without improving its ability to increase glucose uptake (6). 
 
 The question thus arises as to whether metformin 
decreases glucose production by inhibiting glycogenolysis 
or gluconeogenesis.  Two studies carried out several years 
ago came to opposite conclusions with regard to this point.  
Metformin was shown to improve glycemic control in one 
case by suppressing gluconeogenesis (7) and in the other 
case by inhibiting glycogenolysis (8).  In the study by Cusi 
et al. (7), 20 subjects with T2D and 8 control subjects were 
studied in a randomized double blind placebo controlled 
trial to determine the effect of 15 weeks of treatment with 
metformin (TID: 2.5 g/day).  Subjects were studied in the 
basal state and during a euglycemic hyperinsulinemic (~40 
µU/ml) clamp both before, and after, drug treatment.  
Glucose production was measured using [3H]glucose and 
gluconeogenesis was assessed using [14C]lactate.  
Metformin treatment reduced fasting hepatic glucose 
production from 12.9 ±0.7 to 11.0±0.5 µmol/kg/min (15%).  
It did not, however, enhance glucose disposal during 
hyperinsulinemia (10.9±0.9 vs. 11.0±0.65 µmol/kg/min) 
nor did it significantly enhance the suppression of hepatic 
glucose production brought about by the rise in insulin. In 
the fasting state, gluconeogenesis from lactate was not 
reduced, implying that the fall in hepatic glucose 
production was related to a decrease in glycogen 
breakdown. 
 
 In the study by Hundal et al. (8), seven T2D 
subjects and seven control subjects were assessed before 
and after treatment with metformin (TID; total dose ~ 2.5g) 
for 3 months.  Glucose production was measured using 
[6,6-2H2]glucose while the rate of net hepatic 
glycogenolysis was estimated using 13C NMR.  
Gluconeogenesis was also directly measured using the 
deuterated water (2H2O) technique.  Metformin reduced 
fasting glucose production by 24% and at the same time 
reduced gluconeogenesis by 36% (13C NMR) or 33% 
(2H2O), depending on the approach used to measure it.  
This was enough to explain virtually all of the decrease in 
hepatic glucose production.  The authors thus concluded 
that inhibition of gluconeogenesis explains the ability of 
metformin to decrease fasting hepatic glucose production. 

 Although these two studies agree on the drugs’ 
ability to reduce fasting glucose production, they differ 
with regard to their conclusion on the way in which this 
comes about.  The duration of treatment, the drug dose, the 
subjects’ BMI and age, and their glycosylated hemoglobin 
levels were similar in both studies.  It is possible that 
concurrent or pre-existing medications may have caused a 
difference in the response to drug, but it seems more likely 
that the different approaches used to measure 
gluconeogenesis led to different conclusions.  Interestingly, 
Stumvoll et al. (9) used the [14C]lactate approach in an 
earlier study and concluded that an alteration in 
gluconeogenesis explains metformin’s effect, while 
Christiansen et al. (10) used the mass isotopomer 
distribution analysis (MIDA) approach to measure 
gluconeogenesis and concluded that the drug worked by 
inhibiting glycogenolysis.  Given these conflicting data, the 
process by which metformin decreases glucose production 
in the human remains controversial. 
 
 There is an abundance of in vitro data (11-14) 
and rodent data (15-17) which also indicate that metformin 
can reduce hepatic glucose output, and in general they 
support a role for an effect of the drug on gluconeogenesis.  
A variety of hepatic gluconeogenic targets have been 
identified including glucose-6-phosphatase (G6Pase) (16), 
fructose-1,6-bisphosphatase (F16BPase) (17) and 
phosphoenolpyruvate carboxykinase (PEPCK) (14).  
Recently many of the beneficial effects of metformin have 
been attributed to its ability to activate AMP-activated 
protein kinase (AMPK), and to thereby bring about 
allosteric changes in various enzymes (14), as well as 
effects on gene transcription (14).  Most recently, the 
involvement of the orphan nuclear receptor SHP has been 
proposed (12).  In general, AMPK activation is associated 
with an inhibition of gluconeogenesis (14) rather than 
glycogenolysis.  It should be noted, however, that in a 
recent study AICAR, an adenosine analog activator of 
AMPK, was shown to stimulate glycogen synthase, raising 
the possibility that changes in glycogenolysis might still be 
involved in metformin action (18).  Thus, while the in vitro 
rodent data support the concept that the drug primarily 
alters gluconeogenesis, this is in part because few studies 
have focused on glycogenolysis.  In one study that did 
assess glycogenolysis, metformin was in fact shown to 
have an acute inhibitory effect on glycogenolysis in the dog 
(19). 
 
 One of the difficulties in assessing the action of 
metformin on glucose production in vivo is separating its 
acute effect from the chronic effects which result from the 
overall improvement in the metabolic state of the T2D 
patient treated with the drug.  A recently published study 
examined the effects of metformin treatment in T2D 
patients in whom oral drugs were washed out (20). Subjects 
received the drug BID at 2 g/d and were studied before and 
after 4 months of treatment.  A hyperinsulinemic 
euglycemic clamp was used to increase insulin by a modest 
amount in the presence of a fixed basal glucose 
concentration.  Glucose production was measured using 
[3H]glucose, and gluconeogenesis and glycogenolysis were 
measured using 2H2O.  Fasting glucose production and 
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utilization were not altered by drug treatment, although the 
fasting plasma insulin level was reduced by ~20% (even in 
the presence of increased plasma glucagon), suggesting an 
improvement in insulin sensitivity. On the other hand, the 
ability of a small increase in arterial insulin to inhibit 
glucose production was not altered by metformin treatment.  
Likewise, the declines in gluconeogenesis and 
glycogenolysis caused by the rise in insulin were not altered by 
the drug.  Interpretation of the data from this study is, however, 
complicated by the fact that insulin was infused via a 
peripheral vein at the same time that somatostatin inhibited 
endogenous insulin secretion (as confirmed by very low C-
peptide levels).  As a result, the hepatic sinusoidal insulin 
levels were undoubtedly below basal during the glucose clamp.  
This means that the reduction in glucose production was 
secondary to the extra-hepatic effects of insulin.  In addition, 
the rise in arterial insulin was greater post-treatment (∆81 
pmol/L) than pretreatment (∆49 pmol/L), further complicating 
data interpretation.  Finally, the inhibition of hepatic glucose 
production, gluconeogenesis, and glycogenolysis were so 
extensive (65%, 70% and 70%, respectively) prior to treatment 
that there was little room for improvement post-treatment.  
Thus, although the results of this study do not support an effect 
of metformin on the liver, the experimental design prevents a 
definitive conclusion.  In a similar study by Tikkainen et al. 
(21) carried out four years earlier, four months of metformin 
treatment in previously untreated T2D patients was shown to 
be associated with an enhanced ability of insulin to inhibit 
glucose production.  It should be noted that the glucose levels 
in the latter study were clamped at 8 mM rather than 5 mM, 
and that insulin secretion was not inhibited by somatostatin. 
 
 In summary, there is no doubt that metformin 
improves glycemic control in patients with T2D.  The 
majority of data support the concept that the drug inhibits 
glucose production by the liver.  The effect on hepatic 
glucose production is small but the glycemic gain is 
significant.  In vitro data and results from studies in rodents 
support a predominant role for gluconeogenic inhibition in 
explaining the metformin induced decline in hepatic 
glucose production.  Data in the human, however, are 
controversial.  The cellular mechanisms by which 
metformin works are also not clearly understood, but more 
recent data suggests an involvement of AMPK, a molecule 
which is thought to act as a fuel sensor. Regardless of the 
mechanisms by which metformin works, it is a good option 
for treatment of individuals with T2D.   
 
4. THIAZOLIDINEDIONES 
 

Thiazolidinediones (TZDs) are high affinity 
agonists for the nuclear peroxisome proliferator-activated 
receptor gamma (PPAR-γ), which improve glucose 
homeostasis and whole-body insulin sensitivity via multiple 
actions (22, 23). The antidiabetic effects of TZDs were first 
described in the 1980’s and two TZDs, pioglitazone and 
rosiglitazone, have been available for the treatment of T2D 
in the US and Europe for almost a decade.  

 
 While some studies have not demonstrated an 
effect of TZD treatment on hepatic glucose production, a 
review of 23 clinical studies revealed that PPAR-γ agonists 

potentiate insulin-stimulated glucose disposal over a wide 
range of insulin concentrations, while also improving the 
sensitivity of hepatic glucose production to insulin and 
increasing fasting glucose clearance (6). In this systematic 
review, when glucose production was adjusted for the 
prevailing plasma insulin concentration, TZDs, as well as 
metformin, decreased an index of glucose production (rate 
of glucose production per unit of circulating insulin) by 
~20%. In this analysis, TZDs also improved non-hepatic 
insulin sensitivity, whereas metformin did not.  
 

The beneficial effects of TZDs on insulin action 
are primarily mediated through PPAR-γ, a member of the 
nuclear receptor superfamily (24, 25), which acts as a lipid-
activated transcription factor in the regulation of genes that 
control lipid and glucose metabolism (26). PPAR-γ plays 
an essential role in adipocyte differentiation and 
lipogenesis (27, 28) and is weakly activated by fatty acids 
and eicosanoids, components of oxidized low density 
lipoproteins (LDL), and nitrolinoleic acid (26). A highly 
specific natural ligand for PPAR-γ has not been identified 
and indeed may not exist; instead, PPAR-γ may act as a 
physiologic lipid sensor which is activated by the combined 
concentration of weakly binding activators (26).  

 
PPAR-γ is expressed predominantly in adipose 

tissue and to a much lesser extent in muscle and the liver 
(29, 30). The effects of TZD treatment on hepatic insulin 
sensitivity appear to be primarily indirect, through PPAR-γ 
mediated changes in adipose gene expression, although in 
liver specific PPAR-γ knockout mice insulin resistance was 
associated with elevated basal endogenous glucose 
production (31), suggesting that TZDs may also have direct 
effects on the organ. On the other hand, mice lacking 
PPAR-γ in adipose did not respond to the insulin-
sensitizing effects of TZDs (32, 33), highlighting the 
importance of PPAR-γ’s effect in fat. The mechanisms by 
which TZDs mediate improved insulin action include 
altered body composition, reduced free fatty acid (FFA) 
levels, decreased intramyocellular and intrahepatocellular 
triglyceride (TG) content, decreased production / actions of 
circulating proinflammatory proteins and altered expression 
of metabolically important genes in adipose, liver and 
muscle (26, 34-36).  

 
Visceral adiposity is associated with hepatic 

insulin resistance in nondiabetic and T2D subjects (37, 38). 
TZD treatment has been demonstrated to improve this 
condition through adipocyte remodeling such that lipids are 
redistributed from insulin-resistant, lipolytic visceral fat 
depots into subcutaneous fat (39-42). In several studies, fat 
redistribution following TZD treatment in T2D subjects 
was associated with a 50% reduction in hepatic fat and 
improvements in hepatic insulin sensitivity, including 
greater insulin-mediated suppression of endogenous 
glucose production and augmented splanchnic glucose 
uptake (42, 43). 

 
Obesity associated increases in circulating FFAs 

and hepatic TG storage correlate with reduced insulin 
mediated glucose uptake and production at the liver (34, 
44, 45). Recently, intrahepatic TG content in obese subjects 
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was shown to be the best predictor of insulin action in liver, 
skeletal muscle and adipose tissue (46). In addition to 
dietary intake, hepatic TG accumulation is affected by de 
novo lipogenesis, fatty acid beta oxidation and very low 
density lipoprotein (VLDL) export. PPAR-γ affects these 
processes in multiple ways. First, it mediates the 
partitioning of lipids into adipocytes, away from the 
circulation and tissues including the liver. This occurs as 
FFA uptake by fat is augmented through increased 
expression of lipoprotein lipase (47), fatty acid transport 
protein (48), fatty acid translocase (49) and oxidized LDL 
receptor 1 (50). In addition, TZDs promote recycling 
instead of export of intracellular FFAs by increasing 
adipose expression of PEPCK (enabling gluconeogenic 
precursors to form the glycerol backbone required for TG 
synthesis) (28), glycerol kinase (enabling the direct 
synthesis of glycerol-3-phosphate from glycerol) (51) and 
glycerol transporter aquaporin (52). Finally, FFA oxidation 
is increased through the induction of the coactivator PGC-
1a, which promotes mitochondrial biogenesis (53). These 
cumulative effects result in increased FFA flux into adipose 
tissue and decreased TG accumulation in the liver (41, 43), 
improving hepatic insulin sensitivity (54, 55). In addition, 
TZDs increase arachidonic acid content in TGs, which is 
associated with increased insulin sensitivity (56). 

 
TZDs also improve hepatic insulin sensitivity by 

inducing the expression of the insulin-sensitizing factor, 
adiponectin (57). Adiponectin is produced by adipose 
tissue, is reduced in obesity (58) and T2D (59), and has 
direct insulin sensitizing actions on the liver (60). It exists 
in the serum and intracellularly in multiple complexes, 
including high-molecular weight (HMW) multimers, which 
have the predominant action in the liver (60). The 
adiponectin promoter contains a functional PPAR-γ 
response element (61, 62) and production of adiponectin is 
increased by TZD treatment in humans (21, 63-65). 
Importantly, TZD treatment preferentially increases the 
formation, secretion and amount of circulating HMW 
adiponectin (66). In one study, patients with T2D treated 
with a TZD for 21 days showed a strong correlation 
between the percent increase in HMW adiponectin and 
percent decrease in endogenous glucose production, and 
these rapid treatment effects occurred prior to confounding 
effects on plasma glucose and FFA levels (65). The 
observed early hepatic response was the result of improved 
suppression of endogenous glucose production by insulin 
and occurred when arterial plasma insulin concentrations 
were clamped at 50 but not 400 µU/ml, presumably 
because at the higher dose insulin’s effect on the liver was 
saturated. Greater suppression of glucose production with 
TZD treatment was also observed at low (42) but not higher 
(42, 67, 68) insulin clamp levels after longer periods of 
treatment (8 to 16 weeks).  

 
The TZD mediated adiponectin effect on the liver 

appears to be brought about in part by increased hepatic 
fatty acid oxidation through activation of PPAR-α (69), 
another member of the PPAR family. In the liver, PPAR-α 
promotes FFA oxidation, high density lipoprotein 
synthesis, and TG hydrolysis (70). Treatment with 
adiponectin in vitro resulted in increased activity of acyl-

CoA oxidase, carnitine palmitoyl transferase-1 and fatty 
acid binding protein, leading to increased fatty acid 
oxidation (71). In addition, TZDs ameliorate the negative 
effects of TNF-α on adiponectin expression (62). Part of 
the insulin sensitizing action of adiponectin may involve 
the activation of AMPK, which results in inhibition of 
acetyl CoA carboxylase and subsequent increased fatty acid 
beta oxidation (72). Adiponectin has also been shown to 
reduce glucose production in the liver by inhibition of 
PEPCK and G6Pase expression (73). 

 
PPAR-γ activation also ameliorates the effects of 

insulin resistance associated with inflammation by 
decreasing the expression of proinflammatory cytokines 
and a wide variety of other insulin desensitizing molecules, 
such as resistin, TNF-α, PAI-1, IL-6, IL-1β, retinol-binding 
protein-4, inducible nitric oxide synthase, matrix metallo-
proteinase-9, scavenger receptor-A, NF-κB, and 
superoxides (34, 74-76). In addition, expression of 11β-
hydroxysteriod dehydrogenase-1 (11β-HSD1), which 
elevates intracellular cortisol levels, is reduced by PPAR-γ 
activation (77). Cortisol antagonizes the effects of insulin 
and promotes hepatic glucose production, and since the rate 
of hepatic cortisol production approaches that of all other 
endogenous sources (78, 79), inhibition of 11β-HSD1 may 
represent an important part of the TZD effect on the liver.  

 
In summary, TZDs increase insulin sensitivity in 

the liver through the activation of PPAR-γ, which mediates 
a variety of effects, especially in adipose tissue. Effects of 
TZD treatment on patients with T2D include alterations in 
the site of fat deposition, decreases in circulating FFA 
levels and intrahepatic TG accumulation, and altered 
expression of adipokines such as adiponectin, resistin and 
TNF-α. Beneficial effects at the liver appear to relate to 
greater suppression of glucose production and increased 
glucose utilization.  
 
5. INSULIN ANALOGS AND SECRETAGOGUES 
 
 It is clear that insulin is a critical regulator of 
hepatic glucose production (80).  It brings about its effects 
on the liver by both direct and indirect means.  The direct 
effect results from the interaction of the hormone with its 
hepatic receptor and involves the classic Akt signaling 
cascade (81).  The indirect effects of insulin include an 
action on fat, muscle, the alpha cell and the brain (82, 83).  
In adipose tissue, insulin inhibits lipolysis and in turn 
decreases the supply of glycerol and FFA reaching the 
liver.  Glycerol is a gluconeogenic substrate, while FFA 
provide energy and exert control over gluconeogenic / 
glycolytic flux, in part via an action on 6-
phosphofructo-1-kinase (PFK-1) (84-86).  In muscle, 
insulin stimulates protein synthesis and glucose uptake, 
thereby again regulating the flow of gluconeogenic 
precursors (amino acids and lactate) to the liver.  In the 
alpha cell, insulin inhibits glucagon secretion, which in 
turn lowers hepatic glucose production (87).  More 
recently, it has been demonstrated in rodents that insulin 
can reduce glucose output by the liver through an action 
in the hypothalamus (88). To date this has not been 
confirmed in man. 
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 In a study carried out in the dog (89), there was a 
very similar fall in glucose production (60-75%) seen in 
response to a modest rise in plasma insulin (~14 µU/ml) 
brought about selectively at the liver (i.e. the insulin level 
was basal in the rest of the body), or in the periphery (i.e. 
the liver insulin level was basal). Since insulin is secreted 
into the portal vein, the levels of the hormone that normally 
exist in the hepatic sinusoid are about three-fold that in the 
artery.  One would predict, therefore, that in the normal 
individual the direct effects of insulin would be dominant. 
This was shown to be the case in a study by Edgerton et al. 
(90) where during a pancreatic clamp in dogs the route of 
insulin delivery was switched from the portal vein to a leg 
vein.  The insulin levels in arterial blood doubled (i.e. 
doubling insulin’s indirect effects), while its level in the 
hepatic sinusoid fell by ~50% (i.e. halving insulin’s direct 
effect).  As a result of these changes, glucose production 
rose significantly and hyperglycemia resulted, showing that 
the change in insulin at the liver was more important than 
its change in the periphery. 
 
 Normally, the sensitivity of the liver to insulin is 
extremely high.  In fact, a doubling of basal insulin 
secretion will markedly decrease hepatic glucose output 
(80%), while a tripling will cause the liver to stop 
producing glucose altogether (80).  In the individual with 
T2D this sensitivity is impaired.  If this impairment is 
accompanied by beta cell failure these patients often 
require insulin treatment to control their diabetes.  The 
individual with type 1 diabetes is, of course, dependent on 
insulin administration for control of glucose homeostasis.  
Over the past several decades a variety of long acting 
(glargine, detemir) and short acting (lispro, aspart, 
glulisine) insulin analogs have been developed which have 
improved the ability of the patient to manage their blood 
sugar. However, all of these preparations must be delivered 
by subcutaneous injection, resulting in an abnormal ratio 
between peripheral and portal vein insulin concentrations.  
In order to adequately control the blood sugar, insulin 
levels in arterial blood must be higher than appropriate to 
compensate for relative hypoinsulinemia in the hepatic 
sinusoids. This is thought to contribute to the weight gain, 
hypoglycemia, and possibly macrovascular disease 
associated with insulin treatment. Ideally, one would like 
an insulin molecule that could be given orally (thereby 
increasing the portal to arterial insulin ratio) or one with 
preferential sensitivity for the liver. The latter could be 
given peripherally, but would act as if it had been given 
intraportally.  
 
 Sulphonylureas have been intensely used in the 
treatment of diabetes for nearly 50 years (5).  They lower 
blood glucose by stimulating the release of insulin from 
pancreatic beta cells following the binding of an ATP-
dependent K+ channel (KATP) on the cell membrane.  First 
(acetohexamide, chlorpropamide, tolbutamide, tolazamide), 
second (glipizide, gliclazide, glibenclamide, gliquidone) 
and third (glimepiride) generation sulphonylureas have 
been developed. More recently, meglitinide insulin 
secretagogues, which target first phase insulin release 
(nateglinide, repaglinide, mitiglinide), have become 
available. They bind to a beta cell KATP channel in a 

similar manner to sulfonylureas, but at a separate binding 
site. Compared to sulfonylureas, meglitinides have a faster 
onset and peak, with a shorter duration, thus they are 
generally taken just before meals and have reduced 
potential for hypoglycemia. 

 
Insulin secretagogues cause the release of 

endogenous insulin and in doing so bring about a normal 
distribution of insulin between the liver and the peripheral 
tissues and regulate glucose production as described above 
for insulin.  For a review related to the insulin 
secretagogues, see the article by Krentz and Bailey (5). 
 
6. INCRETINS, INCRETIN MIMETICS AND 
DIPEPTIDYL PEPTIDASE-4 INHIBITORS 
 

Glucagon-like peptide-1 (GLP-1) is a gut derived 
incretin peptide which is released following the ingestion of 
food, stimulating insulin secretion in a glucose dependent 
manner (91). GLP-1 also suppresses glucagon secretion and 
appetite, delays gastric emptying and may help maintain 
beta cell mass (91). GLP-1 is rapidly degraded by 
dipeptidyl peptidase-4 (DPP4), therefore DPP4 resistant 
GLP-1 analogs (liraglutide) and incretin mimetics 
(exenatide) as well as inhibitors of DPP4 (sitagliptin, 
vildagliptin) are, or might soon, be available (92). 

 
 With ~80% of hepatic blood supplied by the 
hepatic portal vein, GLP-1 levels are significantly greater at 
the liver than in the periphery (93). Mixed results suggest 
that at best, minimal levels of the classical GLP-1 receptor 
are present in the liver (94, 95), but it has been shown that 
radiolabeled GLP-1 binds to hepatic membranes (96).  
Thus, there is potential for direct regulation of the liver by 
GLP-1 with resulting in changes in glucose production and 
utilization (96, 97).  
 

While it is clear that hepatic glucose production 
and uptake can be regulated indirectly by GLP-1 through 
its effect on pancreatic hormone levels, there is evidence 
that GLP-1 can exert a direct effect on the liver as well (93, 
98). In humans, a peripheral infusion of GLP-1 that created 
a physiologic increase in plasma GLP-1 levels, suppressed 
glucose production under euglycemic clamp conditions 
with pancreatic hormones clamped at basal levels (99). In 
dogs, when physiological or pharmacological increases in 
plasma GLP-1 were brought about under hyperglycemic-
hyperinsulinemic clamp conditions, there was a modest 
increase in net hepatic glucose uptake (93, 98, 100). This 
effect occurred whether GLP-1 was administered 
intraportally or via the hepatic artery (93, 98), suggesting 
that GLP-1 was mediating this effect directly by activating 
its receptors at the liver. This effect was small and required 
high physiological levels of the peptide. 

 
 In an in vitro study, GLP-1 increased glucose 
incorporation into glycogen in hepatocytes due to increased 
glycogen synthase and decreased glycogen phosphorylase 
activity (101). Changes in enzyme activation were the 
result of cAMP-independent signaling via PI-3 kinase / 
PKB pathways (102).  This is in agreement with the 
inhibition of glucagon-induced glycogenolysis by GLP-1 
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(103). When GLP-1 levels were elevated in the brain of 
mice, insulin mediated hepatic glucose uptake and 
conversation into glycogen was favored over nonhepatic 
glucose uptake (104). These results indicate that GLP-1 
may enhance glucose uptake and storage in the liver by 
both direct and indirect mechanisms. 
 
 In addition to possible direct hepatic effects, 
elevated GLP-1 or incretin mimetic levels inhibit 
endogenous glucose production by increasing insulin and 
decreasing glucagon secretion. Glucagon is inappropriately 
elevated following a meal in T2D patients (105-107) and is 
therefore considered a component of liver insulin 
resistance. In recent studies, vildagliptin (108, 109) and 
exenatide (110) suppressed endogenous glucose production 
by increasing the insulin to glucagon ratio. 
 
 In summary, incretins, incretin mimetics and 
DPP4 inhibitors suppress hepatic glucose production by 
increasing the plasma insulin to glucagon ratio. In addition, 
some evidence suggests that signaling through the GLP-1 
receptor in the liver may mediate direct inhibitory effects. 
 
7. PRAMLINTIDE 
 
 Amylin, sometimes referred to as islet amyloid 
polypeptide when produced endogenously, is a peptide 
secreted by the pancreatic beta cell. Amylin is co-localized 
and co-secreted with insulin (111). Primary gluco-
regulatory effects of the peptide are decreased food intake 
and slowed gastric emptying, both resulting in a decrease in 
the rate of nutrient entry in the body (112). Pramlintide, a 
relatively new adjunct treatment for type 1 and 2 diabetic 
patients who use insulin, is a stable analogue of human 
amylin. 
 

Earlier studies suggested that amylin increases 
hepatic glucose production (113-116). This effect was 
observed with supraphysiologic circulating levels of amylin 
achieved after exogenous administration and appears to 
result from increased muscle glycogenolysis, which in turn 
increases circulating lactate levels and fuels 
gluconeogenesis in the liver (116-118). There is no 
evidence for a direct effect of amylin on endogenous 
glucose production in hepatocytes, perfused liver, or in vivo 
in humans (119). 
 

It has been shown that in patients with either type 
1 or type 2 diabetes, pramlintide infusion decreases 
postprandial glycemia (120-122), and it is speculated that a 
third mechanism, suppression of postprandial glucagon 
levels (123, 124), is a key contributing factor alongside the 
slowing of gastric emptying (125). The decrease in 
postprandial glucagon levels may be a consequence of the 
effect on gastric emptying, which leads to lower circulating 
levels of amino acids during the postprandial period, rather 
than a direct effect on the pancreatic alpha cell (112). 
However, euglycemic clamp studies conducted in rodents 
suggest that there may be an effect to suppress glucagon 
independent of gastric emptying, where arginine-induced 
glucagon release was suppressed by amylin (126). Of note, 
the inhibitory effect of amylin on glucagon secretion is 

absent in the setting of hypoglycemia (127, 128). At 
present, studies clarifying this issue have not been 
performed in humans (129), but it appears that while 
amylin reduces postprandial glucagon levels, it does not 
affect glucagon action at the liver (130, 131). Lastly, 
studies of glucagon secretion in isolated islets and in the 
perfused pancreas (132) show no amylin effect, suggesting 
that the effect on the alpha cell is not directly mediated.  

 
In summary, since glucagon is inappropriately 

elevated in T2D (105-107), it has been suggested that 
amylin may reduce excessive endogenous glucose 
production during the postprandial period through the 
reversal of hyperglucagonemia  (123, 124, 133). However, 
it remains unclear what accounts for the significant 
reductions in postprandial glucose levels observed in T2D 
patients treated with pramlintide (120, 121) since studies in 
the rat employing pharmacologic concentrations of amylin 
have suggested stimulation of glucose production by 
amylin (113-115), whereas improved glycemia in humans 
is associated with reduced glucagon levels (123) as well as 
slowed gastric emptying (125). 
 
8. POTENTIAL HEPATIC TARGETS 
 
 The rate at which the liver produces glucose 
during fasting, and the degree to which it switches to 
glucose clearance following a meal, are determinants of 
circulating glucose concentrations. Therefore, enzymes and 
hormones controlling pathways involved in hepatic 
glucose production and uptake represent potential 
targets for the treatment of T2D. These have been 
reviewed previously (134, 135) and include inhibition of 
glucagon binding or signaling (glucagon receptor 
antagonists, compounds that interfere with the coupling 
between the glucagon receptor and activation of adenyl 
cyclase), inhibitors of intrahepatic cortisol binding or 
production (hepatic selective glucocorticoid receptor 
antagonists, 11β-HSD-1 inhibitors) enzyme inhibitors of 
gluconeogenesis (G6Pase, F16BPase, the 
bisphosphatase activity of 6-phosphofructo-2-kinase / 
fructose-2,6-bisphosphatase [PFK-2 / F26BPase]), 
PEPCK) and glycogenolysis (G6Pase, glycogen 
phosphorylase), and activators of glucose uptake 
(glucokinase) storage (glycogen synthase) and oxidation 
(PFK-1, pyruvate kinase, or the kinase activity of PFK-2 
/ F26BPase). Modulators of these pathways are in 
various stages of development and it remains unclear 
which may prove therapeutically viable. 
 
9. SUMMARY 
 
 Dysregulation of hepatic glucose metabolism 
in the diabetic state leads to elevated basal endogenous 
glucose production with fasting hyperglycemia, as well 
as impaired postprandial suppression of glucose 
production and reduced liver glucose clearance.  Several 
of the currently available therapeutics target hepatic 
dysfunction, directly or indirectly. Although 
mechanisms of action are frequently not fully 
understood, the health benefits of improved hepatic 
glucose metabolism are clear. 
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