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1.  ABSTRACT 
 

Free-energy landscapes of proteins in solution 
are essential for understanding molecular mechanism of 
protein folding, stability, and dynamics. Because of the 
multiple-minima problem (or quasi-ergodicity problem), 
the conventional molecular dynamics or Monte Carlo 
methods cannot provide the landscapes accurately at low 
temperatures. By contrast, the simulations based on the 
generalized-ensemble algorithms can sample wider 
conformational spaces than the conventional approaches, 
thereby providing better free-energy landscapes of proteins 
at low temperatures. In this article, we review two well-
known generalized-ensemble algorithms, namely, 
multicanonical algorithm and replica-exchange method, 
and then introduce further extensions of the above two 
methods, which are applicable to larger systems with 
rugged energy landscapes. These simulation methods have 
been applied to the protein folding simulations of the C-
peptide in ribonuclease A with explicit solvent. We also 
demonstrate how the methods and the free-energy 
landscapes of proteins are useful for the biological 
research, by showing the simulation results on the 
phospholamban, a reversible regulator of sarco(end)plasmic 
reticulum Ca2+-pump.  

2.  INTRODUCTION 
 

Understanding molecular mechanisms of 
protein folding and stability is one of the central issues in 
molecular biology. Folding pathways of proteins have been 
explored with the experimentally detected intermediate 
states between the native and denatured states. Recent 
advances in experimental studies allow us to characterize 
the structures of these intermediate states, including the 
transition states in protein-folding reactions (1-3). In 
theoretical studies, a different view on protein folding has 
appeared recently (4, 5). In this view, free-energy 
landscapes of proteins play essential roles for 
understanding the folding kinetics: rapid folding of proteins 
occurs in smooth free-energy landscapes, whereas proteins 
with rough free-energy landscapes fold more slowly, 
causing kinetic traps during the folding processes. This 
view has been derived from the free-energy landscapes of 
simple lattice models for proteins and summarized to the 
principle of minimum frustration in protein structures by 
Wolynes and co-workers (4). Note that this principle is 
essentially the same as the consistency principle in proteins 
proposed by Go in which he claimed that maximum 
consistency among various interactions is realized in the 
native structure (6). 
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The free-energy landscapes of proteins from 
the simulations based on the all-atom representation of 
proteins and solvent molecules may be the most accurate 
ones, because all the interactions acting on the systems are 
taken into account in the simulations (7). However, due to 
the ruggedness of the landscapes at low temperatures, it is 
not straightforward to obtain them accurately by 
conventional molecular dynamics (MD) or Monte Carlo 
(MC) simulations. Unless the computational time is 
sufficiently long, simulations of proteins at low 
temperatures tend to get trapped at one of the local-energy-
minimum states and can not sample the rest of the local-
energy-minimum states. In most cases, it is difficult to 
obtain the global-energy-minimum state, which 
corresponds to the native structures of proteins, by the 
conventional simulation methods. To avoid the difficulty, 
we require much more powerful conformational sampling 
algorithms for proteins or other systems with rugged energy 
landscapes. 
 

Generalized-ensemble algorithms have been 
developed for spin systems with strong frustration (8-11) 
and have been used for biological systems recently (12). 
The algorithms have two advantages over the conventional 
simulation methods. First, generalized-ensemble 
simulations can avoid trapping at one of the local-energy-
minimum states by performing a random walk in the 
potential-energy space, implying that the simulations can 
sample wider conformational spaces than the conventional 
simulations. The random walk in the potential-energy space 
can be achieved by non-Boltzmann weight factor used in 
the algorithms. Secondly, we can provide canonical-
ensemble averages at any temperatures precisely just from 
one long production run of the generalized-ensemble 
simulation, by combining the histogram-reweighting 
techniques (13-15). Over the last 15 years, various new 
algorithms that can be categorized in the generalized-
ensemble algorithms have been developed by different 
researchers (12). Of these, multicanonical algorithm 
(MUCA) (8, 9) and replica-exchange method (REM) (10) 
may be two of the most widely used algorithms. 
 

MUCA and REM have been shown to be very 
powerful in the simulations of small proteins or 
polypeptides in gas phase or in implicit solvent (16-20). 
However, the energy ranges that should be covered in these 
methods become very wide in larger biological systems, 
implying that a random walk in the potential-energy space 
may be difficult to achieve during the simulations. To solve 
the problem, we combined the merits of MUCA and REM, 
and developed new methods, namely, replica-exchange 
multicanonical algorithm (REMUCA) and multicanonical 
replica-exchange method (MUCAREM) (21-23). In this 
article, we first review the algorithms of MUCA and REM, 
and then, introduce the methods of REMUCA and 
MUCAREM. Finally, we demonstrate two recent 
applications of protein folding and stability by the 
generalized-ensemble simulations. In the first application, 
we discuss about the folding mechanism of the C-peptide in 
ribonuclease A in explicit solvent by using the free-energy 
landscape of the peptide (24). In the second application, we 
show the effect of phosphorylation on phospholamban 

(PLN), a reversible regulator of sarco(end)plasmic 
reticulum Ca2+-pump (SERCA), by comparing the free-
energy landscapes of unphosphorylated (PLN) and 
phosphorylated PLN (pPLN) at room temperatures (25). 
These two applications indicate that the free-energy 
landscapes of proteins in explicit solvent by the 
generalized-ensemble simulations should have significant 
contributions for the research on biological sciences.  
 
3.  GENERALIZED-ENSEMBLE ALGORITHMS 
 
3.1. Multicanonical algorithm 

Multicanonical algorithm (MUCA) has been 
first developed by Berg et al. for the simulations of spin 
glasses (8, 9). In the algorithm, the multicanonical 
ensemble is based on the non-Boltzmann weight factor 
(multicanonical weight factor), Wmu (E) , which is the 
inverse of the density of states, n(E) : 
 

Wmu (E) = exp −β0 Emu (E;To )[ ]=
1

n(E) ,
 (1.1) 

where Emu (E;T0 )  is the so-called multicanonical potential 
energy function at arbitrary reference temperature, 
T0 = 1 kBβ0  ( kB is the Boltzmann’s constant). The 
potential-energy distribution in the multicanonical 
ensemble, Pmu (E) , becomes constant, because it is given 
by the product of Wmu (E)  and n(E) : 
 
Pmu (E) ∝ n(E)Wmu (E) = const.  (1.2) 

 
The flat distribution implies that a free random walk in the 
potential-energy space is realized in the ensemble, so that 
the simulations based on MUCA can escape from any 
local-minimum-energy states. Thus, the simulations based 
on the algorithm can sample wider conformational spaces 
than the conventional simulations. 
 

MC or MD simulations based on MUCA can 
be performed just by replacing the total potential energy, 
E , with the multicanonical potential energy, Emu (E;T0 ) . 
In multicanonical MC simulations, the Metropolis criterion 
is modified as follows: 
 

w(x → ′x ) =
1 if ∆Emu ≤ 0

exp(−β0 ∆Emu ) if ∆Emu > 0


 ,

 (1.3) 

where 
 
∆Emu = Emu ( ′E ;T0 ) − Emu (E;T0 ) . (1.4) 

 
In MD simulations, constant-temperature MD is performed 
by solving the modified Newton equation (26, 27): 
 
dpk

dt
= −

∂Emu (E;T0 )
∂qk

=
∂Emu (E;T0 )

∂E
fk

,
 (1.5) 

where fk  is the usual force acting on the k-th atom. 
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In most cases, the density of states or 

multicanonical weight factor for the system is not a priori 
known, implying that we need the way to estimate the 
factor. In practice, Wmu (E) is determined by iterations of 
short trial simulation runs. Once the optimal Wmu (E)  is 
determined, a long production simulation with the factor 
can be performed to obtain canonical-ensemble averages at 
any temperature T : 
 

A T =
A E( )n E( )e−βE

E
∑

n E( )e−βE

E
∑

,

 (1.6) 

where the best estimate of the density of states is given by 
the single histogram reweighting techniques (13): 
 

n(E) =
Pmu (E)
Wmu (E) ,

 (1.7) 

 
3.2. Replica-exchange method 

Replica-exchange method (REM) has been 
developed for the simulations of spin systems by 
Hukushima et al. (10). Swendsen and co-workers 
independently developed a closely related method (28). 
Similar method, in which the same equation is used but 
emphasis is laid on optimization, has also been developed 
(29). Because of the history, REM is also referred to as 
multiple-Markov chain method (30) or parallel-tempering 
method (PT) (11). 
 

In REM, a generalized-ensemble consists of 
M non-interacting copies of the original system (or 
replicas). Each replica has its own temperature, Tm  (m = 1, 
2, …, M). Then, the following two steps are alternately 
performed: 
 
Step 1: each replica in canonical ensemble at the constant 
temperature is simulated for a certain MD or MC steps. 
Step 2: a pair of replicas, for instance, i and j, which are at 
the neighboring temperatures Tm  and Tn , are exchanged 
according to the Metropolis criteria: 
 

w(x → ′x ) =
1 if  ∆ ≤ 0

exp −∆( ) if  ∆ > 0


 ,

 (1.8) 

where 
 
∆ = βm − βn( )(Ej − Ei ) .

 (1.9) 

 
Here, Ei and Ej  are the potential energies of the i-th 
replica and j-th replica, respectively. Through the steps, 
each replica walks randomly in temperature space. In most 
cases, configurations at high temperatures have high-
energy values, whereas those at low temperatures exist in 
low-energy regions. Therefore, a random walk in 
temperature space can achieve a random walk in the 
potential-energy space. Thus, the simulation based on REM 

can escape from any energy barriers between local-energy-
minimum states and sample wider conformational space 
like MUCA. Note that the transition probability, 
w(x → ′x ) , is satisfied with the detailed-balance 
conditions, because it is given by the Metropolis criterion 
like the conventional MC algorithm (10). It means that the 
probability distribution at each temperature should reach 
the canonical ensemble after long iterations of step 1 and 
step 2.  
 

In MD version of REM (REMD), we also 
have to deal with the momenta of the systems. We have 
shown that rescaling the momenta uniformly by the square 
root of the ratio of Tm  and Tn  is able to cancel the kinetic 
energy terms in the Boltzmann factor (20). We can use the 
same transition probability in REMD as that in MC version 
of REM.  
 

Like MUCA, the canonical-ensemble average 
at any temperatures can be obtained from the simulations 
based on REM by using the equation (1.6). Here, the best 
estimate of the density of states is given by the multiple-
histogram reweighting techniques (14, 15): 

 

n(E) =
gm

−1Nm (E)
m=1

M

∑

gm
−1nme fm −βmE

m=1

M

∑
 

and e− fm = P E;βm( )
E
∑

,
 (1.10) 

 
where P E;βm( ) , Nm (E) , and nm  are the potential-energy 
distribution, the energy histogram, and the number of data 
for m-th replica, respectively. gm is related to the integral 
autocorrelation time, τm, at temperature Tm  
as gm = 1+ 2τ m . We usually set gm = 1 .  
 
3.3. Extensions of MUCA and REM 

These two algorithms work very well for 
small systems, such as small proteins or polypeptides in gas 
phase or in implicit solvent (16-20). However, both 
algorithms have their own weak points when they are 
applied to larger systems with rough free-energy 
landscapes. In MUCA, obtaining the optimal weight factor 
may be a very difficult and tedious task. In most cases, a 
large number of iterations are required to refine and update 
the weight factor before the production run. Wang-Landau 
method (31) is one of the efficient methods for determining 
the multicanonical weight factor. In contrast, no such effort 
is required in REM, because the weight factor is 
automatically determined in the algorithm. However, 
number of replicas that is required to keep sufficient 
probabilities of replica-exchanges increases rapidly as the 
system size becomes large. It implies that the simulations 
based on REM become very expensive for large systems, 
such as protein systems in explicit solvent. 
 

To overcome the difficulties, we have 
developed two new methods, namely, replica-exchange 
multicanonical algorithm (REMUCA) and multicanonical 
replica-exchange method (MUCAREM) (22, 23). They are 
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hybrid approaches of MUCA and REM. In REMUCA, the 
multicanonical weight factor, Wmu (E) , or equivalently, the 
density of states, n(E) , is first estimated by using the 
potential-energy distributions of a short REM simulation as 
input data of the multiple-histogram reweighting techniques 
(14, 15). A production dynamics is performed after 
obtaining the optimized weight factor. In MUCAREM, a 
replica-exchange production run with replicas 
corresponding to multicanonical ensembles with different 
energy ranges is performed. The weight factors and 
exchange probabilities are given by, 
 

Emu
{m} (E) =

∂Emu (E;Tm )
∂E E=EL

{ m }

(E − EL
{m} ) + Emu (EL

{m} ;Tm )  for E < EL
{m}

Emu (E;Tm )                                         for EL
{m} < E < EH

{m}

∂Emu (E;Tm )
∂E E=EH

{ m }

(E − EH
{m} ) + Emu (EH

{m} ;Tm )  for EH
{m} < E














 (1.11) 
 
and  

w(x → ′x ) =
1 if ∆ ≤ 0

exp −∆( ) if ∆ > 0


 ,

 (1.12) 

 
where  
 
∆ = βm [Emu

{m} (Ej ) − Emu
{m} (Ei )]− βn[Emu

{n} (Ej ) − Emu
{n} (Ei )] . 

(1.13) 
 
Note that we need to evaluate the multicanonical potential 
energy, Emu

{m} (Ej ) and Emu
{n} (Ei ) , because Emu

{m} (E)  and 

Emu
{n} (E)  are, in general, different functions for m ≠ n . The 

same additional evaluation of the potential energy is 
necessary for the multidimensional replica-exchange 
method (MREM) (32) (or a special case of which is also 
referred to as Hamiltonian replica-exchange method 
(HREM) (33)).  
 

In MUCAREM, a random walk in the potential-
energy space is realized not only by the non-Boltzmann 
weight factor but also by the replica-exchange processes. 
Because the latter is a global update for the structures 
between the neighboring replicas, sampling efficiency of 
MUCAREM may be much improved compared with the 
original MUCA and REM. We have used MUCAREM in 
the simulation of G-peptide, a 16-residue polypeptide of the 
C-terminal end of streptococcal protein G B1 domain, in 
explicit solvent (34-36). In the simulation, only 8 replicas 
were required to cover the energy range corresponding to 
the temperatures between 275 K and 689 K, whereas at 
least 64 replicas were necessary for the original REM in the 
same system. 
 
4.  FOLDING SIMULATIONS OF THE C-PEPTIDES 
IN SOLUTION 
 

Here, we show the efficiency of the new 
generalized-ensemble algorithms in protein-folding studies. 
Molecular mechanism of folding and stability for the C-

peptide in ribonuclease A has been studied both by 
experimental and theoretical researchers. Circular 
Dichroism (CD) (37, 38) and nuclear magnetic resonance 
(NMR) (39) experiments have shown that the C-peptide 
analogs have a partially distorted alpha-helix structure at 
room temperatures. In their studies, two side-chain 
interactions have been pointed out to be essential for the 
alpha-helical structure: one is a salt-bridge interaction 
between Glu2 and Arg10, the other is an aromatic-aromatic 
interaction between Phe8 and His12 (37, 40). At neutral 
pH, side chain of Glu is negatively charged, whereas that of 
Arg is positive, suggesting that Glu2 and Arg10 may form 
a stable salt bridge by electrostatic interactions. In 
theoretical studies, the alpha-helical structure has been 
obtained from the random-coil structure or fully extended 
structure by simulated annealing in gas phase (41), or the 
simulations based on the generalized-ensemble algorithms 
(19, 22). However, the roles of the side-chain interactions 
pointed out by the experiments have not been fully 
examined.  
 

We performed all-atom MD simulations of the 
C-peptide in explicit solvents (24) and then, analyzed the 
free-energy landscapes of the peptide at various 
temperatures. The simulations were based on REMUCA 
(21). The peptide analog comprises 13 amino-acid residues: 
Ala-Glu-Thr-Ala-Ala-Ala-Lys-Phe-Leu-Arg-Ala-His-Ala, 
in which the N and C-termini were blocked with the acetyl 
group and the N-methyl group, respectively. The initial 
configuration of the peptide was a fully extended 
conformation and was simulated at 1000 K in gas phase. 
Then, one of the structures in the simulation was solvated 
with 1387 water molecules in a sphere of radius 22 Å. 
AMBER parm99 (42, 43) and TIP3P model (44) were used 
for the force-field parameters of proteins and water 
molecules. 
 

We first performed a REMD simulation with 
32 replicas (REMD1) for 100 ps per replica, covering the 
temperature range from 250 K to 700 K. During this 
simulation, replica-changes were attempted every 200 MD 
steps. The potential-energy distributions were used as input 
data to the multiple-histogram analysis (14, 15) and then, 
we obtained the first estimate of Wmu (E) . We divided the 
factor into four factors that covered different energy 
regions. We then carried out a MUCAREM simulation with 
4 replicas (MUCAREM) for 1 ns per replica, in which 
replica-exchange was attempted every 1000 MD steps. We 
again updated the estimate of Wmu (E)  by using the 
potential-energy distributions obtained in the MUCAREM 
simulation. Finally, we performed a 15-ns multicanonical 
MD run with 1 replica (REMUCA) and analyzed the 
simulation trajectory in detail. In Figure 1, the potential-
energy distributions obtained from REMD, MUCAREM, 
and REMUCA are shown. Note that in REMD and 
MUCAREM, sufficient overlaps of the potential energy 
distributions between neighboring replicas are observed. In 
REMUCA, a flat distribution is obtained. These suggest 
that good random walks are realized in REMD, 
MUCAREM, and REMUCA. 
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Figure 1. Probability distributions of potential energy of 
the C-peptide obtained from (a) REMD, (b) MUCAREM, 
and (c) REMUCA. Dashed curves in Figure 1(c) are the 
reweighted canonical distributions at 290, 300, 500 and 700 
K, respectively (from left to right). 
 
 

To construct the free-energy landscapes of the 
C-peptide at various temperatures, we performed principal 
component analysis (PCA), which is one of the standard 
methods for studying conformational dynamics or 
fluctuations of proteins (45-47). We used the first two 
principal component (PC) axes as reaction coordinates, 
because the first and second PCs contributed significantly 
to the total root-mean-square fluctuations of the proteins 
(22.8 and 17.0 %, respectively). To obtain the landscapes at 
different temperatures, we employed histogram-
reweighting techniques and calculated the potentials of 
mean force along the first two PCs: 

 
∆G(PC1,PC2;T ) = −kBT ln PB (PC1,PC2;T ) , (1.14) 

where PC1 and PC2 are the first two PC values. 
PB (PC1,PC2;T )  is the “reweighted” canonical 
distribution at temperature T. In Figure 2, smooth free-
energy landscapes were observed at 400 K and 500 K. In 
contrast, at 300 K, the landscape became much more 
rugged and consisted of three distinct local-minimum-
energy states (LM1, LM2, and LM3), which were separated 
with high-energy barriers. Of these states, LM1 
corresponded to the global free-energy minimum state 
(GM).  
 

To characterize each LM, we focused on the 
conformations whose total potential energy was lower than 
-12,500 kcal/mol (including the contributions from water 
molecules). -12,500 kcal/mol was chosen, because it was 
the highest energy value that can be reached for the energy 
distribution at 300 K in Figure 1c. Figure 3 indicated the 
different characters of the LMs. In LM2, the peptide 
contained the salt-bridge interaction between Glu2 and 
Arg10, whereas two aromatic residues, Phe8 and His12, 
were separated. In contrast, in LM3, the two aromatic 
residues made contacts, whereas the salt-interaction was 
not observed. In LM1, which corresponds to the global 
free-energy-minimum state (GM), both interactions were 
observed. The structures in GM agreed with the X-ray 
structure of the C-peptide, which has a partially distorted 
alpha-helix with these two side-chain interactions. 
 

The two side-chain interactions in the protein 
have quite different characteristics: the aromatic-aromatic 
interaction between Phe8 and His12 is a short-range 
interaction mainly caused by hydrophobic forces, whereas 
the salt interaction between Glu2 and Arg10 occurs due to 
the long-range electrostatic interactions. In LM2 and LM3, 
the C-peptide is likely trapped at collapsed local-energy-
minimum states, where one of the major stabilizing factors 
in the native structure is lost. Thus, the simulation reveals a 
funnel-like shape of the free-energy landscape of the C-
peptide, where all the important interactions consistently 
exist only in GM. This may be the mechanism how such a 
short peptide can fold into a stable conformation rather than 
a random-coil state in solution. 
 

To understand the role of each side-chain 
interaction on the folding reaction of the C-peptide, the 
free-energy landscape is useful. In Figure 3, the green 
points (salt-bridge interaction) and the blue points (alpha-
helix formation) do not overlap except for the region 
around GM. In contrast, the red points (aromatic-aromatic 
interaction) overlap significantly with the blue points, 
suggesting that the formation of alpha-helix is strongly 
correlated with the aromatic-aromatic interaction between 
Phe8 and His12. The salt interaction between Glu2 and 
Arg10 may contribute to prevent the structure from 
expanding to the N-terminus. Although the simulation 
trajectories of the generalized-ensemble simulations do not 
provide the kinetic information directly, careful analysis on 
the free-energy landscape can provide the information on 
how proteins fold from the random-coil or the denatured 
states.  



[Frontiers in Bioscience 14, 1292-1303, January 1, 2009] 

1298 

Figure 2. The potential of mean force of the C-peptide along the first two principal component axes at (a) 300, (b) 350, (c) 400 
and (d) 500 K. LM1(GM), LM2 and LM3 represent three distinct local-energy-minimum states. Representative snapshot in LM1, 
LM2, and LM3 are also shown. The aromatic-aromatic interaction between Phe8 and His12 and the salt-bridge interaction 
between Glu2 and Arg10 are shown explicitly in ball-and-stick model. 
 
5.  CONFORMATIONAL CHANGES OF 
PHOSPHOLAMBAN BY PHOSPHORYLATION AT 
SER16 
 

Phospholamban (PLN) is a 52-residue integral 
membrane protein that regulates the activity of the 
sarco(endo)plasmic reticulum calcium pump (SERCA) in 
cardiac muscle (48). Its inhibitory action is relieved when 
PLN is phosphorylated at Ser16 by cAMP-dependent protein 
kinase or at Thr17 by Ca2+/calmodulin-dependent kinase (49, 
50). However, molecular mechanism of how the 
phosphorylation can change the inhibitory action remained to 
be answered. To understand the mechanism, we studied the 
effect of phosphorylation on the structure of PLN. We 

performed REMD simulations of the unphosphorylated form 
of PLN (PLN) and phosphorylated form of PLN (pPLN) in 
solution to explore the free-energy landscapes of the two 
forms (25). 
 

In the simulations, we did not include the 
transmembrane region of PLN or pPLN, because the 
phosphorylation site (Ser16) is far from the transmembrane 
region of PLN. Thus, we used the first 20 amino-acid 
residues of PLN in the simulations, whose amino-acid 
sequence is Met-Glu-Lys-Val-Gln-Tyr-Leu-Thr-Arg-Ser-
Ala-Ile-Arg-Arg-Ala-Ser-Thr-Ile-Glu-Met. The C-termini of 
the protein was blocked with an N-methyl group. The starting 
structure of PLN was taken from the corresponding region of 
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Figure 3. Interaction consistency in the free-energy 
landscape of the C-peptide system. Red, green, blue points 
represent conformations with the aromatic interaction 
between Phe8, those with the salt-bridge interaction between 
Glu2 and Arg10, and those with more than six helical 
residues defined by DSSP(62). Only the conformations 
whose total potential energy is less than -12,500 kcal/mol are 
considered.  

 
the first conformer of the NMR structures reported by 
Zamoon et al. (51). For pPLN, the starting structure was 
prepared by simply changing the side chain of Ser16 to the 
phosphorylated form. Since the phosphate is 
negativelycharged at neutral pH, the phosphorylated Ser16 
can form salt bridges with arginine residues in the peptide. 
PLN and pPLN were solvated in a sphere with a radius of 30 
Å, in which 8 K+, 11 Cl- and 3405 water molecules, and 9 K+, 
10 Cl- and 3399 water molecules were included, respectively. 
CHARMM27 CMAP potential function (52, 53) was used for 
proteins, and the TIP3P model (44) was used for water 
molecules. Other simulation details were written in the 
original paper (25).  
 

We used sixty replicas with different temperatures 
from 290 K to 653 K. In the simulations of PLN and pPLN, 
we performed 8 ns and 10 ns of MD simulations for each 
replica, respectively, and attempted replica-exchanges every 
100 steps. The total simulation lengths were 480 ns for PLN 
and 600 ns for pPLN. The coordinates of PLN or pPLN saved 
every 500 steps for the final 6 ns were used to construct the 
free-energy landscapes. To characterize the landscapes at 310 
K, we used the first (PC1) and third (PC3) axes, because 
different local-energy-minimum states appeared more clearly 
in the PC1-PC3 plane than in the PC1-PC2 plane. 
Contributions to the mean square fluctuation from the PC2 
and PC3 were similar (8.6 and 8.4 %, respectively). 
 

In the free-energy landscape of PLN (Figure 4), 
three major clusters were found. In cluster I, PLN consisted 
of a long alpha-helix from Glu2 and Glu19, whereas the C-
terminal part of the alpha-helix was unwound in clusters II 

(between Thr17 and Glu19) and III (between Ile12 and 
Glu19), suggesting that the structural ensemble of PLN in 
solution contains the conformations similar to the atomic 
model of PLN bound to SERCA (54). In contrast, the free-
energy landscape of pPLN exhibited a broader distribution 
comprising eight clusters, which were further classified into 
three groups. In the first group, pPLN consisted of a long 
alpha-helix from Lys3 to pSer16, and contained, at most, a 
single salt-bridge between pSer16 and Arg13. In the second 
group, two salt-bridges were formed between pSer16, and 
two arginines (Arg9 and Arg13). Due to the two salt bridges, 
the C-terminal part of the alpha-helix was unwound or 
divided into two short helices. The third group contained 
disordered conformations, in which a salt bridge was formed 
between pSer16 and Arg14. Thus, phosphorylation of PLN at 
Ser16 likely form salt-bridges with arginines and increased 
the number of conformational substates by distorting the 
alpha-helix. 
 

The effect of phosphorylation at Ser16 of PLN has 
been extensively studied by experimentalists. However, 
nuclear magnetic resonance (NMR) (55) and fluorescence 
resonance electron transfer (FRET) (56, 57) did not provide a 
consistent picture of the effect of phosphorylation. NMR 
studies of a mutant of PLN (AFA-PLN) (55) showed that the 
phosphorylation unwinds the C-terminal part of the 
cytoplasmic alpha-helix and shifts the conformational 
equilibrium toward disordered states. The authors suggested 
that a stable salt bridge involving pSer16 is unlikely. In 
contrast, FRET studies suggested that pPLN takes more 
compact helical conformation stabilized by a salt bridge 
between pSer16 and Arg13 (56, 57). One of the major 
purposes of the simulation study is to explain this 
experimental inconsistency.  
 

The simulation results on PLN and pPLN agree 
with the NMR measurements (55), because the 
phosphorylation increases the degree of conformational 
disorder as shown in the free-energy landscapes of PLN and 
pPLN (Figure 4). Average alpha-helicity of each residue in 
PLN and pPLN at 310 K in Figure 5 represents the degree of 
disorder more quantitatively. Although a direct comparison 
between FRET and the simulations is not possible, Figure 6 
shows approximately 2 Å decrease in the Cα-distance 
between Tyr6 and Met20 upon the phosphorylation at Ser16 
of PLN. It is quantitatively consistent with the results of 
FRET (56, 57), in which the distance between Tyr6 and a 
fluorophore, N-(1-pyrenylmaleimide), attached to Cys24 
decreased by 3 Å by the phosphorylation. The decrease was 
initially interpreted as an elongation of the cytoplasmic 
alpha-helix (56, 57). However, the free-energy landscapes of 
PLN and pPLN indicated that the decrease is due to the 
conformational disorder of alpha-helix upon the 
phosphorylation at Ser16. Thus, two experimental 
measurements and the simulation results are consistent with 
each other.  
 

Then, how does the phosphorylation relieve the 
inhibitory effect of PLN on SERCA in cardiac muscle? The 
current simulation indicated that the phosphorylation of PLN 
at Ser16 unwinds the cytoplasmic helix by forming salt 
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Figure 4. Free-energy landscapes of PLN (a) and pPLN (b) at 310 K in the REMD simulations. The starting conformation of 
PLN (white circle) and the representative stable conformations at local-energy-minimum (open circles) are also shown. The 
values are the number of alpha-helical residues and the C� distance between Tyr6 and Met20 of the representative structure in 
each cluster. The side chains of Arg9, Arg13, Arg14, and Ser16 are represented in ball-and-stick form. The phosphate in pPLN 
was circled in Figure 4(b). 
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Figure 5. Average alpha-helicity of each residue in PLN 
(straight) and pPLN (dashed) at 310 K. An alpha-helical 
residue was defined by the same criteria that were used in 
DSSP(62). The error bars show the standard error of block 
averages that were calculated for every 1ns. 
 
 

 
 
Figure 6. Distribution of the Cα distance between Tyr6 
and Met20 at 310 K calculated in PLN (straight) and pPLN 
(dashed) in the REMD simulations. 
 
bridges between pSer16 and three arginines. Based on the 
structural model (54), the crosslink between Lys3 in PLN 
and Lys397 or Lys400 in SERCA is possible only if the 
cytoplasmic domain takes an alpha-helical structure. These 
suggest that the conformational disorder upon the 
phosphorylation of PLN at Ser16 inhibits a stable binding 
of PLN to SERCA. To see the validity of the model, we 
should study the effect of phosphorylation of PLN bound to 
SERCA.  
 
6.  PERSPECTIVE 
 

Recently, folding simulations of small 
polypeptides or proteins have been performed extensively 
by using the generalized-ensemble algorithms. In 
particular, REMD simulations with implicit solvent models 

have been the most popular approach, because their 
computational cost is much smaller than the simulations 
with explicit solvent. Although implicit-solvent simulations 
have provided new insight on protein folding, the detailed 
description of the side-chain interactions during protein-
folding processes may be difficult with the model. For 
instance, the implicit solvent model cannot describe the 
side-chain interactions that are bridged by a water 
molecule. In contrast, the simulations with explicit solvent 
can provide atomically detailed information on the side-
chain interactions, as shown here.  
 

Another important issue on protein folding and 
stability is the effect of salt ions on the conformational 
stability of proteins. In the simulations of PLN and pPLN, 
we added K+ and Cl- in the solvent sphere to mimic the 
experimental environment. However, due to the small size 
of the simulation system, we cannot study the details of the 
salt effect on the protein. In the near future, we may extend 
the size of the solvent sphere and study the salt effect on 
the protein stability in an atomic resolution. In such 
simulations, MUCAREM or REMUCA should be useful, 
because the number of replicas for a larger simulation 
system is still very small compared with the original 
REMD. The multi-dimensional replica-exchange method 
(MREM) (32), in which pre-defined reaction coordinates as 
well as temperatures are attempted to exchange during the 
simulations, (it is also referred to as Hamiltonian REM 
(33)) may be another candidate that are applicable to the 
large simulation systems. In MREM, a careful choice of the 
reaction coordinate is required before the production 
dynamics. 
 

Toward better description of the free-energy 
landscapes of proteins, accuracy of the force-field 
parameters should also be essential. Yoda et al, have 
compared the structural tendency of six commonly used 
force-field parameters, by performing the generalized-
ensemble simulations of C-peptide and G-peptide in 
explicit solvent (34, 36). The results indicated that alpha-
helix is favored for AMBER94 (42) and AMBER99 (42, 
43) and that beta-hairpin is favored for GROMOS96 (58), 
whereas CHARMM22 (52), AMBER96 (59), and 
OPLSAA/L (60, 61) have intermediate tendency. This 
result indicates that we should use different force fields 
depending on the folds (alpha, beta, alpha/beta, etc.) of the 
target proteins in their folding simulations from the first 
principles (from a random initial conformation). Therefore, 
further improvements on the force fields are necessary for 
studying the free-energy landscapes of protein folding or 
large-scale conformational changes in proteins. 
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