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1.ABSTRACT 
 

Adult T-cell leukemia/lymphoma (ATLL) is a 
malignancy of peripheral T lymphocytes caused by human 
T-cell leukemia virus type 1 (HTLV-1) infection. Available 
therapies for ATLL have minimal efficacy, with few 
responders and poor survival. New therapies are needed for 
ATLL patients. Three decades of research in this field has 
resulted in accumulation of a wealth of knowledge about the 
molecular pathways underlying the proliferation of 
HTLV-1-infected T cells. Inappropriate over- and 
under-activation of various signaling pathways can 
contribute to pathological processes such as neoplasia. 
Molecular and pharmacological interventions that target the 
aberrant state of activation are thus of potential therapeutic 
benefit. Here we review how signal transduction pathway 
components including nuclear factor-kappaB, activator 
protein-1, janus kinase-signal transducer and activator of 
transcription, and phosphatidylinositol 3-kinase-Akt 
contribute to the pathogenesis of ATLL. The targeted 
inhibition of such molecules to suppress the growth of 
HTLV-1-infected T cells both in vitro and in vivo is also 
discussed. The potential translation of such strategies into 
effective therapies for patients with ATLL may improve the 
poor outcome associated with this neoplasia.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

Adult T-cell leukemia/lymphoma (ATLL) is a 
unique malignancy of mature CD4+ T cells caused by a 
delta-type retrovirus, the human T-cell leukemia virus type 1 
(HTLV-1) (1-3). About 10-20 million people worldwide are 
currently infected with HTLV-1, and the infection is 
endemic in southwestern Japan including the Okinawa 
prefecture, the Caribbean islands, the areas surrounding the 
Caribbean basin, and Central Africa. After infection, 
double-stranded DNA from CD4+ T cells is synthesized 
from virus RNA by reverse transcriptase, followed by 
integration into the host gene as a provirus. HTLV-1 persists 
as provirus DNA integrated in the host DNA, and is 
transmitted in a cell-to-cell manner by three main routes: 
mother-infant (mainly through breast-feeding), sexual 
contact, and blood transfusion. Epidemiological studies 
have indicated a higher incidence of ATLL in male HTLV-1 
carriers, implicating vertical infection as a risk factor for 
ATLL (4). ATLL develops in 2-5% of HTLV-1-infected 
individuals after a long latent period, suggesting a 
multistage process of immortalization and transformation of 
T lymphocytes (Figure 1). Clinically, ATLL is subclassified 
into four subtypes: acute, lymphoma, chronic, and 
smoldering. In the relatively indolent smoldering and 
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Figure 1. Schematic model of ATLL leukemogenesis. HTLV-1 is transmitted in a cell-to-cell fashion through breast milk. 
HTLV-1-infected T cells proliferate clonally requiring Tax and other viral proteins. However, proliferation of HTLV-1-infected T 
cells is also controlled by the host immune system. The balance between proliferation of HTLV-1-infected T cells and elimination 
by the host immune system is established in the carrier phase. After a long latency period, ATLL develops in about 5% of 
asymptomatic carriers. Tax expression is suppressed by several mechanisms, suggesting that Tax is not necessary at this stage. 
Instead, genetic and epigenetic alterations accumulate progressively in the host genome during the latency period, culminating in 
the onset of ATLL. CTL: cytotoxic T lymphocytes; ATLL: adult T-cell leukemia/lymphoma; HBZ: HTLV-1 basic leucine zipper 
factor. 

 
chronic types, the median survival time is ≥2 years. 
Unfortunately, no effective curative therapy for ATLL exists 
and the condition often progresses to death with a median 
survival time of 13 months in aggressive cases (5). Death is 
usually due to severe infection or hypercalcemia, often 
associated with resistance to aggressive combination 
chemotherapy. Therefore, new therapeutic strategies for 
ATLL need to be established. 
 
3. CLONAL PROLIFERATION OF 
HTLV-1-INFECTED T CELLS AND ATLL CELLS 
 

Dysregulation of certain signaling pathways 
may be oncogenic for ATLL. These include the nuclear 
factor-kappaB (NF-kappaB), activator protein-1 (AP-1), 
janus kinase-signal transducer and activator of transcription 
(JAK-STAT), and phosphatidylinositol 3-kinase (PI3K)-Akt 
pathways. These pathways are involved in regulating 

apoptosis, cell cycle regulation, tumor proliferation, and cell 
migration (6). The HTLV-1 sequence contains two long 
terminal repeats (LTRs) in the 3’ and 5’ ends. 
HTLV-1-mediated transformation of T lymphocytes 
depends on the 40-kDa Tax phospho-oncoprotein (7), which 
potently increases viral gene expression through these LTRs. 
Tax can be used to immortalize primary human T cells, and 
when expressed as a transgene, it provokes leukemogenesis 
and lymphomagenesis in animals (7,8). Tax activates 
NF-kappaB, AP-1, and PI3K-Akt pathways (6,9,10). In 
addition, Tax is a major target of cytotoxic T lymphocytes 
(CTLs) (11) thereby Tax expression induces an immune 
response. Thus, the expression of Tax in HTLV-1-infected T 
cells introduces advantages and disadvantages for host cell 
survival. To escape from CTLs, ATLL cells frequently lose 
the expression of Tax via several mechanisms (12). In 
addition, targeted inhibition of the constitutively activated 
signaling pathways in ATLL (Figure 1) induces apoptosis. 
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Interestingly, treatment of transformed fibroblast cell lines 
derived from Tax transgenic mice with Tax antisense 
oligonucleotides caused a 90% reduction in Tax expression, 
but had no effect on cell growth or ability to form tumors in 
vivo (13). These findings are consistent with Tax being 
required only in the initiation of transformation, and not 
during maintenance.  

 
Animal experiments conducted using HTLV-1 

infectious clones with mutated accessory genes 
demonstrated that the accessory p12, p30, rex, p13, and 
HTLV-1 basic leucine zipper factor (HBZ) genes help to 
establish a chronic HTLV-1 infection in vivo (14-18). HBZ, 
encoded by the minus strand of the provirus (19), is 
expressed continuously and permanently in infected cells. 
HBZ inhibits the Tax-mediated transactivation of viral 
transcription from the 5’ LTR by heterodimerizing with JUN 
and CREB2 (20). Rex and p30 also negatively regulate viral 
transcription (21,22). Thus, HBZ, Rex, and p30 seem 
capable of escaping the host immune surveillance system. 
Interestingly, HBZ RNA promotes ATLL cellular 
proliferation (23). Thus, HBZ may contribute to the 
development and maintenance of the leukemic process. As 
described above, ATLL cells do not always need Tax 
expression in the later stage of leukemogenesis. However, 
ATLL cells frequently show somatic alterations of genomic 
DNA that controls the cell cycle and hypermethylation of 
tumor suppressor gene promoter regions (12). Thus, genetic 
and epigenetic changes imprinted into the cellular genome 
seem to contribute to multistep leukemogenesis (Figure 1). 
 
4. MOLECULAR TARGETS 
 
4.1. NF-kappaB   

NF-kappa B signaling is an important regulatory 
pathway for cell growth, apoptosis, inflammation, the stress 
response, and many other physiological processes (24). In 
mammals, the NF-kappaB family consists of RelA (p65), 
RelB, c-Rel, NF-kappaB1 (p50 and its precursor p105), and 
NF-kappaB2 (p52 and its precursor p100); these 
components can form transcriptionally active complexes in 
various combinations. NF-kappaB proteins are kept inactive 
by association with inhibitory proteins in the cytoplasm, 
including IkappaB alpha, IkappaB beta, IkappaB epsilon, as 
well as the p105 and p100 precursors of p50 and p52, 
respectively.  

 
Physiological activation of NF-kappaB occurs 

mainly through either the canonical or noncanonical 
pathway (Figure 2). Both pathways involve inducible 
phosphorylation of IkappaB proteins by the multiprotein 
IkappaB kinase (IKK) that contains two catalytic subunits, 
IKK alpha (IKK1) and IKK beta (IKK2), as well as the 
regulatory subunit IKK gamma (or NEMO for NF-kappaB 
essential modifier). The canonical pathway of NF-kappaB 
activation is stimulated by a range of stimuli, including 
proinflammatory cytokines (25,26). Activated IKK 
phosphorylates IkappaB proteins, thereby inducing IkappaB 
polyubiquitinylation and subsequent proteolytic degradation 
by the proteasome. NF-kappaB dimers, p50 and RelA, are 
released following degradation of IkappaB. These molecules 

then translocate into the nucleus, and activate the 
transcription of several genes. The noncanonical pathway of 
NF-kappaB activation represents an additional specialized 
signaling cascade that is particularly important in mature B 
cells. This pathway is stimulated by a restricted set of 
cell-surface receptors that belong to the tumor necrosis 
factor (TNF) receptor superfamily, including CD40, the 
lymphotoxin beta receptor, and BAFF receptor (26). This 
pathway activates NF-kappaB-inducing kinase (NIK) and 
IKK alpha to directly phosphorylate NF-kappaB2/p100. 
This process induces partial proteolysis of p100 to p52, 
which preferentially dimerizes with RelB. Although each 
NF-kappaB subunit has distinct regulatory functions, many 
of the target genes are common to several NF-kappaB 
dimers.  

 
The target genes that are relevant for lymphocyte 

biology are grouped into several functional classes: positive 
cell cycle regulators, antiapoptotic factors, inflammatory 
and immunoregulatory genes, and negative feedback 
regulators of NF-kappaB. Tax can bind directly to IKK 
gamma and stimulate both NF-kappaB pathways (9) (Figure 
2). However, these signaling cascades may not fully explain 
ATLL biology, because cells no longer expressing Tax 
continue to show constitutively activated NF-kappaB (27) 
and upregulated NF-kappaB-dependent proteins. Indeed, 
NIK was recently implicated in constitutive NF-kappaB 
activation in ATLL cells (28).  

 
Chemical inhibition of NF-kappaB signaling has 

been investigated in primary ATLL cells and 
HTLV-1-infected T-cell lines using Bay 11-7082, an 
irreversible inhibitor of IkappaB alpha phosphorylation (29), 
dehydroxymethylepoxyquinomicin (DHMEQ), an inhibitor 
of nuclear translocation of RelA (30), and 2-amino-6- (2- 
(cyclopropylmethoxy)-6-hydroxyphenyl)-4-piperidin-4-yl 
nicotinonitrile (ACHP), an inhibitor of IKK (31). Rapid and 
efficient inhibition of NF-kappaB activity and 
downregulation of its targets in these cells has also been 
reported (29-31). Such inhibition induces extensive 
apoptosis and G1 cell cycle arrest, confirming the 
NF-kappaB pathway as a potential therapeutic target in 
ATLL. Other potential inhibitors of NF-kappaB include 
the following: proteasome inhibitors, bortezomib (32); a 
human immunodeficiency virus protease inhibitor, 
ritonavir (33); retinoids, all-trans retinoic acid (34) and 
NIK-333 (35); the purine analog fludarabine (36); arsenic 
trioxide (37); the histone deacetylase inhibitors, 
depsipeptides (38), MS-275 (39), suberoylanilide 
hydroxamic acid (39), and LBH589 (39); HSP90 inhibitor, 
17-AAG (40); the �-galactoside-binding lectin galectin-9 
(41), fucoidan, a natural sulfated polysaccharide extracted 
from Cladosiphon okamuranus Tokida (42); curcumin, a 
natural compound present in turmeric (43), and oridonin, a 
natural diterpenoid purified from Rabdosia rubescens (44). 
Although these compounds have limited specificity for the 
NF-kappaB pathway, they induce apoptosis and G1 and/or 
G2/M cell cycle arrest in ATLL cells and HTLV-1-infected 
T-cell lines. Based on the above background, NF-kappaB is 
an attractive target for therapeutic intervention and 
NF-kappaB inhibitors are suitable candidates for translating 
this strategy into clinical medicine. 
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Figure 2. Activation of two NF-kappaB signaling pathways by Tax. The noncanonical pathway consists of NIK- and IKK 
alpha-mediated p100 processing and nuclear mobilization of RelB/p52 heterodimers. Tax triggers activation of this pathway 
downstream of NIK by activating IKK alpha via IKK gamma and recruiting IKK alpha to p100 to stimulate phosphorylation, 
ubiquitination, and processing to p52. The canonical pathway consists of IKK-mediated phosphorylation, ubiquitination, and 
degradation of IkappaB proteins, leading to degradation by the proteasome, and the nuclear translocation of RelA and 
c-Rel-containing heterodimers. Tax activates the canonical pathway by interacting with IKK gamma and stimulating the catalytic 
activity of IKK alpha and IKK beta. Tax may recruit upstream kinases to trigger IKK activation. See text for abbreviations. 

 
4.2. AP-1 

The AP-1 transcription factor is composed 
mainly of Jun, Fos, and ATF protein dimers. AP-1 proteins 
are considered oncogenic, although recent studies have 
challenged this view by demonstrating that some AP-1 
proteins such as JunB and c-Fos have tumor-suppressor 
activities (45). Unstimulated T cells show low basal level of 
AP-1 proteins, while T-cell activation rapidly induces the 
jun and fos genes (46). AP-1 is the second major survival 
pathway dysregulated by HTLV-1. ATLL cells and 
HTLV-1-infected T-cell lines express a number of AP-1 
proteins, including c-Fos, Fra-1, c-Jun, JunB, and JunD 
(47,48); all of these except JunB are activated by Tax at the 
transcriptional level (47). Tax activates transcription 

through the AP-1 site and induces AP-1 DNA-binding 
activity (48,49). However, the AP-1 binding complex in 
ATLL cells and HTLV-1-infected T-cell lines contains 
JunD, but not the characterized Fos family members (48). 
Unmodified and in the absence of other factors, JunD forms 
unstable complexes with DNA (50). Thus, a factor different 
from currently known AP-1 transcription factors is likely to 
be a component of the AP-1 binding complex in ATLL cells 
and HTLV-1-infected T-cell lines. Recent studies showed 
high expression levels of Fra-2, JunB, and JunD in ATLL 
cells, while knockdown of Fra-2 and JunD reduced cell 
proliferation in HTLV-1-infected T-cell lines, whereas 
knockdown of JunB did not (51). AP-1 activity can be 
regulated also at the post-transcriptional level by the 
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activation of c-Jun N-terminal kinase (JNK) (52). JNK 
phosphorylates c-Jun within its N-terminal transactivation 
domain, thereby enhancing its transactivation potential (53). 
JNK also phosphorylates and potentiates the activity of 
JunD and ATF-2 (53). Tax could therefore modulate this 
pathway by constitutively activating JNK (54).  

 
 The complementary strand of the HTLV-1 
genome encodes HBZ (19), which is expressed in ATLL 
cells (23). The original two-hybrid screen using CREB-2 as 
bait identified HBZ as a nuclear basic leucine zipper protein, 
resembling both AP-1 and CREB/ATF. HBZ has both 
positive and negative effects on AP-1-dependent 
transcription and Tax activation of HTLV-1 LTR. HBZ 
inhibits the transcriptional activation of HTLV-1 LTR via 
c-Jun, by forming heterocomplexes with c-Jun that are 
subsequently degraded (20,55). In contrast, HBZ stimulates 
JunB- or JunD-mediated activation of AP-1 under certain 
conditions (20,56). Thus, both Tax and HBZ might be 
important in the constitutive activation of AP-1.  
 
 ATLL cells that show weak or no expression of 
Tax have constitutively activated AP-1 (48). In addition, 
depsipeptide (38), 17-AAG (40), fucoidan (42), and 
curcumin (57) suppress AP-1 activation. These inhibitors 
also have remarkable antiproliferative effects on 
HTLV-1-infected T-cell lines and primary ATLL cells in 
vitro, and depsipeptide inhibits growth of tumors inoculated 
subcutaneously into severe combined immunodeficiency 
mice (38). The inhibition of AP-1 activity is associated with 
inhibition of JunD expression (40,42,57). Together, these 
results implicate AP-1-targeting agents in promising 
therapies for ATLL. 
 
4.3. JAK-STAT 

The JAK-STAT signal transduction pathway 
was first identified in studies of transcriptional regulation in 
response to interferon  (58). It was subsequently implicated 
more generally in signaling responses to cytokines, 
hormones, and growth factors (59). JAK-STAT signaling is 
a major cytokine-stimulated regulatory pathway of T 
lymphocyte function (60). Specifically, the STAT family of 
transcription factors is essential for cytokine-regulated 
processes including growth and proliferation via the 
activation of downstream genes (61). STAT proteins are 
activated by JAK proteins, a group of receptor-associated 
enzymes with tyrosine phosphorylation activity. Whereas 
JAK and STAT proteins are normally unphosphorylated and 
inactive in quiescent lymphocytes, JAK1, JAK3, STAT3, 
and STAT5 become activated in normal T lymphocytes in 
response to the cytokine, interleukin-2 (IL-2), and are 
constitutively tyrosine phosphorylated in 
HTLV-1-transformed T cells (62-64) and ATLL cells (65). 
The mechanism underlying the constitutive activation of 
JAK-STAT after HTLV-1 infection is still unclear. Nicot and 
colleagues (66) reported that the p12I protein, encoded by 
the pX open reading frame I of HTLV-1, binds to the IL-2 
receptor (IL-2R) beta chain, thus activating STAT5 through 
activation of JAK1 and JAK3. Upon IL-2 stimulation, IL-2R 
beta and associated signaling molecules are phosphorylated. 
This in turn recruits SH2-homolog-containing 
protein-tyrosine phosphatase-1 (SHP-1) to the IL-2R 

complex, dephosphorylating IL-2R beta, JAK1, and JAK3 
to elicit the earliest negative regulation of IL-2-mediated 
JAK-STAT signaling. However, SHP-1 expression is 
significantly diminished or undetectable in several 
HTLV-1-infected T-cell lines that possess constitutively 
activated JAK-STAT proteins (67). This supported the 
notion that SHP-1 functions as a tumor suppressor by 
antagonizing the growth-promoting and oncogenic 
potentials of tyrosine kinases. HTLV-1-immortalized T cells 
are initially IL-2-dependent, but can acquire independence 
from exogenous IL-2 support following prolonged periods 
in culture (62). The acquisition of constitutively activated 
JAK-STAT proteins correlates with a loss of IL-2 
dependency (62,63), as does the downregulation of SHP-1 
expression (67). Constitutive activation of JAK-STAT 
pathway was also associated with augmented cell cycle 
progression in ATLL cells (65). These results argue that 
ATLL development involves a constitutively activated 
JAK-STAT pathway. 

 
 AG490, a JAK-specific inhibitor, blocked the 
phosphorylation of JAK1, JAK3, STAT3, and STAT5, and 
the DNA-binding activity of STAT3 and STAT5 in 
HTLV-1-infected T-cell lines and primary ATLL cells (68). 
AG490 inhibits the growth of these cells by inducing G1 cell 
cycle arrest and apoptosis. This finding was indirectly 
supported by studies using cyclin-dependent kinase inhibitor, 
roscovitine, to induce apoptosis in the HTLV-1-transformed 
T-cell line MT-2 (69). Roscovitine inhibited STAT5 
activation by blocking its tyrosine phosphorylation. In 
addition, ectopic expression of a dominant-negative form of 
STAT5 induced apoptosis in MT-2 cells (69). Roscovitine 
and dominant-negative STAT5 also reduced the expression 
of antiapoptotic protein XIAP, and STAT5 was associated 
physically with the XIAP promoter (69). Curcumin also 
suppresses JAK3, STAT3, and STAT5 activity in 
HTLV-1-infected T-cell lines (70). Thus, the JAK-STAT 
pathway is also a suitable target for treatment of ATLL. 
 
4.4. PI3K-Akt 

The serine/threonine kinase Akt is a central 
downstream signaling component for growth factors, 
cytokines, and other cellular stimuli. Activated receptor 
tyrosine kinases activate PI3K through either direct binding 
or tyrosine phosphorylation of scaffolding adaptors, such as 
IRS1, which then bind and activate PI3K. PI3K is a 
heterodimer composed of a catalytic subunit (p110) and an 
adaptor/regulatory subunit (p85). PI3K phosphorylates 
phosphatidylinositol-4,5-bisphosphate (PIP2) to generate 
phosphatidylinositol-3,4,5-trisphosphate (PIP3) in a 
reaction reversible by PTEN, a PIP3 phosphatase. Akt and 
PDK1 bind to PIP3 at the plasma membrane, where PDK1 
phosphorylates the activation loop of Akt on Thr308. 
Activated receptor tyrosine kinase signaling also activates 
the mammalian target of rapamycin (mTOR) complex 2 
(mTORC2) via an unknown mechanism, and mTORC2 
phosphorylates Akt on the hydrophobic Ser473 (71) (Figure 
3).  

 
Akt activation mediates multiple biological 

activities including increased survival, proliferation, and 
growth of tumor cells. The effect of Akt on the survival of 
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Figure 3. Upstream activation of Akt by growth factors. Activation of growth factor receptor protein tyrosine kinases results in 
autophosphorylation of tyrosine residues. PI3K is recruited to the membrane through direct binding to phosphotyrosine consensus 
residues of growth factor receptors or through tyrosine phosphorylation of scaffolding adaptors, such as IRS1. This leads to 
allosteric activation of the catalytic subunit. Activation leads to production of the second messenger PIP3, which in turn recruits a 
subset of PH domain-containing signaling proteins to the membrane, including PDK1 and Akt. PTEN is a PIP3 phosphatase that 
negatively regulates the PI3K-Akt pathway. Once activated, Akt mediates the activation and inhibition of several targets, resulting 
in cell survival, growth, and proliferation through various mechanisms. See text for abbreviations. 

 
cancer cells is related to its antiapoptotic properties. Akt 
directly phosphorylates several components of the cell death 
machinery. For example, phosphorylation of Bad (a 
proapoptotic member of the Bcl-2 family) prevents its 
binding and consequent inactivation of the survival factor 
Bcl-xL. Similarly, Akt phosphorylates and inhibits the 
catalytic activity of proapoptotic protease caspase-9. The 
antiapoptotic effect of Akt is also mediated by 
phosphorylation of the forkhead box O (FOXO) 
transcription factor, which inhibits the nuclear 
translocation and activation of proapoptotic FOXO gene 
target proteins, such as Bim and Fas ligands. In addition 
to its direct antiapoptotic effect, Akt also acts indirectly 
on NF-kappaB, a central regulator of cell death. Akt 
activates NF-kappaB via direct phosphorylation and 
activation of IKK, thereby augmenting the transcriptional 
activity of NF-kappaB family member, RelA. Akt also 
negatively affects the proapoptotic tumor suppressor p53 
via the phosphorylation and activation of p53-binding 
protein murine double minute-2 (Mdm2), a ubiquitin 
ligase-containing proteasome that induces the degradation 
of p53 (72).   

In addition to promoting cell survival, Akt also 
enhances proliferation and growth of tumor cells via its 
effects on cell cycle regulation by modulating cyclin D1. 
Akt directly inhibits glycogen synthesis kinase-3 (GSK3) to 
block the phosphorylation and subsequent degradation of 
cytoplasmic signaling molecule beta-catenin, allowing it to 
be translocated to the nucleus. Nuclear beta-catenin 
combines with different transcription factors such as 
TCF/LEF-1 to upregulate cyclin D1 expression. This 
induces cell cycle progression via regulation of RB 
hyperphosphorylation and inactivation. Phosphorylation of 
cyclin D1 by GSK3 positively regulates its proteasomal 
degradation. In a similar way, reduced phosphorylation of 
cyclin D1 by GSK3 promotes the stabilization of this protein. 
Akt also phosphorylates p21 and p27, thus inhibiting their 
antiproliferative effects by retaining them within the 
cytoplasm and blocking their role in cell cycle inhibition 
(73).  

 
Akt kinase also mediates phosphorylation and 

activation of mTOR, which regulates biogenesis by 
activating p70 ribosomal S6 kinase (S6K) and enhancing 
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translation. mTOR also inhibits 4E-binding protein 1 
(4E-BP1), a translational repressor. The subsequent 
enhanced mRNA translation upregulates multiple proteins 
involved in cell cycle progression from G1 to S phase (72). 
mTOR is also involved in the upregulation of 
hypoxia-inducible factor-1alpha (HIF-1alpha). HIF-1 
transcriptionally activates a variety of genes that promote 
survival and proliferation of tumor cells by mediating 
angiogenesis, oxygen transport, glycolysis, glucose uptake, 
growth factor signaling, invasion, and metastasis, thereby 
promoting an aggressive tumor phenotype (74).     

 
 The PI3K signaling pathway is disrupted in 
HTLV-1-infected T-cell lines and ATLL cells (10,75-80). 
Tax promotes PI3K-Akt activation by directly binding the 
regulatory subunit (p85) of PI3K. Activated Akt then signals 
through downstream factors to activate AP-1 (10). Tax 
activation of Akt is also linked to NF-kappaB activation and 
p53 inhibition (76). Furthermore, activation of Akt by Tax 
prevents beta-catenin degradation and leads to its 
accumulation in the cell (81), and increases HIF-1alpha 
protein synthesis (82). Fukuda et al. (75) reported high 
levels of phosphorylated Akt in ATLL cells and 
downregulated expression of inositol phosphatases PTEN 
and SH2-containing inositol phosphatase-1 (SHIP-1), which 
antagonize the PI3K-Akt pathway. Application of 
LY294002, a PI3K inhibitor, to cultured HTLV-1-infected T 
cells prevented Akt phosphorylation and induced both 
apoptosis and G1 cell cycle arrest, suggesting the importance 
of PI3K-Akt activation in the overall survival of 
HTLV-1-infected T cells (10,75,76,78,79,83). Rapamycin, 
mTOR inhibitor, also inhibited growth and induced G1 cell 
cycle arrest in HTLV-1-infected T-cell lines (79). Recent 
studies demonstrated that curcumin (78), 17-AAG (40), and 
the cyclooxygenase-2 inhibitor, celecoxib (84) suppress Akt 
activation in HTLV-1-infected T-cell lines and ATLL cells. 
Thus, there is strong evidence for targeting the PI3K-Akt 
pathway as a promising treatment strategy for individuals 
with ATLL. 
 
5. SUMMARY AND PERSPECTIVE 

 
One of the major challenges in ATLL 

treatment is the inherent resistance or acquisition of 
resistance to several cytotoxic therapies currently used or 
under investigation. Studies of the molecular mechanism 
underlying resistance to apoptosis identified several survival 
pathways. Such signaling pathways present the potential for 
more precise targeting of antiapoptotic gene products 
involved in these survival pathways through the use of 
pharmacological inhibitors to reverse the resistance. The 
major survival pathways that regulate resistance to apoptosis 
are the NF-kappaB, AP-1, JAK-STAT, and PI3K-Akt 
pathways. All of these are hyperactivated in ATLL cells, but 
not in normal lymphocytes, and all contribute to the 
transcriptional and translational regulation of several 
antiapoptotic and survival gene products. Targeting these 
pathways is therefore a promising approach to dysregulate 
ATLL cell resistance to apoptosis. In this review, we 
focused on the deregulation of cellular signaling processes 
in ATLL. The multistep and complex nature of 
leukemogenesis clearly makes the constitutive activation of 

more than one molecule necessary to induce transformation. 
Thus, clinical trials will also need to validate each potential 
molecular target-based drug used alone and in combination.  
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