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1. ABSTRACT 
 

Calcium ions are the probably the most ancient, 
the most universal and omnipresent intracellular signalling 
molecules, which are involved in regulation of a host of 
cellular functional reactions. In the nervous system Ca2+ 
signalling is intimately involved in information transfer and 
integration within neural circuits. Local Ca2+ signals or 
Ca2+ microdomains control neurotransmitter release; more 
global Ca2+ signals regulate synaptic strength and 
accomplish postsynaptic processing. In the glial syncytium 
Ca2+ ions provide for glial "Ca2+ excitability", convey long-
range signalling by means of propagating Ca2+ waves and 
control the release of gliotransmitters. Differential Ca2+ 
signals in various elements of neural circuits represent 
therefore molecular mechanisms of integration in the 
nervous system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION: GLIAL-NEURONAL 
NETWORKS AS A SUBSTRATE FOR BRAIN 
FUNCTION 
 

Human brain, where our thoughts, emotions and 
hopes dwell, is formed by an exceedingly complex cellular 
circuitry, which comprises more than 100 billion neurones 
and probably about 1 trillion glial cells (37, 45, 73, 124, 
125, 145). Glial-neuronal circuits form dynamic ensembles, 
which act as a substrate for brain function. Integration and 
communications between glial and neuronal networks is 
generally achieved through extracellular space via the 
release of chemical neurotransmitters from synaptic 
terminals or gliotransmitters from astroglial processes (71, 
72, 143, 154, 156); signal transduction within the circuits 
is, however, accomplished by two fundamentally distinct 
mechanisms. The neuronal networking relies upon rapidly 
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propagating electrical signals, the action potentials, which 
are generated by voltage-gated channels residing in the 
plasmalemma (60-62). When reaching the synaptic 
terminals, electrical signals transform into the release of 
neurotransmitters, which, by activating receptors expressed 
in postsynaptic neurones or perisynaptic astroglia, 
accomplish information transfer within neuronal-glial 
network. Glial cells in contrast, are unable to generate 
action potentials, chiefly due to a very low density of 
voltage-gated channels in their membrane (152). 
Nevertheless, glial circuits are integrated via intracellular 
route, through the excitable media formed by the 
membrane of the endoplasmic reticulum (28, 146, 149) in 
combination with intercellular volume transmission 
through gap junctions (33, 44). Combination of 
plasmalemmal and intracellular excitability, release of 
neuro- and gliotransmitters and intercellular volume 
transmission are central for integration within neuronal-
glial circuits. On the molecular level the central stage is 
occupied by Ca2+ ions, which control the release of 
chemical transmitters, regulate synaptic plasticity and 
provide glia with calcium excitability. 
 
3. MOLECULAR PHYSIOLOGY OF CALCIUM 
SIGNALLING AND CALCIUM EXCITABILITY 
 

Calcium signalling system is unique in its 
omnipresence and pluripotency; it has developed initially at 
the very dawn of life as an ultimate survival mechanism, 
which protected intracellular environment against Ca2+ ions 
of the primordial ocean (25). Indeed, at the moment 
polyphosphates (in the form of ATP) were chosen as 
energy accumulators, protection against Ca2+ became vital 
because Ca2+ phosphates are insoluble (160). Therefore, 
survival of proto-cells was critically dependent on their 
ability to rigidly control movements of Ca2+ ions through 
their membrane and to keep Ca2+ low within the 
cytoplasmic compartment. Thus the foundation for Ca2+ 
homeostatic/signalling system was laid. Ca2+ however, 
comes not only in the disguise of universal killer; as an ion 
it has highly flexible coordination number (6 to 10) and can 
therefore interact with a huge variety of biological 
molecules (65). It was not surprising, hence, that evolution 
swiftly utilised calcium as a universal signalling molecule. 

 
Conceptually, calcium homeostasis/signalling 

system is operated by several molecular cascades, which 
provide for Ca2+ transport across membranes that create 
and delineate cellular compartments (see (9-11, 81, 118, 
119, 144, 153) and Figure 1 for review). These 
compartments, represented by the cytoplasm, the 
endoplasmic reticulum (ER) with nuclear envelope, the 
Golgi complex and mitochondria are endowed with distinct 
complements of Ca2+ homeostatic molecules that are 
responsible for creating steep Ca2+ gradients. For example, 
free Ca2+ concentration in the cytosol is ~ 10 - 20 thousand 
times lower compared with both extracellular space and the 
ER lumen; resulting transmembrane gradients determine 
the direction of Ca2+ diffusion.  

 
Molecules of Ca2+ homeostasis/signalling are 

relatively few; they are represented by evolutionary 

conserved families of Ca2+ channels, Ca2+ transporters 
(comprising Ca2+ pumps and Ca2+ exchangers) and Ca2+ 
buffers; these molecular cascades, working in concert, 
provide for spatially and temporally organised fluctuations 
of intracellular Ca2+ concentration, generally known as 
Ca2+ signals (11, 81, 117, 118). 

 
Calcium channels are responsible for diffusion-

based Ca2+ movements down their electro-chemical 
gradients and can be generally subdivided into 
plasmalemmal Ca2+ channels (e.g. voltage- or ligand-gated 
channels, non-selective channels, store-operated channels, 
etc. (19, 26, 102, 108, 116)) and intracellular Ca2+ channels 
residing in the endomembrane (such as InsP3 receptors, 
Ca2+-gated channels, generally referred to as ryanodine 
receptors, and possibly some other channels, for example 
NAADP receptors, pannexins or indeed some types of TRP 
channels) or mitochondrial Ca2+ uniporter (12, 42, 55, 68, 
70, 74, 142)). Calcium transporters, represented by Ca2+ 
ATP-ases (plasmalemmal - PMCA and endomembrane -  
SERCA) and Ca2+ exchangers (operative in both 
plasmalemma and in mitochondrial membrane) transport 
Ca2+ ions against concentration gradients using energy 
from either ATP hydrolysis or from pre-existing ion 
gradients (50, 161). Finally, Ca2+ buffers regulate Ca2+ 
diffusion within various cellular compartments. At the 
receiving end of Ca2+-signalling chain a host of Ca2+-
sensitive enzymes (or "Ca2+ sensors") act as effectors, 
responsible for various physiological responses. Most 
importantly all components of Ca2+ homeostatic/signalling 
are regulated by Ca2+ ions themselves (via e.g. Ca2+-
dependent inactivation of Ca2+ channels; control of SERCA 
pumping activity by intraluminal free Ca2+ etc. - see e.g. 
(17)), which determines high versatility of this molecular 
machinery. 
 
4. CALCIUM SIGNALLING IN NEURONES 
 

Neuronal calcium signalling, in contrast to the 
majority of other cell types, very much relies on the Ca2+ 
entry through plasmalemmal channels of both voltage-
gated and ligand gated varieties (10, 81), which, most 
likely, is dictated by the rapid nature of signalling transfer 
within neuronal networks. Indeed the binary code imposed 
by the excitable properties of neuronal membrane 
necessitates high velocity and temporal confinement of 
signalling events. The basis for signal transfer between 
neurones is formed by Ca2+ entry through voltage-gated 
channels (VGCCs) located in the presynaptic terminals, 
which in turn provide for the formation of local 
microdomains of high Ca2+ concentration that govern 
exocytosis of neurotransmitters (130). The postsynaptic 
membrane, being the place for the primary integration of 
incoming information, requites more complex Ca2+ 
regulation, which is achieved by virtue of multitude of 
ionotropic Ca2+ receptors with different Ca2+ permeabilities 
and biophysical properties and a host of metabotropic 
receptors regulating Ca2+ release from the intracellular 
source. All in all neurones must re-conciliate the need for 
both highly localised and propagating signalling, which are 
required for effective synaptic transmission and 
postsynaptic integration.  
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Figure 1. Principles of Ca2+ signalling. Ca2+ signals are generated by Ca2+ movements across cellular membranes, which 
delineate intracellular compartments, the cytosol, the ER and mitochondria; these movements are driven either by electro-
chemical gradients (diffusion via membrane Ca2+ channels and transport through Na+/Ca2+ exchanger) or by ATP energy (Ca2+ 
ATP-ases or pumps).  Transmembrane Ca2+ fluxes are controlled by several highly conserved families of Ca2+ channels and 
transporters, represented by relatively few molecules. These are (i) plasmalemmal Ca2+-permeable channels (voltage-gated, 
ligand-gated channels, store-operated channels and several classes of non-selective ion channels; all in all these are about 50 to 
70 distinct molecular structures), (ii) intracellular Ca2+ channels (3 types of ryanodine receptors, 3 types of InsP3 receptors and 
mitochondrial Ca2+ uniporter); (iii) Ca2+ ATP-ases/pumps (4 types of plasmalemmal pumps, PMCA and 3 types of intracellular 
pumps, SERCA) and (iv) 3 types of plasmalemmal Na+/Ca2+ exchangers, NCX, and mitochondrial NCX. In the cytosol and in 
the lumen of the ER Ca2+ concentration is also controlled by "Ca2+ buffers", represented by several 10s of Ca2+ binding proteins 
with different Ca2+ affinity/capacity. Fluctuations of free Ca2+ concentration within cellular compartments are detected by 
multitude of "Ca2+ sensors", which essentially are Ca2+ -regulated enzymes; Ca2+-dependent activation/inhibition of these 
enzymes results in functional cellular responses.   

 
The locality of Ca2+ signalling is  accomplished 

by spatial segregation of voltage-gated Ca2+ channels, 
which are often clustered in strategically important sites - 
e.g. in the vicinity of synaptic vesicles (157) and by 
relatively high concentration of cytosolic Ca2+ buffers that 
very much limits Ca2+ diffusion (150). Generation of 
propagating Ca2+ signals is mainly confined to the 
endoplasmic reticulum, whose membrane forms an 
intracellular excitable media (10). 

 
Neuronal ER is one of the largest organelles, 

formed by the continuous endomembrane; it extends from 

the nuclear envelope to peripheral dendrites and 
presynaptic terminals (144). The ER acts as a universal 
signalling organelle, accommodating variety of incoming 
signals, matching cellular activity with protein synthesis 
and posttranslational processing and generating output 
signalling cascades (9). Further, the ER serves as a 
dynamic Ca2+ store (9, 16, 117, 144), containing very high 
intraluminal free Ca2+ concentration, which may reach 
levels of 0.5 - 0.8 mM (3, 135, 137, 140). The ER acts as 
both generator and amplifier of Ca2+ signals (through Ca2+ 
release produced by InsP3 and ryanodine receptors) and as 
a powerful Ca2+ buffer (through Ca2+ uptake via SERCA 
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pumps). In addition, the ER forms a substrate for Ca2+ 
signal propagation by (i) creating Ca2+ waves via Ca2+ 
assisted recruitment of Ca2+ release channels (both RyRs 
and InsP3Rs – see (10, 11)) and (ii) by Ca2+ diffusion 
through Ca2+ tunnels formed by continuous ER lumen (120, 
121, 144).  

 
Finally, termination of neuronal Ca2+ signals 

involves a coordinated activity of plasmalemmal Ca2+ 
pumps, sodium-calcium exchanger, SERCA pumps of 
endomembrane and mitochondria (50); failure of any of the 
components of Ca2+ extrusion system can initiate Ca2+ 
excitotoxicity (7).   
 
5. CALCIUM SIGNALLING IN GLIAL CELLS 
 

Glial cells are endowed with a full complement 
of Ca2+ homeostatic/signalling molecules, which have been 
reviewed in detail in numerous publications (e.g. (22, 32, 
39, 40, 87, 93, 146, 149) to name but a few). Here therefore 
we shall only briefly outline the main properties of Ca2+ 
signalling pathways expressed in glia. It has to be stressed 
however, that the heterogeneity of glial cells is truly 
remarkable and glia residing in different brain regions often 
display very specific and distinct physiological properties. 
 
5.1. Ca2+-permeable plasmalemmal channels  

Both types of macroglial cells, oligodendrocytes 
and astrocytes express various types of plasmalemmal 
Ca2+-permeable channels. Voltage-gated Ca2+ channels 
have been identified in several glial preparations, both in 
culture and in situ (2, 31, 80, 85, 155). Glial cells 
demonstrated low- and high-voltage activated Ca2+ 
currents; more detailed pharmacological (31) and RT-PCR 
analysis (85) revealed expression of L-, N-, R- and T- types 
of VGCCs in cultured astrocytes. The role of VGCC-
mediated Ca2+ influx in mature glial cells remains unclear; 
in thalamic astrocytes in situ, for example, inhibition of 
VGCCs by cobalt and nifedipine reduced spontaneous Ca2+ 
oscillations (111, 112). In contrast in other brain regions 
the role of voltage-activated Ca2+ influx pathway is 
negligible (24, 39). In immature glial cells VGCCs may 
have a specific role; in oligodendroglial precursors, for 
example, T-type Ca2+ channels are concentrated in the tips 
of processes which might be important for recognition of 
active axons in the neighborhood (80). Marked changes in 
the expression of glial VGCCs occur in response to 
different types of injury, such as ischemia, traumatic brain 
injury, hypomyelination or epilepsy; as a consequence 
VGCCs may play an important role in CNS 
pathophysiology (27, 159, 162).  

 
Many types of ligand-gated channels expressed in 

glia are also Ca2+ permeable (152). Among these, 
particularly important are ionotropic glutamate receptors. 
AMPA receptors expressed in many types of glial cells are 
devoid of GluR-B subunit and thus have appreciable Ca2+ 
permeability (PCa/ PNa ~ 1 - (20, 147)). In addition both 
astrocytes (in spinal cord and cortex) and oligodendrocytes 
express NMDA receptors, which (i) have high Ca2+ 
permeability and (ii) demonstrate a very weak Mg2+ block, 
which permits their activation at negative membrane 

potentials, so characteristic for glial cells (69, 84, 94, 126, 
148, 166). 

 
The second class of highly Ca2+ permeable 

ionotropic receptors is represented by P2X purinoreceptors 
(103), which are expressed in certain types of glial cells. 
Functional presence of P2X receptors in astrocytes is 
somewhat controversial. The ATP-mediated ion currents 
were detected in cultured astrocytes (158), and mRNA 
specific for P2X1-4 and P2X6 receptors were found in 
astrocytes from hippocampus and nucleus accumbens (41, 
83). At the same time exhaustive investigations failed to 
detect P2X-mediated responses in hippocampal astrocytes 
(63), although ATP-induced currents, carried through 
presumed P2X1/5 heteromeric receptors were identified in 
cortical astrocytes (Lalo, Pankratov, Kirchhoff, North & 
Verkhratsky, own observations). The P2X receptors, 
however, are abundant in microglia (38, 52, 56, 97), and 
P2X7 receptors can trigger large Ca2+ influx into 
oligodendrocytes, which can be, under certain 
circumstances, excitotoxic (91).  

 
Further plasmalemmal pathways participating in 

Ca2+ entry in glia are represented by store-operated 
channels. Molecular identity of these channels in glia is still 
unknown, yet they are functionally expressed in many 
types of astrocytes and oligodendrocytes both in culture 
and in situ (e.g. (46, 66, 134, 141)). In cultured astrocytes 
the store-operated channels were reported to cluster in 
plasma membrane-ER junctions, providing thus Ca2+ influx 
into the restricted space (46). 
 
5.2. Endoplasmic reticulum takes the leading role in 
glial Ca2+ signalling 

The main route for glial Ca2+ signalling is 
associated with the ER, and in particular with metabotropic 
receptor-driven InsP3-induced Ca2+ release (32, 39, 77-79, 
122, 123, 149). The role for ryanodine receptors and Ca2+-
induced Ca2+ release (CICR) is much less clear. Astrocytes 
express ryanodine receptors, as indicated by staining with 
fluorescent ryanodine (151) by RT-PCR analysis (92) and 
by immunocytochemistry (89, 133). Nonetheless, 
functional role for glial RyRs remains uncertain. Several 
groups have demonstrated caffeine-induced Ca2+ signals in 
cultured astrocytes (47, 48); however others were not able 
to confirm these observations (8, 32, 35, 151).  

 
Expression of functional CICR, however, can be 

different in different brain areas; for example CICR was 
virtually absent in hippocampus (8), but present in 
ventrobasal thalamus (112). In oligodendrocytes from 
spinal cord functional CICR was identified; interestingly it 
involved direct coupling between plasmalemmal VGCCs 
and ryanodine receptors (106), being thus similar to 
depolarization-induced Ca2+ release operational in skeletal 
muscle. In addition the ER, being internally continuous 
Ca2+ store (120, 136), may play an important role in long-
range Ca2+ transport through Ca2+ tunnels (96, 121). 
 
5.3. Ca2+ extrusion 

Termination of Ca2+ signals in glia is achieved by 
combined activity of plasmalemmal and endomembrane 
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pumps and mitochondrial buffering. Interestingly, 
astrocytes also express sodium-calcium exchanger, NCX 
(76, 139). Astroglial expression of NCX is somehow 
surprising, as the NCX usually operates under conditions of 
high and rapid Ca2+ loads, as for example in  cardiac cells 
(36). It can well be, however, that astroglial NCX plays a 
very specific role, by removing excess of Na+ ions, 
which accumulate in astroglia following activation of 
Na+/glutamate transporters (75). Increase in [Na+]i 
hampers glutamate uptake by reducing transmembrane 
Na+ gradient; rapid removal of Na+ ions from the 
cytoplasm can therefore be critically important for 
glutamate clearance. The NCX working in the reverse 
mode can accomplish this function (75). The possibility 
of functional coupling between Na+/glutamate 
transporter and NCX is indirectly supported by 
demonstration of co-localisation of glutamate 
transporters and NCX in astroglial processes (95). Even 
more intriguing is the recent observation that Ca2+ influx 
supported by the reversed NCX may drive the 
exocytotic release of glutamate in cultured cortical 
astrocytes (107).  
 
6. PROPAGATING GLIAL Ca2+ WAVES 
 

Although glial cells, and particularly 
astrocytes, express plasmalemmal voltage- and ligand- 
gated channels, the excitability of glia is intracellular, 
because it is associated with the endomembrane forming 
the endoplasmic reticulum. The endomembrane, by 
virtue of Ca2+ release channels and SERCA pumps, 
forms the excitable media, tightly controlled by Ca2+ 
concentration gradients and local free Ca2+ 
microdomains. Indeed, the SERCAs provide for Ca2+ 
concentration gradient and build up high intraluminal 
Ca2+ concentration; free Ca2+ in the ER in turn controls 
both SERCA pumping velocity and availability of Ca2+ 
release channels for activation (17, 18, 23). From the 
cytosolic side, the InsP3 receptor is positively regulated 
by free cytosolic Ca2+, so that local increases in [Ca2+]i 
can generate openings of InsP3Rs even at sub-threshold 
concentrations of InsP3 (12). This Ca2+-dependece forms 
the basis for the propagating activation of Ca2+ release 
channels along the endomembrane.  

 
In glia, activation of metabotropic receptors 

often triggers initial [Ca2+]i rises in the distal processes; 
where they can either localise (49), or initiate 
propagating intracellular Ca2+ wave, resulting from 
Ca2+-assisted recruiting of  InsP3Rs along the ER 
membrane (78, 163). In addition astroglial cells are 
capable of generating spontaneous Ca2+ oscillations 
(101), although in many cases these oscillations are 
driven by neuronal activity (1, 39). Propagating Ca2+ 
signals either initiated by activation of metabotropic 
receptors or occurring spontaneously can cross cell-to-
cell boundaries and thus serve as a means for long-range 
astroglial communications. Intercellular Ca2+ waves 
were initially discovered in cultured astroglia (28); 
experimental evidence supporting the occurrence of 
propagating Ca2+ signals in astrocytes in situ, in brain 
slices begun to accumulate recently (51, 111, 129).    

Mechanisms of glial Ca2+ waves propagation are 
complex and may involve (i) direct intercellular diffusion 
of InsP3 via gap junctions; (ii) regenerative release of a 
diffusible extracellular messenger (e.g. ATP) triggering 
metabotropic receptor-mediated Ca2+ release in 
neighbouring cells; (iii) diffusion of an extracellular 
messenger after release from a single cell (which may be 
important in microglia as well as astrocytes); and (iv) any 
combination of the above (6, 127, 138). 

 
Importantly, mechanisms of intercellular Ca2+ 

wave propagation can be different in astroglial networks 
from different areas of the brain.  For example, genetic 
deletion of Cx43, which forms gap junctions between brain 
astrocytes, results in the complete disappearance of 
astroglial Ca2+ waves in the neocortex, but not in the 
corpus callosum or hippocampus, where Ca2+ wave 
propagation relies primarily on ATP release (51). 
 
7. Ca2+ SIGNALS CONTROL COMMUNICATIONS 
IN NEURONAL-GLIAL NETWORKS VIA RELEASE 
OF GLIOTRANSMITTERS 
 

It is now well established that neuronal activity 
triggers Ca2+ signalling in glia (1, 29, 39, 49, 101, 123). 
The leading mechanism of this neuron to glia signalling is 
associated with the release of neurotransmitters and 
activation of glial receptors. Neurotransmitters can either 
diffuse from the synaptic cleft, and interact with glial 
membranes enwrapping synapses, or can mediate 
transmission in specialised neuronal-glial synapses (43, 64, 
86, 115) or can be secreted from the ectopic release sites in 
neuronal terminals (90). In most of the cases the glial Ca2+ 
signalling results from activation of metabotropic receptors 
and subsequent InsP3-induced Ca2+ release from the ER 
(see above); although some alternative mechanisms (e.g. 
through extracellular K+ accumulation and subsequent 
activation of glial VGCCs - (57)) may also be operative.  

 
Astroglial Ca2+ signals in turn, directly control 

information transfer from glia to neurones, as glial [Ca2+]i 
elevation trigger vesicular release of gliotransmitters, 
which act upon both neighbouring astrocytes and closely 
associated neurones. It is yet unclear whether glial cells can 
form "synapses" either with other glia or with neurones; 
although this cannot be excluded at present. The release of 
gliotransmitters is different from exocytosis in neuronal 
terminals in respect to the source of trigger Ca2+: in the latter 
case Ca2+ enters the cytosol via plasmalemmal channels, 
whereas in the former Ca2+ comes from the intracellular stores; 
this difference determines slower exocytosis in glia (143, 156). 
On molecular level, astrocytes do possess all components of 
Ca2+-regulated vesicular release. Astroglial cells contain 
vesicles, which can be concentrated in their processes; these 
vesicles are endowed with vesicle glutamate transporters of 
VGLUT1, 2 and 3 types, and bear vesicle-associated 
protein 3 (VAMP3 or cellubrevin), which allows vesicle to 
perform exocytotic fusion (14, 98, 110, 156). 
Physiologically, exocytotic release of glutamate from 
astrocytes was identified in several ways, including 
biochemical (109) and functional (4, 5, 13); it was also 
directly monitored by total internal reflection fluorescence 
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Figure 2. Local and distal gliotransmission. The figure shows neuro-glial communication over short and long distances. (I): local 
or short distance neuro-glial communication, synaptic activity is modulated by glial cells enwrapping the synapse. (II): long-
distance gliotransmission represented by the calcium waves within the glial syncytium. (III): long distance neuro-glial 
communication, transmission in distant synapses is modulated. 

 
imaging and by membrane capacitance recordings (14, 82, 
156). 

 
Transient Ca2+ increases in astrocytes trigger 

release of several gliotransmitters, which include not only 
glutamate but also ATP, D-serine and taurine (113, 128, 
164, 165); release of gliotransmitters actively modulate  
neuronal excitability and synaptic transmission. Astroglial 
Ca2+ signals and related gliotransmitter release were shown 
to trigger variety of neuronal responses (111, 114) and 
affect synaptic transmission in neuronal glial co-cultures 
(5) and in brain slices (13, 67). It was shown that variations 
in glial intracellular Ca2+ may affect neuronal signal 
transduction in two ways: local and distal, (for reviews see 
(15, 53) and Figure 2). For example, intracellular Ca2+ 
signals observed in Bergmann glial cells in response to 
neuronal stimulation were restricted to cell microdomains 
adjacent to active synapses (49). It was suggested, that 
these rapid and spatially restricted Ca2+ transients underlie 
quick responses to the neuronal activity and provide for 
modulation at a local, probably synaptic, level. On the other 
hand, transient Ca2+ increases represented by spreading 
“calcium waves” over the astrocytic functional syncytium, 
i.e. gliotransmission, may represent the second, distal, type 
of neural modulation (Figure 2). Gliotransmitters released 
from astrocytes far away from the active synapses may 
modulate neuronal activity in distant areas of the nervous 
tissue. Recent studies demonstrated prolonged Ca2+ signals 
mediated by activation of mGluR5 in astrocytes, which 
resulted in Ca2+-dependent release of gliotransmitters, 
which for minutes outlasted the initial stimulus (30). The 
function of D-serine, which is synthesised in glial cells and 
released upon activation of glutamate receptors, was 
emphasized in regulating synaptic excitatory transmission 
and plasticity in different brain areas (88, 105). 

In addition to the possible physiological role of 
gliotransmission, the dysregulation of the latter could be 
involved in variety of pathological states, such as for 
example schizophrenia and epilepsy (53). Indeed, enhanced 
astroglial Ca2+ signals contributed to neuronal 
excitotoxicity after status epilepticus corroborating thus the 
neurotoxic role of astrocytic gliotransmission (34).  
 
8. CALCIUM SIGNALLING INTEGRATE 
NEURONAL-GLIAL-VASCULAR UNITS 
 
8.1. Astroglia define brain microarchitecture  

Astroglia determine the functional micro-
architecture throughout the grey matter, by creating 
relatively independent domains confined to the territories 
of individual astrocytes. Indeed recent experiments 
employing in situ high-resolution imaging of astrocytes 
infused with fluorescent dues or genetically labelled by 
selectively targeted fluorescent proteins (59, 156) revealed 
this specific spatial organisation of astrocytes in the grey 
matter. It was demonstrated that every protoplasmic 
astrocyte occupies a clearly defined territorial domain, 
which is free from the processes of other astrocytes (21, 
104). The contacts between astrocytes, where the astroglial 
syncytium is formed, occur only at the level of very fine 
and most distant processes. This particular morphological 
arrangement creates grey matter compartments in which a 
single astrocyte forms contacts with all neuronal 
membranes and synapses residing within its confines (100). 
The fine processes formed by astrocytes enwrap neuronal 
terminals and form tripartite synapses, which are grouped 
into functional islands (54). Incidentally, astroglial 
processes also appear as highly dynamic structures as they 
produce filopodia and lamellopodia, which are able either 
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glide  along neuronal surfaces or extend and retract 
between astroglial and neuronal membranes (58).  
 
8.2. Astrocytes form neuronal-glial-vascular units  

The specific territorial organisation of astroglia in 
the grey matter provides for a further functional 
compartmentalisation as every astrocyte extends processes 
towards neighbouring capillaries where these processes 
form endfeet. These astroglial endfeet completely cover the 
capillary wall from the side of brain parenchyma creating 
thus a glial-vascular interface; moreover astroglia release 
yet undefined factors which ascertain formation of tight 
junctions between vascular endothelial cells thus sealing 
the blood-brain barrier. Membranes of astroglial endfeet 
express numerous receptors, transporters and channels, 
which are instrumental for glial-capillary communications 
(132). In this way every astrocyte integrates neuronal 
membranes residing within its territory with nearby 
capillary, forming an independent glial-neuronal-vascular 
unit. This unit provides for morphological and functional 
link between brain parenchyma and microcirculation and 
accomplishes dynamic regulation of blood supply 
associated with neural activity (132). 

 
Calcium ions represent the functional substrate 

for signalling within glial-neuronal vascular unit, being for 
example responsible for initiation of functional 
hyperaemia; the latter representing rapid increase in local 
circulation, which follows an increase in neural activity 
(131). Mechanisms of functional signalling linking 
increases in synaptic activity with circulation involve 
activation of receptors residing in perisynaptic astrocytes 
with subsequent generation of Ca2+ wave, which triggers 
release of either vasodilating agents (for example 
prostaglandin derivatives produced from arachidonic acid - 
(167)), or vasoconstrictors (e.g. 20-hydroxyeicosatetraenois 
acid also derived from arachidonic acid - (99)) . Therefore 
astrocytes, through local endfeet-vascular interactions, 
regulate focal changes in blood supply to support the 
functional activity of a single neuron-glia-vascular unit 
they delineate and control. 
 
9. CONCLUSIONS 
 

Calcium signalling machinery represents one of 
the most ancient, versatile and omnipresent systems 
providing multi-level regulation of cellular functions. In the 
brain, Ca2+ signals generated in neurones and glia act as a 
universal molecular mechanism, which regulates inter- and 
intracellular communications and determines integration 
within neuronal-glial networks. This is achieved by either 
highly compartmentalised Ca2+ microdomains, which 
control release of transmitters or by long-range propagating 
Ca2+ waves, which determine post-synaptic integration and 
signal transfer within glial syncytium.  
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