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1. ABSTRACT 
 

Tight junctions (TJs) and adherens junctions 
(AJs) comprise epithelial apical junctions that adhere 
neighboring epithelial cells and determine tissue 
organization. They are highly dynamic structures that 
undergo continuous remodeling during physiological 
morphogenesis and under pathological conditions. The 
assembly and disassembly of epithelial apical junctions is 
regulated by the interplay between a variety of cellular 
processes, such as the remodeling of actin cytoskeletons 
and the endocytic recycling of apical junctional proteins, 
and coordinated by many signaling pathways. 
Accumulating evidences demonstrate that Rab family small 
G proteins are crucially involved in the regulation of 
epithelial apical junctions. Rab proteins localized both at 
endosomes and apical junctions can influence the assembly 
and disassembly of epithelial apical junctions. In this 
review, we summarize how Rab proteins influence 
epithelial apical junctions and describe the role of Rab8/13-
a junctional Rab13-binding protein (JRAB)/molecule 
interacting with CasL-like 2 (MICAL-L2) complexes in the 
regulation of epithelial apical junctions. 

 
 
 
 
 
 
 
2. INTRODUCTION 
 

Rab family small G proteins are first 
identified as evolutionarily conserved, essential regulators 
of membrane traffic in the 1980s (1-3). They are members 
of the wider Ras superfamily of small G proteins and 
appear to control a variety of cellular processes ranging 
from membrane traffic to membrane-cytoskeleton 
interactions and signal transduction (4, 5). To date, over 70 
Rab and Rablike proteins have been identified in human, 
and several Rab proteins are implicated in the assembly 
and/or disassembly of epithelial apical junctions (Figure 1) 
(6). Epithelial apical junctions defined by tight junctions 
(TJs) and adherens junctions (AJs) provide important 
adhesive contacts between neighboring epithelial cells and 
crucially determine tissue organization both in health and 
disease (7). They are very dynamic cellular structures that 
are continuously remodeled and control the cellular 
morphogenesis and tissue patterning. It is not surprising 
that many signaling pathways and cellular processes 
regulate epithelial apical junctions. In this review, we first 
provide an overview of Rab proteins and epithelial apical 
junctions. Then we summarize how Rab proteins influence 
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epithelial apical junctions and describe the role of Rab8/13-
a junctional Rab13-binding protein (JRAB)/molecule 
interacting with CasL-like 2 (MICAL-L2) complexes in the 
regulation of epithelial apical junctions. 
 
3. RAB FAMILY SMALL G PROTEINS 
 
3.1. Activation/inactivation of Rab proteins 

Rab proteins interconvert between active 
GTP-bound forms and inactive GDP-bound forms, and 
serve as membrane-associated molecular switches. This 
switch is controlled by guanine nucleotide exchange 
factor (GEF), which triggers the binding of GTP, and 
GTPase-activating protein (GAP), which accelerates 
hydrolysis of the bound GTP to GDP (8-10). Rab 
proteins associate tightly with membranes by virtue of 
their carboxyl terminal single or double 
geranylgeranylation and undergo a membrane 
association/dissociation cycle coupled with a GTP/GDP 
cycle. GDP dissociation inhibitor (GDI) binds to a 
geranylgeranylated Rab protein in its GDP-bound form, 
extracting it from the membranes and keeping it in the cytosol 
(11). The cytosolic Rab-GDI complex carries all of the 
information that is needed for the correct targeting of Rab 
proteins to membranes. GDI displacement factor (GDF) 
dissociates Rab proteins from the Rab-GDI complex and 
enables membrane attachment of Rab proteins (12-14). Once 
dissociated from GDI, Rab proteins are converted to their 
GTP-bound form by their specific GEFs. The active 
membrane-bound Rab proteins exert their variety of functions 
by binding to their specific effector proteins. After inactivation 
by their specific GAPs, the GDP-bound Rab proteins can be 
extracted from the membrane by GDI and recycled back to the 
cytosol. 

 
A Rab effector protein responds to a specific 

Rab protein and mediates at least one element of its 
downstream effects (15). Rapidly growing list of Rab 
effector proteins has revealed that each Rab protein appears 
to signal through a variety of different effector proteins that 
together act to translate the signal from one Rab protein to 
several diverse aspects of cellular processes. Rab proteins 
contribute the specificity in membrane traffic by regulating 
budding, transport, tethering, and fusion steps in vesicular 
transport and by establishing membrane domains (16, 17). 
They also play important regulatory roles in membrane-
cytoskeleton interactions by associating with molecular 
motors and other cytoskeleton-binding proteins (18, 19). In 
addition, they participate in the regulation of numerous 
signal transduction pathways (20, 21). 
 
3.2. Rab proteins in membrane traffic 

In vesicular transport, Rab proteins can 
control cargo collection during transport vesicle formation, 
enable motor proteins to interact with membranes to drive 
vesicle motility, and mediate the complex events of 
accurate tethering and fusion of transport vesicles with their 
target membranes (15). Rab9 effector TIP47 binds to GTP-
bound Rab9 and increase its affinity for mannose 6-
phosphate receptor (M6PR), facilitating the capture of 
M6PR into Rab9-positive transport carrier vesicles (22). 
GTP-bound Rab6 binds to the microtubule motor 

Rabkinesin-6 and promotes the delivery of vesicles from 
the Golgi to endoplasmic reticulum (23). A long coiled-coil 
tethering factor p115 that tethers endoplasmic reticulum-
derived vesicles to the Golgi is identified as a Rab1 effector 
protein (24). GTP-bound Rab5 recruits another long coiled-
coil tethering factor EEA1 onto early endosome, and the 
interaction of EEA1 with the soluble N-ethylmaleimide-
sensitive fusion protein attachment protein receptor 
(SNARE) protein Syntaxin13 is required for homotypic 
early endosome fusion (25). 

 
Rab protein is localized to the distinct 

subcellular membrane compartment and each compartment 
has a unique set of Rab proteins, which can serve as 
markers of the particular compartment (26, 27). For 
instance, Rab1 is on endoplasmic reticulum, Rab6 is on 
the Golgi, and Rab3 is on secretory granules and 
synaptic vesicles. Although the molecular mechanisms 
controlling Rab localization are not fully understood, 
the correct targeting of Rab proteins to their specific 
membranes is intimately linked to their activation. Rab 
proteins also contribute to establish specific membrane 
domains, which are well-characterized in the endocytic 
pathway (16, 17). Early endosomes harbor only Rab5 or 
a combination of Rab4 and Rab5, whereas recycling 
endosomes carry distinct domains of Rab4 and Rab11. 
Rab7 and Rab9 similarly share late endosomes. Rab5 
GEF Rabex5 activates Rab5 on early endosomes and 
activated Rab5 interacts with Rab5 effector Rabaptin5 
that in turn binds to Rabex5 and increases the exchange 
activity of Rabex5 on Rab5 (28-30). This Rabex5-Rab5-
Rabaptin5 complex serves as a positive feedback loop to 
establish a Rab5-domain on early endosomes. 
Importantly, the Rab5-containing early endosomes can 
be converted into Rab7-containing late endosomes. This 
conversion is mediated by the six subunits class C 
homotypic fusion and vacuole protein sorting 
(HOPS)/vacuole protein sorting (VPS) complex that 
contains a Rab5 effector hVps11 and a Rab7 GEF 
hVps39 (31). The coupling of a downstream Rab GEF 
with an upstream Rab effector could be a way to achieve 
specificity in membrane traffic (32). 
 
3.3. Rab proteins in membrane-cytoskeleton 
interactions 

In addition to myosin and kinesin motor 
proteins, Rab proteins also interact with non-motor 
cytoskeleton-binding proteins directly or via an 
intermediary protein, and control membrane-cytoskeleton 
interactions (18, 19). These non-motor cytoskeleton-
binding proteins include alpha-actinin, EB1, and Hook1. 
Rab3 effector Rabphilin3 binds to actin cytoskeletons in an 
alpha-actinin-dependent manner and facilitates the vesicle-
F-actin network interactions below the plasma membrane 
(33, 34). Rab27 effector Melanophilin, which links Rab27 
to myosin Va on melanosome, also interacts with 
microtubule plus-end tracking protein EB1 (35). A 
microtubule-binding protein Hook1 physically associates 
with endocytic Rab7, Rab9 and Rab11 as well as 
membranes, and the Drosophila homologue of Hook1 
regulates the membrane traffic of internalized ligands to 
late endosomes (36, 37). 
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3.4. Rab proteins in signal transduction 
Rab proteins are increasingly found 

downstream of signal transduction pathways that direct a 
variety of cellular processes, including gene expression, 
cell survival, cell growth, differentiation, proliferation, cell 
cycle, and apoptosis. Rab4 is phosphorylated by the mitotic 
Cdk1 kinase and participates in the control of the 
endosomal compartment during mitosis (38). GTP-bound 
Rab8 interacts with a member of germinal center kinases 
(GCKs) that regulate eukaryotic stress responses (39). 
GTP-bound Rab11 associates with phosphatidylinositol 4-
kinase beta (PI4Kbeta) that is implicated in the endocytic 
recycling and activation of extracellular signal-regulated 
kinase 1/2 (ERK1/2) (40, 41). 
 
4. EPITHELIAL APICAL JUNCTIONS 
 

TJs and AJs are located at the apical end of 

the basolateral membrane, and define the organization of 
epithelial apical junctions (7). Whereas TJs seal the 
intercellular space and delineate the boundaries between 
the apical and basolateral membranes, AJs principally 
initiate and maintain cell-cell contacts. Both TJs and AJs 
are built according to the same architectural principle as 
other adhesion complexes. A set of different 
transmembrane proteins mediates cell-cell adhesion and is 
linked to cytosolic plaque proteins that anchor the junction 
to the cytoskeleton. At TJ, the principal transmembrane 
proteins forming the paracellular diffusion barrier are 
claudins that comprise claudin family consisting of at least 
24 members in mammalian cells (42-44). Other 
transmembrane proteins identified at TJ include occludin, 
tricellulin, junction adhesion molecules (JAMs), 
coxsackievirus and adenovirus receptor (CAR), and 
Crumb3 (CRB3). Occludin is the first identified 
transmembrane protein at TJs, whose physiological 
function remains to be established (45). Tricellulin is 
recently identified as another TJ component specifically 
localized to the tricellular junctions (46). JAMs consist of 
at least 5 JAM family members and the first JAM to be 
identified, JAM-A, is involved in the accumulation of a cell 
polarity protein complex, the Par3/Par6/atypical protein 
kinase C (aPKC) complex, at TJ (47-49). CAR associates 
with JAM-C and mediates attachment and infection by 
group B coxsackieviruses (CVB) and adenoviruses (50). 
CRB3 forms another cell polarity protein complex, the 
CRB3/PALS1/PATJ complex (51). At AJ, the 
transmembrane protein, E-cadherin, forms the 
characteristic structures of AJs (52). E-cadherin is a 
member of cadherin superfamily that comprises more than 
100 members, each of which is expressed in non-epithelial 
cells as well as in epithelial cells (53). Nectins are 
identified as additional transmembrane proteins at AJ and 
involved in the organization of AJ either in cooperation 
with or independently of E-cadherin (54). These 
transmembrane proteins are associated with TJ and AJ 
plaque proteins in the cytosol, which form an organizing 
platform for a variety of scaffolding, signaling, and 
membrane traffic proteins, including zonula occludens 
(ZO) proteins (ZO-1, ZO-2, and ZO-3), membrane-
associated guanylate kinase inverted (MAGI) proteins 
(MAGI-1, MAGI-2, and MAGI-3), catenins, the 

Par3/Par6/aPKC and CRB3/PALS1/PATJ complexes, 
Rab3B, Rab8, Rab13, and Rab34 (55-57). 
 
5. ENDOCYTIC RECYCLING PATHWAYS IN 
EPITHELIAL CELLS 
 

Endocytosis regulates the entry of small and 
large extracellular molecules into cells, and is multistep 
process involving the budding of plasma membrane and the 
formation of vesicles followed by their delivery and fusion 
with specific intracellular compartments (58, 59). 
Endocytosis can be divided into phagocytosis, which is the 
uptake of particles, and pinocytosis, which is the uptake of 
fluid. Furthermore, there are four basic mechanisms for 
pinocytosis: macropinocytosis, clathrin-dependent 
endocytosis, caveolin-dependent endocytosis, and clathrin- 
and caveolin-independent endocytosis. Whereas the 
formation of large actin-coated vacuolae are responsible for 
macropinocytosis, the polymerization of a specific coat 
protein clathrin and the invagination of caveolin-containing 
cholesterol-enriched microdomains drive clathrin-
dependent and caveolin-dependent endocytosis, 
respectively. There are several clathrin- and caveolin-
independent endocytosis pathways that can be further 
classified based on the requirement for dynamin and the 
involvement of Cdc42, RhoA, and ARF6 (59). 

 
Most cargo molecules internalized from 

plasma membrane are delivered to early endosome, which 
consists of two spatially separated populations of apical and 
basolateral early endosomes (AEE and BEE) in polarized 
epithelial cells. Whereas some internalized molecules in 
basolateral early endosome may directly return to 
basolateral membrane, internalized molecules in apical 
and basolateral early endosomes eventually merge in a 
tubulovesicular compartment. This compartment is 
variously termed apical recycling endosome (ARE), 
common endosome (CE), or subapical compartment 
(SAC), and serves as a sorting station that determines 
the fate of internalized molecules (60). Subsequently, 
they may enter recycling endosome to return to plasma 
membrane, or be degraded in late endosome and 
lysosomes (Figure 1). 

 
Endosomal recycling vesicles containing 

the internalized cargo molecules are eventually fused 
with plasma membrane, which is catalyzed by SNARE 
proteins (61). They have over 30 members resided at 
distinct subcellular compartments in mammalian cells 
and functionally can be classified into ‘v-SNARE’ on 
the vesicle and ‘t-SNARE’ on the target membrane. 
Specific interaction of v-SNARE with the cognate t-
SNARE forms a SNARE complex that drives membrane 
fusion. In polarized epithelial cells, two major t-SNARE 
proteins, Syntaxin3 and Syntaxin4, are spatially 
segregated into different plasma membrane domains 
with the apical membrane-confined Syntaxin3 and 
basolateral membrane-confined Syntaxin4 (62). 
Whereas the apical targeting requires the tetanus 
neurotoxin (TeNT)-resistant v-SNARE TI-VAMP 
(VAMP7), the basolateral targeting involves the TeNT-
sensitive v-SNARE cellubrevin (VAMP3) (63, 64).
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Figure 1. Rab proteins implicated in regulation of epithelial apical junctions. Rab proteins, epithelial apical junctions, and 
endosomal compartments are shown. AEE, apical early endosome; BEE, basolateral early endosome; CE, common endosome; 
SAC, subapical compartment; ARE, apical recycling endosome; TJ, tight junctions; AJ, adherens junctions. 

 
Before the SNARE-dependent fusion reaction, 

endosomal recycling vesicles need to be tethered with 
plasma membrane. Whereas SNARE proteins on opposing 
membrane bring the two membranes into very close 
apposition for membrane fusion, tethering factors 
physically link the two membranes at some distances with a 
degree of reversibility. Central to the tethering of vesicles 
with plasma membrane is Rab proteins and a large 
octameric complex called the exocyst (65). The exocyst is 
composed of Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, 
and Exo84, and associated with the apical junctions and 
recycling endosome in polarized epithelial cells. It interacts 
with several known regulators of epithelial apical junctions 
such as Ral, ARF6, and Rab11, and functions in the 
endocytic recycling as well as the basolateral membrane 
transport (66, 67). 

 
6. ASSEMBLY AND DISASSEMBLY OF 
EPITHELIAL APICAL JUNCTIONS 
 

Epithelial cells are very plastic and remodel 
intercellular junctions even within apparently stable, 
confluent cultured monolayers (68, 69). To assemble or 

disassemble epithelial apical junctions, epithelial cells need 
to regulate the functions of apical junctional proteins at the 
cell-surface. The remodeling of actin cytoskeletons and the 
endocytic recycling of apical junctional proteins provide 
important molecular mechanisms. Failure in this regulation 
is manifested in a variety of diseases, such as tissue fibrosis 
and tumor invasion/metastasis (70). 

 
The role of actin cytoskeleton in the assembly 

and maintenance of epithelial apical junctions is 
demonstrated by the fact that actin-disrupting 
pharmacological agents such as cytochalasin D and 
latrunculin A rapidly and efficiently disrupt epithelial 
apical junctions (71, 72). During the assembly of epithelial 
apical junctions, the formation of E-cadherin-mediated 
contacts triggers remodeling of actin cytoskeletons, and 
their maturation is accompanied by the assembly of a 
circumferential actin belt and TJs. Although the established 
model of E-cadherin-mediated AJ formation predicts a 
stable link between the E-cadherin-beta-catenin complex 
and the actin cytoskeleton that is mediated by alpha-
catenin, the recent data shows that alpha-catenin does not 
stably couple E-cadherin to the circumferential actin belt, 
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but can directly regulates actin-filament organization by 
suppressing Arp2/3-mediated actin polymerization (73, 74). 

 
Whereas apical junctional proteins exist 

predominantly at the cell-surface under basal conditions, 
their endosomal pools can be detected in a variety of 
cellular contexts (75-77). For endocytosis of apical junction 
proteins, four distinct pathways have been revealed. These 
include macropinocytosis in IFN-gamma-treated human 
colorectal cancer T84 cells (78) and CVB-exposed human 
colon epithelial Caco2 cells (57), clathrin-dependent 
endocytosis in confluent kidney epithelial MDCK cells 
(79), Ca2+-depleted T84 cells (80), AJ-enriched fraction of 
rat liver (81), caveolin-dependent endocytosis in Ca2+-
depleted SCC12f keratinocytes (82), Escherichia coli 
cytotoxic necrotizing factor-1-treated T84 cells (83), actin-
depolymerized MDCK cells (84), and clathrin-independent 
endocytosis in isolated human breast cancer MCF7 cells 
(85). Internalized apical junction proteins are also detected 
in multiple sites including Rab5-positive early endosomes 
(79), Rab11-positive recycling endosomes (78, 83, 86), 
Rab7-positive late endosomes (87), Rab13-positive vesicles 
(88), Syntaxin4-positive compartments (80), and 
Syntaxin3-positive vacuolar apical compartments (89). 
Although the endocytosed proteins in Rab7-positive late 
endosomes are likely targeted to lysosomal degradation, 
they are recycled from these compartments back to the 
plasma membrane. 

 
A recent genome-wide RNA interference 

screen for genes required for endocytic recycling in 
Caenorhabditis elegans provides further evidence that the 
endocytic recycling is essential for the regulation of 
epithelial apical junctions. This screen identifies the cell 
polarity proteins, Par3, Par6, aPKC, and Cdc42, which 
direct the formation and maturation of apical junctions and 
cell polarity in epithelial cells. The perturbation of Par6 or 
Cdc42 function inhibits the endocytic recycling both in 
Caenorhabditis elegans coelomocytes and human HeLa 
cells (90). Furthermore, the endocytosis of E-cadherin is 
recently proposed as the driving force to dissociate the 
stable E-cadherin-E-cadherin interactions and thereby 
disassemble epithelial apical junctions based on the 
observations that maneuvers inhibiting E-cadherin 
endocytosis also prevent the disassembly of E-cadherin-E-
cadherin interactions. This contrasts with the current 
model, in which the circumferential actin belt mediates the 
clustering and stabilization of the weak E-cadherin-E-
cadherin interactions between two opposing plasma 
membranes and then assembles epithelial apical junctions 
(81, 91-93). Although these disparate models remain to be 
resolved, both models emphasize the close functional and 
mechanistic relationship between the E-cadherin-E-
cadherin interactions and the E-cadherin endocytosis. The 
current model suggests that the free E-cadherin, rather than 
the bound E-cadherin engaged in adhesion, undergoes 
endocytosis and the E-cadherin-E-cadherin interactions 
prevent E-cadherin endocytosis, perhaps by activating Rac1 
signaling and remodeling the actin cytoskeleton (81, 93). In 
contrast, the new model implies that endocytosis targets the 
bound E-cadherin engaged in adhesion, rather than the free 
E-cadherin (91, 92). 

7. RAB PROTEINS IMPLICATED IN REGULATION 
OF EPITHELIAL APICAL JUNCTIONS 
 
7.1. Rab3B 

Although Rab3 subfamily proteins (Rab3A, 
Rab3B, Rab3C, and Rab3D) are enriched in 
neuronal/secretory cells and control the regulated 
exocytosis through the interaction with Rab3 effector 
proteins, Rabphilin3, Rim1/2, and Noc2, Rab3B expression 
is also detected in other cells (4). In epithelial cells, Rab3B 
is recruited to TJ upon cell-cell contact formation and 
involved in the transport of polymeric immunoglobulin 
receptor (94, 95). Rab3B also regulates the reorganization 
of actin cytoskeleton and the targeting of ZO-1 to the 
plasma membrane through a process, in which 
phosphatidylinositol 3-kinase (PI3K) is involved, in 
neuroendocrine PC12 cells (96). 
 
7.2. Rab4 

Rab4 is localized predominantly to early 
endosome and, to a lesser extent, to recycling endosome 
and thought to be mainly involved in recycling from early 
endosome to plasma membrane. In Sertoli cells, Rab4 
associates with alpha- and beta-catenins as well as with 
actin cytoskeletons and is involved in the disassembly of a 
testis-specific F-actin-based junctional structure, 
“ectoplasmic specialization”, that shares features of TJ, AJ, 
and focal adhesion (FA) (97). In fibroblasts, Rab4 also 
regulates cell-extracellular matrix interactions by 
controlling the PDGF-dependent recycling of alphavbeta3 
integrin through the interaction with Rab4 effector Rabip4 
(98, 99). 
 
7.3. Rab5 

Rab5 is a key regulator of the transport from 
plasma membrane to early endosomes and also implicated 
in the macropinocytosis (100, 101). In CVB-exposed 
Caco2 cells, Rab5 and its effector Rabankyrin5 regulate the 
endocytosis of occludin (57). Rab5 activation is involved in 
the hepatocyte growth factor (HGF)/scatter factor (SF)- or 
12-O-tetradecanoylphorbol-13-acetate (TPA)-induced 
disruption of cell-cell adhesion and subsequent cell 
migration through co-endocytosis of E-cadherin and c-Met 
in MDCK cells (102, 103). In HGF/SF-stimulated MDCK 
cells, Rab5 activation is mediated by the sequential action 
of c-Met, Ras, and Rab5 GEF RIN2 (104). In v-Src-
induced epithelial to mesenchymal transitions (EMT), Rab5 
activation also mediates the lysosomal targeting of E-
cadherin (105). During zebrafish gastrulation, Rab5 
controls the Wnt11-dependent endocytosis of E-cadherin 
and the cohesion of mesendodermal cells. (106). In 
Drosophila epithelial cells, loss of Rab5 results in the 
cellular accumulation of a cell polarity protein CRB (107). 
 
7.4. Rab8 

Rab8 is localized to the trans-Golgi network 
(TGN), recycling endosome, cytosolic vesicular structures, 
membrane protrusions, and primary cilia, and implicated in 
the polarized membrane traffic to the dendritic membrane, 
the actin-dependent movement of melanosomes, and the 
formation of membrane protrusions and primary cilia (108-
115). Rab8 associates with MyosinVb (116), Optineurin-
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myosin VI (117), Rab8 GEF Rabin8 (118), JRAB/MICAL-
L2 (119), Optineurin-huntingtin (120), and cenexin/Odf2 
(121), and connected to actin and microtubule 
cytoskeletons. Recently, Rab8 is linked to two human 
diseases, microvillus inclusion disease and Bardet-Biedle 
syndrome, which shows the shortening of microvilli in 
intestinal epithelial cells and the primary cilia dysfunction, 
respectively (114, 122). 

Rab8 is also involved in cell-cell adhesion 
during Dictyostelium discoideum development, and 
associates with E-cadherin as well as actin cytoskeletons in 
Sertoli cells (123, 124). In epithelial cells, Rab8 is shown to 
mediate the epithelial-specific adaptor protein complex AP-
1B-dependent basolateral transport (117, 120, 125). 
Although E-cadherin is initially recognized as an AP-1B-
independent basolateral cargo (126, 127), it is recently 
linked to AP-1B through the interaction with 
phosphatidylinositol-4-phosphate 5-kinase gamma 
(PIP5Kgamma) (128). Consistent with this, Rab8 associates 
with JRAB/MICAL-L2 and is involved in E-cadherin 
transport (119). 
 
7.5. Rab11 

Rab11 is distributed across a variety of post-
Golgi membranes, but serves as the most prominent 
recycling endosome marker. Rab11 interacts with a 
component of the exocyst Sec15, and is implicated in 
regulating the post-Golgi traffic (129). In Drosophila 
epithelial cells, E-cadherin accumulates in Rab11-positive 
recycling endosomes upon inactivation of components of 
the exocyst Sec5, Sec6, and Sec15 (130). Rab11 also 
interacts with the same effector proteins FIP3/arfophilin-
1and FIP4/arphophilin-2 as ARF6, a key regulator for the 
endocytic recycling of E-cadherin, and controls the 
transport of E-cadherin from the TGN to basolateral 
membranes via an intermediate compartment, Rab11-
positive recycling endosome, in epithelial cells (131, 132). 
 
7.6. Rab13 

Whereas Rab13 associates with vesicles 
throughout the cytosol in fibroblasts, it accumulates at TJ in 
polarized epithelial cells and is recruited to cell-cell 
contacts from a cytosolic pool at an early stage of 
junctional complex assembly (133, 134). Rab13 mediates 
the endocytic recycling of occludin and is implicated in the 
assembly of functional TJs in epithelial cells (88, 135). 
Rab13 also regulates the scattering of MDCK cells in 
response to TPA, the neurite outgrowth, and the 
regeneration of neurons (136-138). cGMP 
phosphodiesterase delta subunit (delta-PDE), protein kinase 
A (PKA), and JRAB/MICAL-L2 have been identified as 
Rab13-binding proteins. delta-PDE exhibits two putative 
carboxyl PDZ binding motifs and regulates the membrane 
association and disassociation of Rab13 (139). GTP-bound 
Rab13 interacts directly with PKA and inhibits the PKA-
dependent phosphorylation and TJ recruitment of 
vasodilator-stimulated phosphoprotein (VASP) (140, 141). 
 
7.7. Rab34 

Rab34 is localized to the Golgi, membrane 
ruffles, and macropinosome in fibroblasts (142, 143), and 
associated with the TJ and cytosolic vesicles containing 

caveolin in epithelial cells (57). Whereas Rab34 is 
implicated in the formation of membrane ruffles and 
macropinocytosis in fibroblasts (143), its activity is 
required for the CVB-induced endocytosis of occludin in 
Caco2 cells (57). In contrast to IFN-gamma that triggers 
macropinocytosis of JAM, occludin, and claudins (78), 
CVB induces macropinocytosis of occludin without 
affecting the localization of other TJ membrane proteins 
(57). In CVB-exposed Caco2 cells, activated Rab34 
facilitates the constitutive occludin endocytosis 
downstream of Ras. 
 
7.8. Rab8/13-JRAB/MICAL-L2 complex 

MICAL is originally identified as a novel 
binding protein of CasL/HEF1/NEDD9 that regulates the 
scattering of epithelial cells and the progression and 
metastasis of cancer cells (144, 145). Now it belongs to a 
MICAL family consisted of five members (MICAL-1, 
MICAL-2, MICAL-3, MICAL-L1, and JRAB/MICAL-
L2) in mammals and two members (D-MICAL and D-
MICAL-L) in Drosophila (146). MICAL family proteins 
are large, multidomain, cytosolic proteins expressed in 
specific neuronal and non-neuronal cells both during 
development and in adulthood. They contain calponin 
homology (CH), LIM, and coiled-coil (CC) domains. 
MICAL-1, MICAL-2, MICAL-3, and D-MICAL also 
possess a flavin-adenine dinucleotide (FAD)-binding 
monooxygenase domain. Members of MICAL family 
proteins are shown to associate with Semaphorin 
receptor Plexin, Rab1, vimentin, and microtubule, and 
implicated in the invasive growth (144, 146-149). 
MICAL-1, MICAL-2, MICAL-3, and D-MICAL 
function downstream of Semaphorin receptor Plexin in 
axon guidance (146, 150). MICAL-2 isoforms (PVa and 
PVb) are involved in the progression of prostate cancer 
(151). JRAB/MICAL-L2 plays a role in the scattering of 
MDCK cells in response to TPA (136). 

 
JRAB/MICAL-L2 is originally identified as 

a Rab13 effector protein that mediates the endocytic 
recycling of occludin and the formation of functional TJs 
(152). It is resided in recycling endosome, cytosolic 
vesicular structures, and plasma membrane, and is also 
associated with actin cytoskeletons and localized to TJs 
in epithelial cells and distributed along stress fibers in 
fibroblasts (152). JRAB/MICAL-L2 also interacts with 
both Rab8 and Rab13 via its carboxyl-terminal region 
with CC domain. Is there any difference between the 
Rab8-JRAB/MICAL-L2 and Rab13-MICAL-L2 
complexes? Rab8 and Rab13 compete with each other for 
the binding to JRAB/MICAL-L2 and form the two 
distinct JRAB/MICAL-L2 complexes within a cell. 
Whereas Rab8, Rab13, and JRAB/MICAL-L2 are all 
localized to recycling endosome, cytosolic vesicular 
structures, and plasma membrane, JRAB/MICAL-L2 
interacts with Rab8 and Rab13 at the distinct sites. 
JRAB/MICAL-L2 shows a closer relationship with Rab8 
at recycling endosome and with Rab13 at plasma 
membrane, respectively (Figure 2). Whereas 
JRAB/MICAL-L2 regulates the transport of claudins, 
occludin, and E-cadherin, Rab13 specifically mediates 
the transport of claudins and occludin but not E-cadherin, 
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Figure 2. Subcellular localization of Rab8, Rab13, and JRAB/MICAL-L2. MDCK cells co-expressing HA-JRAB/MICAL-L2 
with FLAG-Rab8A (A), FLAG-Rab8A Q67L (B), FLAG-Rab13 (C), or FLAG-Rab13 Q67L (D) were labeled with anti-HA 
antibody, anti-FLAG antibody, and organella marker (Alexa-Tf or anti-ZO-1 antibody). Magnified images in inserts show the 
notable colocalization with organella markers. Rab8A Q67L (B)/Rab13 Q67L (C) was green and JRAB was red in merged 
images. Bars, 20 µm. Reproduced with permission from 119. 
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Figure 3. Rab8/13-JRAB/MICAL-L2 complex. A schematic model for the action of Rab8-JRAB/MICAL-L2 and Rab13-
JRAB/MICAL-L2 complexes is shown. Whereas the Rab8-JRAB/MICAL-L2 complex resided at the PNC mediates the recycling 
of E-cadherin to the plasma membrane and the assembly of AJs, the Rab13-JRAB/MICAL-L2 complex resided at the plasma 
membrane regulates the recycling of claudins and occludin to the plasma membrane and the formation of TJs. N, nucleus. PNC, 
perinuclear recycling/storage compartments. Reproduced with permission from 119. 

 
and Rab8 controls the Rab13-independent transport of E-
cadherin. JRAB/MICAL-L2 regulates the Rab8-
dependent E-cadherin transport at perinuclear 
recycling/storage compartments (PNC) and the Rab13-
dependent claudins and occludin transport at plasma 
membrane, respectively (Figure 3) (119). 

 
Although an increasing number of Rab 

effector proteins are reported to interact with closely related 
multiple Rab proteins (153), JRAB/MICAL-L2 is a novel 
type of Rab effector proteins that associate with multiple 
Rab proteins forming mutually exclusive complexes. In 
order to ensure the specificity in membrane traffic, the 
action of each Rab protein needs to be coordinated with 
other Rab proteins (32). The Rab coupling is potentially 
mediated by Rab-binding proteins that can interact with 
multiple Rab proteins. Three types of these Rab-binding 
proteins are currently identified. First type functions as an 
effector protein for one Rab protein and as a GEF for 
another Rab protein. The identification of Sec2 and the 
class C-VPS/HOPS complex as this type of Rab-binding 
proteins leads to a “Rab cascade” concept (31, 154). 
Second type is a divalent Rab effector protein that binds 
simultaneously to two Rab proteins associated with 
compartments in dynamic continuity. Rabaptin5, 
Rabenosyn5, and Rabip4’ are able to interact 
simultaneously with Rab4 and Rab5, and are likely 

involved in the coordination of the endocytic recycling 
pathway as well as the organization of Rab4 and Rab5 
domains on endosomal membranes (155-157). Third type is 
a Rab effector protein that associates with multiple Rab 
proteins in a mutually exclusive manner. JRAB/MICAL-L2 
is a shared Rab effector protein that forms mutually distinct 
complexes with Rab8 and Rab13 and coordinates the 
assembly of epithelial apical junctions (119). 

 
8. SUMMARY AND PERSPECTIVES 
 

Epithelial apical junctions control paracellular 
fluxes and membrane polarity, and encompass a platform 
for regulatory and signaling proteins that establishes the 
epithelial phenotype. Their function is determined by, and 
regulated through, a variety of cellular processes. In this 
review, we focused the endocytic recycling of apical 
junctional proteins and highlight the role of Rab proteins. 
Although it is becoming increasingly clear that several Rab 
proteins are critically involved in the regulation of 
epithelial apical junctions, the relation and coordination of 
each Rab proteins remain elusive. We have described that 
JRAB/MICAL-L2 coordinated the Rab8-dependent AJ 
protein traffic and the Rab13-dependent TJ protein traffic. 
Of course, the Rab8/13-JRAB/MICAL-L2 complexes are 
not the only processes. Further studies are required to 
elucidate their interplay with other cellular processes such 
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as surface clustering of apical junctional proteins, 
cytoskeletal activity, and cell signaling. As Rab8 is recently 
linked to two human diseases, microvillus inclusion disease 
and Bardet-Biedle syndrome (114, 122), studies of the 
Rab8/13-JRAB/MICAL-L2 complexes will contribute to 
understand how epithelial cells establish their own 
phenotypes in physiological and pathological conditions. 
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