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1. ABSTRACT 
 

Tight junctions are unique organelles in polarized 
epithelial and endothelial cells that regulate the flow of 
solutes and ions across the epithelial barrier. The structure 
and functions of tight junctions are regulated by a wide 
variety of signaling and molecular mechanisms. Several 
recent studies in mammals, drosophila, and zebrafish 
reported a new role for Na,K-ATPase, a well-studied ion 
transporter, in the modulation of tight junction 
development, permeability, and polarity. In this review, we 
have attempted to compile these new reports and suggest a 
model for a conserved role of Na,K-ATPase in the 
regulation of tight junction structure and functions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 Epithelial and endothelial cells line the surfaces 
in many organs to form the barrier between distinct 
compartments with defined but different fluid 
compositions. The transport of water, ions and other solutes 
across the epithelial barrier is a highly regulated process 
and occurs via the paracellular and transcellular pathways. 
Occluding junctions, such as the vertebrate tight junctions 
(TJs) and the invertebrate septate junctions (SJs), limit free 
diffusion of the paracellular pathway and function as 
permeability barriers by sealing the paracellular space 
between cells. As such, they allow for the regulated water 
and solute exchange between the compartments in response 
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to appropriate stimuli. Transcellular transport processes 
involve the channels and transporters in the apical and 
basolateral plasma membrane of epithelial cells. Na,K-
ATPase generates the transepithelial electrochemical and 
osmotic gradients that drive the passive movement of 
solutes and has been linked to many cellular transport 
processes. While the coupling between the paracellular and 
transcellular transport processes by the Na,K-ATPase 
through the generation of ion gradients is evident, recent 
research suggests that Na,K-ATPase plays a more 
fundamental role in regulating TJs. Here, we have reviewed 
the recent findings on how Na,K-ATPase is involved in the 
regulation of TJs in vertebrates and non-vertebrates and 
suggest a conserved role for Na,K-ATPase in the regulation 
of TJ function.  
 
3. TIGHT JUNCTIONS 
 

Tight junctions (TJs) are the most apical 
components of the junctional complexes in epithelial cells 
that also include adherens junctions, desmosomes, and gap 
junctions. In transmission electron microsocopy, TJs appear 
as close contacts between adjacent cells, seemingly fusing 
the neighboring plasma membranes. At these sites of cell-
cell contacts, the barrier is formed where strands of 
adhesive transmembrane proteins contact across the 
paracellular space, and it behaves as if perforated by pores 
possessing size and charge selectivity. The degree of 
sealing varies according to cell type, physiological stimuli, 
and pathological conditions and seems to be at least in part 
dependent on the pore number and the profile of claudins 
expressed (1). In addition to this gate function to regulate 
the passage of ions and small molecules, TJs also serve to 
maintain cell polarity by forming a fence within the plasma 
membrane that restricts the diffusion of proteins and lipids 
between the apical and basolateral surfaces. Recent 
evidence suggests that TJs have additional roles in cell 
signaling, regulating epithelial cell proliferation, 
differentiation, and gene expression (2, 3). 
 
 Tight junctions are multiprotein complexes 
composed of integral membrane proteins that mediate cell-
cell adhesion and of cytoplasmic plaque proteins that serve 
as a bridge to the actin cytoskeleton, as a scaffold for the 
recruitment of signaling proteins, and as regulators of TJ 
assembly and function. A detailed description of the 
individual molecules and the regulation of TJ components 
by signaling pathways have been the focus of excellent 
recent reviews (2-5). In this review, we will highlight some 
of the main characteristics of TJs. Three families of 
transmembrane proteins of the TJs have been described, 
including claudins and occludin, which are both tetraspan 
proteins but do not share sequence homology, and the 
single transmembrane JAMs. Claudins (5, 6) are the major 
components forming the barrier of the TJ. They constitute a 
multigene family of at least 24 members in vertebrates 
ranging from 20 to 27 kDa (2, 5, 6) and have also been 
described in invertebrates such as zebrafish. Two claudin-
like homologues in Drosophila SJs that are involved in 
forming the paracellular barrier have also been found (7, 8). 
Claudins mediate cell-cell adhesion independent of calcium 
and can associate homotypically or heterotypically with 

each other to form TJ strands in a tissue-specific manner 
(5). Together with the variability in the two extracellular 
loops that determine the paracellular barrier functions of 
the different claudin isoforms, this tissue-specific 
expression pattern is thought to be associated with the 
tissue-specific differences in TJ characteristics (5, 9-11). 
The C-terminal amino acids of claudins are highly 
conserved and, with the exception of claudin 12, end with 
PDZ-binding motifs, directly interacting with the PDZ 
domains of the zonula occludens scaffolding proteins ZO-1, 
ZO-2 and ZO-3 (12), as well as with multi-PDZ proteins 
(MUPP) (13, 14) and PATJ (15).  
 

While it seems plausible that TJ functions are 
regulated through claudins, this is still an emerging field. 
Phosphorylation of claudins might be involved in 
regulating the paracellular barrier, and increased 
phosphorylation has been correlated with either decreased 
(e.g., claudin-3, 4) (16, 17) or increased (e.g., claudin-1) 
(18) barrier function. Treatment of intestinal epithelial cells 
with interferon (IFN)-γ induced the endocytosis of claudin-
1 and increased the paracellular permeability (19). 
However, under these conditions, occludin is internalized 
as well (19, 20), making it difficult to confirm the specific 
role of claudins in the regulation of the paracellular 
permeability in this model. Regulation of claudin 
expression levels by growth factors has been reported 
frequently. In Madin-Darby canine kidney (MDCK) cells, 
epidermal growth factor receptor (EGFR) activation results 
in reduced claudin-2 and increased claudin-1, -3, and -4 
expression, which is accompanied by an increase in 
transepithelial electrical resistance (TER) (21, 22). 
Hepatocyte growth factor (HGF) alters claudin expression 
and increases or decreases TER depending on the cell-type 
used in the study (23-26). Transforming growth factor 
(TGF)-β3 downregulates the expression of claudin-11 in 
cultured Sertoli cells and inhibits the TJ permeability 
barrier (27). Expression of the transcription factor Snail 
during epithelial-to-mesenchymal transition (EMT) leads to 
downregulation of claudin  and occludin expression and of 
the cell-cell adhesion molecule E-cadherin, and is 
associated with an increase in TJ permeability (28, 29). 
Apart from Snail, several transcription factors such as the 
β-catenin/Tcf complex (30, 31) and the hepatocyte nuclear 
factor (HNF)-1α (32) were reported to regulate a variety of 
claudin promoters. Although much circumstantial evidence 
suggests that claudin integration into TJs is one mode of 
regulating the TJ barrier, the specific contributions and the 
physiologically relevant molecular mechanisms remain to 
be defined. 

 
Occludin was the first transmembrane protein of 

the TJ to be identified and is one of the constituents of the 
TJ intermembrane strands (33). While over-expression of 
occludin increases TER in mammalian epithelial cells (34, 
35), occludin per se is not required for the formation of TJ 
strands. Disruption of both occludin alleles in embryonic 
stem cells did not prevent their differentiation into 
polarized epithelial cells (36), and occludin null mice did 
not display obvious structural or functional TJ 
abnormalities (37). Although occludin does not seem to be 
essential for the TJ barrier function, recent evidence 
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suggests a likely role in regulating various signaling events 
to and from TJs (2). Occludin is a ~60 kDa tetraspan 
membrane protein and has two extracellular loops and 
cytosolic amino- and carboxy-terminal domains. The 
carboxy-terminal domain associates with ZO-1, ZO-2 and 
ZO-3 and binds to the actin-myosin binding protein 
cingulin. It is rich in serine, threonine, and tyrosine 
residues, which are targets for several protein and tyrosine 
kinases such as the nonreceptor tyrosine kinase c-Yes (38), 
the serine/threonine kinases casein kinase (CK) 2 (39), and 
atypical protein kinase C (aPKC)-ζ (38), as well as for the 
serine/threonine protein phosphatase 2A (PP2A) (40, 41). 
Occludin phosphorylation is further affected by a variety of 
signaling events that include growth factors such as 
vascular endothelial growth factor (VEGF) (42, 43) and 
TGF-β (27) and signaling molecules involved in actin 
organization such as Rho/ROCK (44), including the 
activity of Na,K-ATPase (45). Occludin further interacts 
with the regulatory subunit p85 of the phosphatidyl-inositol 
3 (PI3) kinase (38), actin (46), the E3 ubiquitin ligase Itch 
(47), and the gap junction protein connexin-32 (48). 
Transcriptional regulation of occludin by tumor necrosis 
factor (TNF)-α (49) as well as Snail (29), which both also 
regulate claudin expression, has been reported. This array 
of mechanisms regulating occludin expression and function 
suggests that occludin could function to integrate a wide 
variety of signals and act as gate keeper to modulate TJ 
permeability.  

 
The three members of the junctional adhesion 

molecule family, JAM-A, -B, and C have, unlike claudins 
and occludin, only a single transmembrane domain (50), 
and their extracellular domains contain two 
immunoglobulin-like motifs and dimerization motifs that 
play a role in their interactions (51, 52). The detailed role 
of JAMs in TJ function remains to be determined. Recent 
studies implicated JAM proteins in the epithelial barrier 
function, since inhibitory antibodies for JAM result in 
decreased TER and defects in TJ assembly (53). Like 
claudins and occludin, JAM proteins have a PDZ-binding 
motif at their C termini and interact with TJ scaffolding 
proteins that include ZO-1 (54). JAM-A interacts with 
MUPP-1 (13), afadin (54), the calcium/calmodulin-
dependent serine protein kinase (CASK/Lin2) (55), MAGI-
1 (56), PICK-1 (57) and Par-3 (58); these interactions 
appear to be important for proper TJ function (50).  

 
The transmembrane TJ proteins, occludin, 

claudins, and JAMs, are linked to the actin cytoskeleton via 
the interaction of their intracellular domains with peripheral 
membrane proteins. Of these, the Zonula occludens 
proteins ZO-1 and its binding partners ZO-2 and ZO-3 are 
well-characterized (3, 59, 60). They are members of the 
membrane-associated guanylate kinase (MAGUK) family 
of proteins and are thought to regulate the kinetics of the 
assembly of TJs (61, 62). ZO-1, as with all MAGUK 
proteins, is characterized by its PDZ domain, SH3 domain, 
and the guanylate kinase homologous domain and, in 
addition, contains two nuclear localization signals and a 
carboxyl region with several proline-rich regions (60, 63). 
It has been proposed to be a scaffolding protein between 
transmembrane and cytoplasmic proteins of the TJs, as it 

can bind to occludin, claudins, and JAMs and F-actin, 
either directly or indirectly via actin-associated proteins 
such as cingulin and afadin (60, 63). In addition, ZO 
proteins interact with a multitude of other proteins. ZO-1 
has been shown to bind to β- and α-catenin (64, 65), which 
are proteins associated with adherens junctions, and to 
transcription factors, such as ZONAB (ZO-1 associated 
nucleic acid binding) that regulates the promoter of erbB-2 
(66). ZO-2 not only interacts with various nuclear proteins 
such as Jun, Fos, CCAAT/enhancer binding protein, and 
DNA-binding protein scaffold attachment factor B, but it 
also localizes to the nucleus, as does ZO-1, suggesting that 
they themselves could regulate transcription (67-71). As 
these are only a few of the factors that associate with ZO 
proteins, it is conceivable that the functions of these 
proteins and of TJs go well beyond a structural role. As 
more and more of these functions are being discovered, it is 
vital to determine the molecular factors that regulate TJs. 
While TJ function is affected by many growth factors, 
transcription factors, and other structural proteins, the 
regulation of TJs by ion channels and transporters is an 
emerging field and has been reviewed recently (72).  

 
4. NA,K-ATPASE 
 
4.1. Functions, subunits and isoforms 

One of the better-known transporters that regulate 
TJ function is the Na,K-ATPase, a member of the family of 
cation transporting P-type ATPases. The Na,K-ATPase, 
also known as sodium pump, is found in the cells of all 
higher eukaryotes and transports 3 Na+ out and 2 K+ into 
the cell by hydrolyzing one molecule of ATP. In addition to 
maintaining the intracellular ion homeostasis, this pumping 
process generates a transmembrane electrochemical 
gradient that regulates other cellular activities such as 
secondary active transport of other ions, nutrients, and 
neurotransmitters, for maintaining intracellular pH, cell 
volume and size, and for electrical excitability. In most 
epithelial cells, the Na,K-ATPase is localized to the 
basolateral plasma membrane, and the gradients generated 
by Na,K-ATPase are involved in regulating directional 
transport of molecules across epithelial cells (73-75).  
Recent evidence suggests that Na,K-ATPase might have a 
more direct or indirect role in transport across the epithelial 
barrier by regulating TJ structure and permeability. 

 
The functional Na,K-ATPase is a heterodimeric 

protein consisting of an α-subunit and a β-subunit (76, 77). 
A third tissue-specific regulatory γ-subunit, members of the 
FXYD family, has also been described (78-80). The α-
subunit is the catalytic subunit of the Na,K-ATPase, and 
four distinct isoforms have been identified in mammalian 
cells (α1, α2, α3 and α4). Each has unique kinetic properties 
and a distinctive response to second messengers (81, 82). 
The α-subunit has a molecular mass of about 110 kDa with 
10 transmembrane segments with 5 extracellular loops and 
both termini located intracellularly. It contains the binding 
sites for Na+, K+, ATP and cardiotonic steroids such as the 
specific inhibitor ouabain (83). The recently published 
crystal structure of the Na-K-ATPase revealed that the 
carboxy terminus of the α-subunit is contained within a 
pocket between the transmembrane helices as a regulatory 
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element controlling sodium affinity and that the β- and the 
γ-subunits are associated with the transmembrane helices 
αM7 /αM10 and αM9, respectively (84).  

 
The β-subunit of Na,K-ATPase is a type II single 

membrane-spanning protein of about 370 amino acids, and 
three mammalian isoforms have been described (β1, β2 and 
β3). The molecular mass of the β-subunit is around 40-60 
kDa and varies with tissue type and isoforms. There are 3 
consensus N-glycosylation sequences in the extracellular 
domains of β1 and β3, and 7 in the β2-isoform (85-87). The 
precise role of the β-subunit is still not known, and recent 
evidence suggests that it may have functions that are 
independent of its role in Na,K-ATPase enzyme activity. It 
is well-documented that the β-subunit is essential for the 
appropriate folding of the α-subunit in the endoplasmic 
reticulum and for the delivery of the α-subunit to the 
plasma membrane (88), as well as for the retention of the 
enzyme in the plasma membrane, which is dependent on 
the glycosylation of the β-subunit (89, 90). It has been 
suggested that the β-subunit may be more intimately 
involved in regulating the active transport function of the 
α-subunit as it is required for the occlusion of K+ ions (88, 
91). The recent crystal structure studies revealed that the β-
subunit interacts with its Tyr 39, Phe42 and Tyr 43 with the 
α-subunit, and its conserved glycines in the GXXXG motif 
are exposed on the other side (84). It has been suggested 
that this motif is important for the homodimerization of the 
β-subunit and has a role in cell-cell adhesion (92, 93).  

 
The γ-subunit of the Na,K-ATPase (now 

FXYD2) was originally identified as a component of Na,K-
ATPase in sheep kidney (94), and subsequently, the third 
subunit of the Na,K-ATPase was identified in various other 
tissues including cancer tissues. These proteins belong to 
the family of FXYD proteins, and 7 members (FXYD1-7) 
have been reported to date. They are short polypeptides and 
are type I transmembrane proteins, except for FXYD3, 
which is a double-span protein. While it is now well 
accepted that FXYD proteins modify and fine-tune the 
transport properties of the Na,K-ATPase in a tissue- and 
isoform-specific manner (79, 80), it is not known whether 
FXYD proteins perform other cellular functions in addition 
to modulating the pump kinetics. For example, FXYD5 was 
originally identified as dysadherin and has been implicated 
in reduced E-cadherin expression, cancer progression, and 
metastasis (95, 96), but it remains to be determined whether 
this function is dependent or independent of its role in 
Na,K-ATPase enzymatic function. 

 
4.2. Regulation and interaction with other proteins 

Numerous mechanisms are involved in the 
regulation of the Na,K-ATPase to adapt to changing 
physiological demands. These include its own β- and γ-
subunits as well as intracellular Na+. Intracellular Na+ is the 
limiting factor for the pump function of the Na,K-ATPase, 
and any change in intracellular Na+ concentration affects its 
transport rate. A multitude of other factors such as 
endogenous cardiac glycosides (e.g., ouabain and its stereo 
or regioisomers and derivatives of bufadienolides) (97), 
corticosteroids (e.g., the mineralocorticoid aldosterone and 

the glucocorticoid dexamethasone), catecholamines (e.g., 
norepinephrine and dopamine), and peptide hormones (e.g., 
insulin, parathyroid hormone, angiotensin II) affect α- and 
β-subunit transcription as well as phosphorylation of the 
catalytic subunit (98). cAMP-dependent protein kinase A 
(PKA), cGMP-dependent protein kinases (PKG), Ca-
phospholipid-dependent protein kinase (PKC), and atypical 
PKC-ζ, tyrosine kinases and protein phosphatases have all 
been reported to regulate Na,K-ATPase through post-
translational modification of the α-subunit, ubiquitination, 
and endocytosis (98-100). Recently, phosphorylation of 
phospholemman (FXYD1) by PKA and PKC has been 
shown to regulate Na,K-ATPase in an isoform-dependent 
manner (101). 

 
Na,K-ATPase subunits interact with a multitude 

of proteins including other ion transporters and structural 
and signaling proteins (72). The α-subunit has been shown 
to interact with cytoskeletal proteins such as the actin 
binding protein ankyrin, which is important for the 
trafficking and targeting of the Na,K-ATPase (102, 103), 
and cofilin (104). Other proteins that have been shown to 
associate with Na,K-ATPase and modulate its trafficking 
are arrestin, spinophilin, G-protein-coupled receptor 
kinases, and 14-3-3 ε (105). The α-subunit also interacts 
with proteins associated with the endocytic machinery such 
as the adapter protein AP-2, a clathrin adapter (106), and 
with caveolin (107), as well as with diverse other proteins 
such as polycystin-1 (108). Most importantly, recent 
evidence indicates that Na,K-ATPase associates with 
proteins involved in cell signaling, possibly forming a 
scaffolding platform (Figure 1). The α-subunit binds 
several signaling molecules such as phosphoinositide-3 
kinase (109), src (110), PP2A (45), phospholipase C 
(PLC)-γ1 (111), and inositol 1,4,5-trisphosphate (IP3) 
receptor (111). As new functions of the β-subunit are being 
explored, new binding partners have also been identified, 
including the endoplasmic reticulum protein wolframin 
(112), annexin II (109),  PP2A (45), retinoschisin (RS1) 
(113), and the small GTPases RalA and RalB (114). 

  
4.3. Na,K-ATPase as a signaling molecule 

The role of Na,K-ATPase as a modulator of cell 
signaling is becoming well accepted. Inhibition of Na,K-
ATPase function by ouabain or by low K+ concentration 
increases the expression of the proto-oncogenes c-fos and 
c-jun (115)  and the transcription factor AP-1 in 
conjunction with an increase in hypertrophic growth (116). 
Later studies showed that inhibition of Na,K-ATPase by 
ouabain leads to the activation of Ras and p42/44 mitogen-
activated protein kinase (MAPK) (117). Xie’s group 
reported that Na,K-ATPase binds src kinase to inhibit src 
function and that addition of ouabain frees the kinase 
domain to activate src in a pump-independent manner 
(110). They further suggested that this mechanism is 
involved in the transactivation of EGF receptor and the 
activation of the Grb2/Ras/Raf/MEK extracellular signal-
regulated kinase cascade (110, 118-120). Ouabain-
treatment as well as expression of Na,K-ATPase β-subunit 
have been shown to activate PI3-kinase (109, 121, 122). 
Studies from our laboratory showed that inhibition of the 
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Figure 1. Na,K-ATPase forms a signaling scaffolding platform. Both, tight junctions (left) and Na,K-ATPase (right) form 
signaling scaffolds with their transmembrane proteins either linked directly or indirectly to the actin cytoskeleton. Some of the 
Na,K-ATPase associated signaling proteins are also found in the vicinity of tight junctions.  

 
Na,K-ATPase activity with its concomitant increase in 
intracellular sodium inhibits the activity of RhoA, a small 
GTPase involved in the regulation of actin polymerization 
in epithelial and other cell types (123). As it is well-known 
that the physical and functional coupling between Na,K-
ATPase and the Na+/ Ca2+ exchanger regulates intracellular 
Ca2+ (124), this regulation also involves a more direct role 
of Na,K-ATPase via its interaction with PLC-γ1 and IP3 
receptor, which can be phosphorylated in a ouabain- and 
src-dependent manner (110). Further effects of ouabain 
include the inhibition of PP2A activity (45), the activation 
of Ral-GTPase (114), and the generation of reactive oxygen 
species (ROS) (125, 126). Inhibition of the Na+/H+ 
exchanger NHE3 (127) by ouabain seems to be due to 
regulation of NHE3 trafficking relayed by ouabain-induced 
Na,K-ATPase signaling (128). While some of the signaling 
functions appear to be due to alterations of ionic 
homeostasis following inhibition of Na,K-ATPase (such as 
inactivation of RhoA), others have been shown to be 
independent of Na,K-ATPase pump function and are rather 
due to interaction of Na,K-ATPase subunits with signaling 
molecules (e.g., src and MAPK signaling). Deciphering the 
specific contributions of pump-dependent and independent 
signaling pathways to the Na,K-ATPase signaling function 
and the interplay between these pathways remains a 
challenge. 
 
5. NA,K-ATPASE AND TIGHT JUNCTIONS 
 
 Studies from our laboratory provided 
experimental evidence that the enzymatic function and 
subunits of Na,K-ATPase themselves have a role in the 
organization and permeability of TJs. Expression of the β1-

subunit of Na,K-ATPase in Moloney sarcoma virus (MSV) 
transformed MDCK cells that express E-cadherin, a 
calcium-dependent cell-cell adhesion molecule, induced 
functional TJs and epithelial polarity in this transformed 
cell line (129). MSV-MDCK cells express very low levels 
of E-cadherin (65, 129, 130). Exogenous expression of E-
cadherin and Na,K-ATPase β1-subunit was sufficient to 
induce an epithelial phenotype with functional TJs. We, 
therefore, suggested that Na,K-ATPase β1-subunit 
functions synergistically with E-cadherin in the assembly 
and function of TJs. Interestingly, in these studies, 
expression of Na,K-ATPase β1-subunit together with E-
cadherin reduced the higher intracellular Na+ level of 
MSV-MDCK cells to a more normal level as observed in 
MDCK cells. These low Na+ levels were not observed 
when Na,K-ATPase β1-subunit or E-cadherin was 
expressed alone, suggesting that low intracellular Na+ 
levels are required for epithelial polarization (129). In 
subsequent studies using the specific inhibitor ouabain and 
K+-depletion as independent methods to inhibit Na,K-
ATPase activity, we further provided evidence for Na,K-
ATPase enzyme activity in the regulation of TJs (45, 123, 
131). Using MDCK cells in a calcium switch assay, we 
showed that inhibition of Na,K-ATPase activity prevented 
the formation of TJs. An increase in the intracellular Na+ 
by Na+ ionophores mimicked the effect of Na,K-ATPase 
inhibition on TJ formation, suggesting that epithelial cells 
require low intracellular Na+ to establish TJs and polarity. 
RhoA GTPase, which has been implicated in the regulation 
of TJs in epithelial cells (132-134), was considerably 
inhibited following inhibition of Na,K-ATPase function or 
Na+ ionophore treatment. Overexpression of wild-type 
RhoA GTPase significantly reduced the effect of Na,K
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Figure 2. Association of Na,K-ATPase with occludin. 
Occludin and Na,K-ATPase are associated with each other 
as demonstrated by co-immunoprecipitation (upper and 
middle panel) and GST-pull down experiments (lower 
panel).    
 
ATPase inhibition on TJ assembly, indicating that RhoA 
GTPase is a key molecule affected by Na,K-ATPase during 
epithelial polarization (123).  
 

Based on our results, we proposed a two-step 
model for the assembly of TJs in epithelial cells. According 
to this model, the first step involves E-cadherin-mediated 
signaling events that translocate TJ proteins to the plasma 
membrane, where they assemble and form discontinuous TJ 
strands. The second step is regulated by Na,K-ATPase, 
which involves polymerization of actin mediated by RhoA 
GTPase that is involved in the mobility and cohesion of 
discontinuous TJ strands to form continuous strands 
necessary for the establishment of functional TJs (135). 
Although this model suggests that E-cadherin and Na,K-
ATPase are two major players of TJ formation and a 
polarized phenotype in epithelial cells, it is likely that other 
signaling mechanisms modulated by these or other proteins 
are involved in the process of epithelial polarization.  
 
  Na,K-ATPase function is necessary not only for 
the formation of epithelial TJs but also to maintain TJ 
function and structure. In polarized primary cultures of 
human retinal pigment epithelium (RPE) cells and in a 
polarized pancreatic cell line, HPAF-II, inhibition of Na,K-
ATPase function reduced TJ membrane contact points and 
increased permeability to both ionic and non-ionic 
molecules (45, 131). In HPAF-II cells, the Na,K-ATPase β-
subunit was associated with PP2A, a serine/threonine 
phosphatase localized to TJs. Inhibition of Na,K-ATPase 
activity considerably reduced PP2A activity, which 
correlated with increased phosphorylation of occludin and 

TJ permeability. Immunogold labeling and electron 
microscopy further confirmed that Na,K-ATPase β-subunit 
is localized to the TJ and adherens junction region in 
addition to the basolateral plasma membrane (45). Co-
immunoprecipitation analysis in HPAF-II cells suggests 
that occludin is associated with the Na,K-ATPase α-
subunit (Figure 2). These studies strongly suggest that 
Na,K-ATPase is also localized to the TJ and might be 
involved in the regulation of TJ structure, permeability, and 
signaling functions locally at the tight junction region. 
Whether Na,K-ATPase function regulates an ionic balance 
at the TJ region or modulates signaling via its interaction 
with other signaling molecules or the TJ proteins 
themselves requires future research.  
  
6. NA,K-ATPASE IN THE DEVELOPMENT OF 
TIGHT JUNCTIONS 
 
6.1. Na,K-ATPase in blastocyst development 
 During mammalian early development, the first 
epithelial structure that emerges is the trophectoderm 
epithelium covering the surface of the blastocyst and 
enclosing the inner cell mass (136, 137). The mouse 
trophectoderm emerges at the morula stage of an 8-cell 
embryo, as compaction becomes the first morphogenetic 
event of preimplantation development. This stage is 
characterized by increased cell-to-cell contact and the 
gradual assembly of adherens junctions followed by 
desmosomes, TJs, and cell polarization (138). As the outer 
blastomeres proceed to acquire complete epithelial 
characteristics to form the trophectoderm at the 32-cell 
stage, blastocyst formation (cavitation) is initiated 
following the establishment of ion gradients and osmotic 
fluid accumulation across the trophectoderm epithelium 
(139). The paracellular seal formed by TJs between 
adjacent trophectoderm is essential for the transepithelial 
transport processes, and the barrier function of the TJs in 
the trophectoderm is required for normal blastocyst 
formation (140). 
 

It has been well documented that the Na,K-
ATPase and the sodium gradient generated by its pump 
function provides the driving force for the vectorial 
transepithelial transport processes and promotes the 
osmotic accumulation of water across the epithelium (139, 
141). Nevertheless, deletion of the Na,K-ATPase α-subunit 
gene (Atp1α1) did not prevent cavitation of the 
preimplantation mouse embryo but subsequently failed 
during the peri-implantation phase of development (142). 
Mouse embryos homozygous for a null mutation in the α1-
subunit gene were able to undergo compaction and 
cavitation, suggesting that other α-subunit isoforms are 
present that allow for the blastocyst formation to progress 
in the absence of the α1 isoform. However, in subsequent 
studies by Violette et al (143) inhibition of the Na,K-
ATPase enzymatic function allowed the mouse embryos to 
develop normally to the blastocyst stage (up to 6 hours) but 
affected the distribution of TJ proteins such as ZO-1 and 
occludin. The TJ barrier function was affected as 
demonstrated by their increased permeability to 4 kDA and 
40 kDa FITC-dextran, suggesting that Na,K-ATPase is a 
key regulator of trophectoderm TJ function during murine 
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preimplantation development. These studies were further 
confirmed as mouse embryos injected with Na,K-ATPase 
β1-subunit siRNA oligos failed to develop to the blastocyst 
stage (144). In addition, studies by Eckert et al (145) 
showed recently that inhibition of PKCζ delayed cavitation. 
Inhibition of cavitation with the a PKCζ inhibiting peptide 
was found to coincide with rapid internalization of the α-
subunit of the Na,K-ATPase. These studies collectively 
demonstrated that Na,K-ATPase enzyme activity as well as 
its subunits play a role in blastocyst formation through the 
regulation of TJ formation and function during 
preimplantation development in mouse embryos as we have 
demonstrated using cultured cell lines (45, 123, 129, 131, 
135).  

 
6.2 Na,K-ATPase in zebrafish                                                                                                                                                              

In zebrafish, 9 α-subunits and 6 β-subunit genes 
have been identified (146-149). The zebrafish α1B1 
subunit of Na,K-ATPase is encoded by the heart and mind 
(had) locus. In the developing heart, as the primitive heart 
tube grows, complex morphogenic events transforming 
sheets of cardiac precursors into a three-dimensional 
structure take place (150-152). Shu et al (153) identified a 
zebrafish mutant, heart and mind (had), which caused 
severe abnormalities in primitive heart tube extension, 
cardiomyocyte differentiation, and embryonic cardiac 
function in an isoform-dependent manner, indicating a 
crucial role for the Na,K-ATPase α1B1 in zebrafish heart 
development. Inhibition of Na,K-ATPase α1B1 activity 
with ouabain produced the had mutant phenotype, and 
over-expression of α1B1 rescued the had cardiac 
phenotype, further supporting the hypothesis that mutations 
in α1B1 are responsible for the had phenotype. This group 
further suggested that Na,K-ATPase might regulate heart 
tube extension by rearranging the actin cytoskeleton and by 
regulating the polarity of cardiac cells as we have shown in 
cultured cells (123, 131). 

  
In addition, recent studies in zebrafish suggest a 

role for Na,K-ATPase in myocardial cell junction 
maintenance (154). Mutations of α1B1 cause heart tube 
elongation defects and other developmental abnormalities 
that are reminiscent of several epithelial cell polarity 
mutants (152, 155-157), suggesting a common defect 
underlying the loss of myocardial morphogenetic potential. 
Indeed, Cibrian-Uhalte et al. (154) demonstrated in 
zebrafish genetic interactions between Had and Nok, a TJ-
associated scaffolding protein of the apical crumbs polarity 
complex involved in the maintenance of ZO-1-positive 
junction belts within myocardial cells, and that 
maintenance of ZO-1 junction belts required the Na,K-
ATPase pump activity. As suggested by the authors, the 
correct ionic gradients modulated by Had may stabilize the 
integrity of the TJ and the paracellular diffusion barrier, 
which is consistent with our finding in polarized epithelial 
cells. Further, recent studies also suggest a role for Na,K-
ATPase in otolith formation and semicircular canal 
development (147) as well as in single lumen development 
in the zebrafish gut (158). It remains to be determined 
whether the electrochemical gradient generated by the 
Na,K-ATPase or Na,K-ATPase subunits’ interaction with 

other regulatory proteins are involved in the lumen 
development in the zebrafish gut.  
 
6.3. Drosophila and septate junctions 
  The SJs in invertebrates are the functional 
equivalent of TJs in vertebrates (6) as they both are part of 
the paracellular transport pathway in epithelial tissues. 
Although TJs and SJs share the characteristic of being a 
permeability barrier, they are also distinct in various ways. 
While TJs appear as sites where the extracellular leaflets of 
the plasma membrane seem to fuse, SJs are characterized 
by a constant intercellular cleft of ~ 15-20 nm between 
adjacent cells. These clefts are either continuous or bridged 
with spaced bridges called septa (159). TJs are located at 
the most-apical pole of the lateral plasma membrane above 
the adherens junctions whereas SJs are found more basal 
below the adherens junction (160). Further, the vertebrate 
homologues of most SJ-associated proteins are not found in 
TJs, except for claudins (7, 8). Interestingly, we found that 
Na,K-ATPase β1-subunit is localized to TJs and that the α-
subunit associates with occludin in HPAF-II cells (Figure 
2). In Drosophila, both subunits of Na,K-ATPase, α- 
(ATPα) and β- (Nrv2) are concentrated at the SJs (161-
163). The significance of this is not known at this time but 
points to a conserved role for Na,K-ATPase in TJ/SJ 
function. 
 

In Drosophila, there are two α-subunit loci, 
ATPα that produces at least 12 α-subunit isoforms and 
three β-subunit loci, nrv1 and nrv3, which produce one 
isoform each, and nrv2, which encodes two isoforms, 
Nrv2.1 and Nrv2.2 (164). Data from immunoprecipitations 
and somatic mosaic studies suggest that ATPα and Nrv2 
form an interdependent protein complex with Coracle 
(COR), Neurexin (NRX), Gliotactin and Neuroglian 
(NRG); some of which were previously known to localize 
to SJs (161). Mutations of both ATPα and Nrv2 were 
associated with a structural loss of the SJs accompanied by 
the disruption of the paracellular barrier function in the 
salivary gland. Analysis of the ultra structure of the SJs by 
transmission electron microscopy revealed that while the 
adherens junctions remained intact, the septae were 
disrupted, suggesting that Na,K-ATPase is necessary for 
establishing and maintaining SJs, the primary paracellular 
barrier in invertebrate epithelia (161). Besides the salivary 
gland, ATPα and Nrv2 but not other Drosophila Na,K-
ATPase β-subunits were also found to be essential for the 
SJ function and epithelial tube size control in the 
Drosophila tracheal system and in epidermis (163). In a 
later study, the junctional activity of the Na,K-ATPase was 
found to be mediated by specific isoforms of the ATPα and 
by the extracellular domain of Nrv2. However, mutations 
predicted to block ion-pump activity had no effect on SJ 
formation, suggesting that the formation of SJs and the 
diameter of the tubes are independent of the pump function 
of the Na,K-ATPase (162). 

 
The studies by both groups (161-163) pointed to 

a specific role for Na,K-ATPase in SJ function, as 
mutations of the Na,K-ATPase subunits did not cause the 
loss of adherens junctions. Immunofluorescence studies of 
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the adherens junction components E-cadherin (Shotgun) 
and β-catenin (Armadillo) showed that the localization and 
levels were unaffected (162, 163), but ultrastructural studies 
revealed the presence of SJs (161). Interestingly, we found that 
in the mammalian MSV-MDCK cells, expression of E-
cadherin restored the assembly of adherens junctions but TJs 
were not induced. Nevertheless, expression of Na,K-ATPase 
β1-subunit in these cells induced the formation of TJs (129). 
Similarly, inhibition of the Na,K-ATPase activity prevented 
the assembly of TJs but not adherens junctions (123). This 
suggests a specific role for Na,K-ATPase in the formation and 
regulation of the paracellular TJ barrier in both vertebrate cells 
and Drosophila.  
 
7. FUTURE PERSPECTIVES 
 
7.1. Na,K-ATPase, a member of the tight junction 
protein complex 

The recent flurry of papers on the role of Na,K-
ATPase in vertebrate TJ and Drosophila SJ structure and 
functions points to a conserved role of Na,K-ATPase in 
regulating the paracellular barrier in vertebrates and insects. 
The molecular aspects of this discovery are still in their 
infancy, and the next step will be to uncover the signals that 
are transmitted from the Na,K-ATPase to regulate the 
structure and function of these junctions. It is likely that the 
enzyme activity of the Na,K-ATPase and the intracellular 
ion homeostasis associated with it, as well as the α- and the 
β-subunits themselves independent of the ion transport 
function, regulate TJ function. As Na,K-ATPase has been 
found to be localized to TJs in vertebrates and SJs in 
insects, it is possible that the subunits directly or indirectly 
associate with TJ proteins to regulate structure and 
function. Density gradient centrifugation analysis of the 
epithelial apical junctional complex revealed that Na,K-
ATPase co-distributed with the E-cadherin, β-catenin/α-
catenin complex as well as with occludin and to some 
extent with ZO-1 and ZO-2 (165). We found that in HPAF-
II cells, the Na,K-ATPase α-subunit and occludin were 
associated with each other as determined by co-
immunoprecipitation and GST-pull down assays (Figure 2). 
Other proteins that are localized to the TJ complex or 
interact with TJ-associated proteins have as well been 
found to associate with Na,K-ATPase including annexin II 
(109, 166), IP3 receptor (111, 167), PP2A (40, 45), p85 
subunit of PI3 kinase (38, 109), and Ral A (114, 168). It is 
also well known that Na,K-ATPase binds the actin-binding 
proteins ankyrin and spectrin (102, 103). In the case of the 
adherens junction protein E-cadherin, we found that 
expression of the Na,K-ATPase β-subunit in MSV-MDCK 
cells reduced the solubility of E-cadherin in Triton-X-100 
extractions (129), and Vagin et al. (169) recently showed 
that the solubility of E-cadherin is increased when the 
glycosylation of the β-subunit is prevented. Together, these 
studies suggest that Na,K-ATPase strengthens E-cadherin’s 
association with the actin cytoskeleton probably by 
recruiting more actin to the subplasma membrane region. 
Similarly, it is possible that Na,K-ATPase localized to the 
TJ region might recruit actin and actin-crosslinking 
proteins to further strengthen the association of TJ proteins 
with the actin cytoskeleton, which is involved in the 
regulation of the TJ permeability.  

7.2. Na,K-ATPase β-subunit, a cell adhesion molecule 
The integral membrane proteins of the TJs, 

claudins, occludin and JAMs have been found to have cell 
adhesion function through homotypic or heterotypic 
interactions. The Ca2+-independent adhesion molecule on 
glia (AMOG) was originally identified as a molecule 
involved in cell adhesion as monoclonal AMOG antibody 
blocked neuron-glia adhesion (170). Gloor et al. (85) 
reported later that AMOG actually was the β2-isoform of 
the Na,K-ATPase. More recently, the β1-isoform has also 
gained attention as a molecule involved in cell-cell 
adhesion. In our initial studies, we showed that expression 
of the β1-subunit in MSV-MDCK cells increased the cell-
cell adhesion in a cell aggregation assay and suggested that 
the β1-subunit might have a potential cell-cell adhesion 
function (129). Similarly, expression of the β1-subunit in 
Chinese hamster ovary (CHO) fibroblast cells conferred 
adhesive properties when these cells were co-cultured with 
MDCK cells (89). Recent studies suggest that the 
transmembrane domain as well as glycosylation of the β1-
subunit confer adhesive properties. Work from our group 
provided a model in which the glycine zipper motif in the 
β1-subunit transmembrane mediates β1-β1 oligomerization. 
Mutations in the GxxxG motif abolished the cell-cell 
aggregation in MSV-MDCK cells compared to cells 
overexpressing the wildtype β1-subunit (92). The 
extracellular domain of the β1-subunit contains three N-
glycosylation consensus sites with all three being heavily 
glycosylated. Initial studies on the glycosylation pattern 
revealed that the predominant glycans of the β1-subunit 
were a combination of the tetraantennary glycan form and 
the unusual glycan form of the tetraantennary with a 
limited number of repeating N-acetyl-lactosamine units 
(171). The glycan structures found in the β1-subunit are 
processed to the same extent as adhesion molecules, and 
the authors concluded that the β1-subunit may be related to 
an adhesion molecule. More recent studies found that the 
N-glycans of the β1-subunit are indeed important for its cell 
adhesion activity (90, 169, 172, 173). Although these recent 
studies provided a basis for the β1-subunit as a cell 
adhesion molecule, whether the cell-cell adhesion function 
is independent of the pump function of the Na,K-ATPase is 
still not conclusively demonstrated. However, we showed 
that the homodimerization of the β-subunit and its role in 
cell-cell adhesion could occur when the α-/β-subunit 
interaction was diminished by specific mutation of amino 
acid residues in the transmembrane domain of the β-subunit 
(92). It is not known whether a separate pool of β-subunit 
not associated with the α-subunit does exist and whether 
this pool would be involved in cell-cell adhesion, and this 
is a subject for future research. Towards this line, in a 
recent study, Xie and his coworkers identified a pool of 
non-pumping Na,K-ATPase (174), which might prove 
useful to address some of these questions in the future. 

 
7.3. Na,K-ATPase, a signaling scaffold that regulates 
tight junctions 

Experimental evidence suggests that the Na,K-
ATPase could act as a signaling scaffold that might either 
be associated with the TJ complex or in the vicinity of the 
TJs. Treatment of cells with the glycoside ouabain is 
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involved in the activation of several signaling pathways; 
some of which seem to be activated independent of the 
pump function of the Na,K-ATPase (109, 120, 135, 175). 
Interestingly, some of the Na,K-ATPase-mediated 
signaling events seem to overlap with signaling pathways 
that have been shown to regulate TJs. For example, 
inhibition of Na,K-ATPase by ouabain or K+ depletion 
leads to the inhibition of RhoA, an effect mimicked by the 
sodium ionophore gramicidin (123). The activity of the 
small GTPase RhoA is required for the formation of actin 
stress fibers (176) and regulates the barrier function of TJs 
(132-134). Na,K-ATPase can also form a signaling 
complex with src with ouabain treatment inducing the 
activation of Src and Erk1/2 independent of the pump 
function (110). The heterotrimeric G-protein Gα12 has been 
shown to regulate MDCK TJs at least in part through the 
Src kinase signaling pathway (177, 178), and in Caco-2 
cells, oxidative stress-induced disruption of TJs is mediated 
by the activation of c-Src (179). In ras-transformed MDCK 
cells, down-regulation of the MAPK pathway restored the 
TJ structure and barrier function (180). Likewise, activation 
of the Erk1/2 MAP kinase pathway induces TJ disruption 
in human corneal epithelial cells (181). In contrast to these 
studies, MAPK has also been suggested to mediate EGF-
induced prevention of TJ disruption through its interaction 
with occludin (182). The polarity complex protein Par-3 
regulates TJ assembly through EGFR signaling (183). 
Ouabain-treatment of LLC-PK1 has been suggested to 
transactivate EGFR in a pump-independent manner (118, 
119). However, palytoxin down-modulates the epidermal 
growth factor receptor (EGFR) through a sodium-
dependent pathway in Swiss 3T3 cells (184, 185). 
Palytoxin binds to the Na,K-ATPase, basically converting 
it to an open channel resulting in increased intracellular 
sodium (186, 187). As EGFR is a common element in the 
signaling pathways activated by cell volume changes in 
isosmotic, hyposmotic, or hyperosmotic conditions (188), it 
remains to be determined how tight junction regulation 
through EGFR activation by Na,K-ATPase is connected. 
Na,K-ATPase also plays a role in IP3 receptor, PI3 kinase, 
and PLCγ-1 signaling, all pathways that also have been 
implicated in the regulation of TJ function (2-5, 189). 
PP2A associates with both Na,K-ATPase and occludin and 
studies from our laboratory showed that inhibition of Na,K-
ATPase enzyme activity inhibits PP2A activity, leading to 
the hyperphosphorylation of occludin and decrease in the 
TJ barrier in HPAF-II cells (45). The relative contributions 
of pump-dependent and -independent signaling by Na,K-
ATPase in regulating tight junction permeability remain to 
be determined (190).  

 
Many pathways that regulate TJ function also 

regulate Na,K-ATPase, such as IFN-γ (191), growth 
factors, PKC, and many more (98, 153). One of the best-
known transcriptional regulators associated with the loss of 
TJ function in cancer cells is Snail. This transcription 
suppressor is induced in cells undergoing EMT and reduces 
the transcription of genes associated with junctional 
complexes in epithelial cells (28, 29, 192-194). 
Interestingly, Na,K-ATPase β1-subunit is transcriptionally 
suppressed by Snail, whereas the α-subunit is not affected 
(195). It is possible that Snail targets a set of proteins 

associated with junctional complexes to accomplish EMT 
in cancer cells.  

 
8. SODIUM/ION HOMEOSTASIS AND TIGHT 
JUNCTIONS 
 

Recently, several ion transporters and channels 
have been identified as having a function to modulate TJ 
structure and paracellular permeability (72). As the 
function of Na,K-ATPase is crucial to maintaining the 
intracellular ion homeostasis, it is possible that some of the 
effects of other channels/transporters on TJ function are 
connected to the function of Na,K-ATPase in the 
paracellular barrier. For example, apical glucose uptake 
through the Na+-glucose transporter SGLT-1 induces a 
drop in TER (196) and increases paracellular permeability 
in cultured Caco-2 cells as well as in vivo in rats and in 
healthy human subjects (197, 198). Also, the intestinal 
Na+/H+ exchanger NHE3 has been shown to regulate TER 
(199). We can envision that the signaling scaffolding 
complex of the Na,K-ATPase might sense changes in the 
intracellular ionic milieu, as the transport processes of 
SGLT-1 and NHE3 are probably associated with an 
increase in the intracellular Na+ concentration. These 
changes in Na+ concentration might then target the 
phosphorylation status of TJ proteins through signaling 
events involving the Na,K-ATPase leading to alterations in 
TJ structure and function. Recently, it has been shown that 
ouabain treatment of LLC-PK1 cells downregulated NHE3 
activity and expression. Liu’s group reported that activation 
of the Na,K-ATPase receptor complex by ouabain at 
concentrations that do not increase intracellular Na+ 
regulates the trafficking of NHE3 (127, 128). It is possible 
that Na,K-ATPase might act to integrate changes in 
intracellular ionic milieu as well as signals obtained from 
the extracellular environment to regulate TJ permeability.  
 
9. A ROLE FOR Na,K-ATPASE IN EPITHELIAL-
MESENCHYMAL TRANSITION (EMT) AND 
CANCER 
 

TJs are crucial for the normal structure and 
functioning of epithelial cells. In cancer, in the course of 
malignant cell transformation, TJs are generally lost (200). 
Coincidentally, changes in Na,K-ATPase function have 
been reported either as an increase in activity (201-203) or 
as inhibition (204). There is evidence that changes in Na,K-
ATPase activity are already present at very early stage of 
tumorigenesis, even before gross tumors develop (204, 
205). Changes in Na,K-ATPase subunit levels have also 
been reported in poorly differentiated cell lines (129, 195) 
and in tumors/tumor cell lines including kidney (206, 207), 
colon (208), prostate (209, 210), pancreas (211), and lung 
(212); in hepatic (211), breast (211), and bladder cancer 
(213), as well as neuroblastoma (211) and metastatic 
melanoma (214). In bladder and kidney cancer, the α- and 
β-subunit expressions predict recurrence and survival, 
respectively (207, 213). Other studies emphasized the 
presence of specific cancer-related FXYD proteins such as 
FXYD3 (Mat-8, a mammary tumor marker) in breast and 
prostate cancer and FXYD5 that is expressed in cancer 
tissues but only a few normal cell types (80, 215). 
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Together, these studies suggest that alterations in Na,K-
ATPase function and expression might be associated with 
the loss of TJs in the process of tumorigenesis. 

 
10. CONCLUSIONS 

 
With our present understanding of Na,K-

ATPase’s role in TJ structure and function, it is quite 
possible that altered Na,K-ATPase function/expression 
might be a contributing factor in the development of cancer 
and other diseases associated with TJ malfunction. For 
example, mutations in the γ-subunit of Na,K-ATPase in 
kidney, FXYD2,  have been linked to dominant renal 
hypomagnesemia (216). Interestingly, mutations in claudin16 
(paracellin-1) were found in autosomal recessive 
hypomagnesemia (217). Whether FXYD2 and claudin-16 are 
functionally linked remains to be determined. Studies in 
inflammatory bowel disease, Crohn’s disease, and ulcerative 
colitis indicated a decrease in Na,K-ATPase activity (218-
220). Recent studies suggest a more direct role for Na,K-
ATPase in these diseases, as pro-inflammatory cytokines 
inhibit Na,K-ATPase to downregulate the intestinal barrier 
function (191, 221). These studies suggest that Na,K-ATPase 
is a multifunctional protein, and changes in its function might 
be associated with many human diseases. Deciphering how 
Na,K-ATPase function is altered might provide insight into 
disease mechanisms as well as novel therapeutic approaches.    
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