
[Frontiers in Bioscience 14, 2559-2583, January 1, 2009] 

2559 

Molecular visualization in the rational drug design process 
 
Matthias Keil1, Richard J. Marhofer2, Andreas Rohwer2, Paul M. Selzer2, Jurgen Brickmann3 Oliver Korb4, Thomas E. 
Exner4 
1Tripos International, 1699 South Hanley Road, St. Louis, MO 63144-2319, USA, current address: Chemical Computing Group 
Inc., 1010 Sherbrooke Street West, Suite 910, Montreal, Quebec, H3A 2R7, Canada, 2Intervet Innovation GmbH, 
BioChemInfomatics, Zur Propstei, 55270 Schwabenheim, Germany, 3Department of Chemistry, Darmstadt University of 
Technology and MOLCAD GmbH, Petersenstr. 20, 64287 Darmstadt, Germany, 4Fachbereich Chemie, Universitat Konstanz, 
78457 Konstanz, Germany 
 
TABLE OF CONTENTS 
 
1.  Abstract 
2.  Overview of the drug design process 

2.1. Textbox 1. Standard representations 
3.  Protein structure prediction 

3.1. Textbox 2. Simplified molecular representations and special features 
4.  Binding-site identification and characterization 

4.1. Textbox 3. Molecular surfaces and mapped properties 
5.  Protein-ligand docking 

5.1. Textbox 4. Three-dimensional data fields 
6.  Ligand-based design 

6.1.  Textbox 5. Three-dimensional vector fields 
7.  Ligand optimization 

7.1. Textbox 6. Interactive modeling 
8.  Conclusion 
9. Acknowledgement 
10. References 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.  ABSTRACT 
 

The visualization of molecular scenarios on an 
atomic level can help to interpret experimental and 
theoretical findings. This is demonstrated in this review 
article with the specific field of drug design. State-of-the-
art visualization techniques are described and applied to the 
different stages of the rational design process. Numerous 
examples from the literature, in which visualization was 
used as a major tool in the data analysis and interpretation, 
are provided to show that images are not only useful for 
drawing the attention of the reader to a specific paper in a 
scientific journal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.  OVERVIEW OF THE DRUG DESIGN PROCESS 
 

Molecular visualization is nowadays a vital tool 
in the life of a chemist or biologist. This is also especially 
true for the rational drug design process. Well-designed 
presentations of molecular data help to plan and optimize 
the design process, judge numerical results and output of 
modeling programs, and to discuss experimental and 
theoretical findings. It is important to note that, most of the 
time, this visualization is not the end product like it is seen 
in publications. Many of the produced graphics and even 
animations will only be used temporarily to present 
different ways of looking at a specific problem, i.e. as 
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interactive displays to generate and communicate new 
ideas. To keep the focus on the application, the used 
techniques will be outlined only briefly in textboxes spread 
out across this paper. These can be red independently from 
the rest of the manuscript. We refer to the literature for 
more thoroughly reviews on the more technical aspects of 
molecular visualization (1,2,3,4,5,6,7,8,9,10). Also, the 
large number of visualization tools will not be reviewed or 
compared. In this publication, the program MOLCAD 
(11,1), distributed worldwide as part of the molecular 
modeling package SYBYL (12), was used to create the 
pictures unless otherwise indicated. 

 
The serendipity approach of random screening of 

compound collections against biological systems, which 
dominated the drug design approach for decades, has been 
replaced by a more rational approach (see Figure 1) some 
ten years ago. The decoding of the DNA’s three-
dimensional structure by James Watson and Francis Crick 
(13) and the large-scale sequencing of many prokaryote and 
eukaryote genomes including the human genome led to the 
approach of receptor-based screening. In this approach, the 
biological system is replaced by a molecular target, which 
could be any biomolecular macromolecule, e.g. a protein, a 
DNA- or RNA-molecule. Hence, the initial step in the drug 
discovery chain is the identification of such a 
macromolecule, which is involved in a pathway relevant to 
the disease of interest on the one hand and, on the other 
hand, which is druggable by small molecule ligands. For 
the identification of potential targets, classical molecular 
biology methods are used as well as high-throughput 
methods like functional genomics and proteomics and 
computational approaches like bioinformatics. The 
druggabilty can be assessed by assigning the potential 
target molecule to its gene family using bioinformatics 
methods. If one member is known to be influenced by a 
small molecule ligand, it is assumed that other members of 
this family are also druggable (14). Once a potential target 
is identified it must be validated, i.e. it must be shown that 
affecting the target leads to the desired effect. This is 
usually done using, amongst others, knock-out and knock-
in mutants in animal models (15) or RNA interference 
experiments. If a small molecule ligand is known for one of 
the protein family members, the potential target can also be 
validated chemically which of course is a surplus for the 
druggability assessment. 
 

The validated target is then passed on to the next 
step of the drug discovery chain, the lead identification 
process. In this step small chemical entities are identified 
which interact with the target in the desired way. An 
average compound collection available at a 
pharmaceutical company easily comprises some 100,000 
to millions of compounds, consisting of proprietary 
compounds and commercially available compound 
collections. Obviously, such a number of compounds 
can only be tested using high-throughput screening 
approaches (HTS). The screening of an average compound 
collection results in a high number of initial hits from 
which a suitable subset of compounds is selected for further 
dose-response confirmation by a team of biologists, 
medicinal chemists, and chemoinformaticians. Finally, the 

confirmed hits are ranked considering a wide range of 
information, like intellectual property considerations and 
predicted physico-chemical and predicted ADME-Tox 
(absorption, distribution, metabolism, excretion, and 
toxicity) properties of the individual molecules. From this 
ranked set, a small number of highly ranked compounds are 
chosen as lead structures. 

 
In addition to the physical screening as described 

above, virtual screening has gained an increasing role 
recently. While initially it had been considered as a 
replacement of the physical screening, it gained its 
importance as a complementary method (16). Although, the 
term high-throughput implies very high speed, the 
screening of an average compound collection needs 
considerable time even if 384 well-plates or 1536 well-
plates are used. Moreover, a number of constraints raising 
from the high-throughput conditions, e.g. stable and 
reproducible assays, must be considered. A reduced 
number of compounds to screen would be desirable 
because it would ease these limitations tremendously. For a 
theoretical prediction of possible ligands, an accurate 
estimate of the binding free energy would be desirable. But 
highly sophisticated methods able to provide this accuracy, 
like free energy perturbation or thermodynamic integration 
(17), need a large amount of computer time (hours to days 
on a supercomputer) even for a single compound resulting 
in considerable costs in time and money even exceeding the 
ones of physical screening. Even then, a funded knowledge 
about the placement of the ligand in the active site is 
needed before starting these calculations. Therefore, to be 
commercially relevant for the screening of large databases 
in a pharmaceutical company, the methods to be used must 
compromise between speed (and thus costs) and accuracy. 
At this point virtual screening comes into play. Virtual 
screening is the generic term for any in silico method used 
in a high-throughput manner for the identification of 
potential ligands to a receptor under consideration. 
According to the used methods, virtual screening can be 
classified as either receptor-based virtual screening, if e.g. 
molecular docking has been used, or as ligand-based 
screening, if e.g. pharmacophore modeling has been used. 
Since in either case virtual screening causes only negligible 
costs for each additional compound, it is in principle 
possible to screen an unlimited number of compounds, 
which in addition, need not necessarily exist already. Only 
the most promising hits from the virtual screening are 
subsequently passed on to the physical screening, which 
then can be carried out in medium-throughput with greatly 
reduced limitations. For a detailed description of virtual 
screening methods and their applications in actual projects 
see (18,14) and references therein. 

 
Once lead structures have been identified, they 

are passed on to the final step of the drug discovery chain, 
the lead optimization. In lead optimization the lead 
structures are chemically modified and their properties are 
optimized towards a minimum set of required 
characteristics, like potency, selectivity, suitable ADME-
Tox parameters, etc., using medicinal chemistry in a 
number of optimization cycles. Because a relatively high 
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Figure 1. Schematic representation of the drug discovery workflow. In the left panel the four major steps are depicted. The icons 
in the upper left and lower right corner symbolize support by computational methods (computer) and wet bench work (flasks and 
tubes), respectively. The right panel lists examples of computational methods, which play a major role in the individual steps of 
drug design. Some of these examples are described in greater detail throughout the coming sections. 

 
number of properties must be optimized in parallel, lead 
optimization is a very complex and time consuming task. It 
is therefore usually supported by applying a number of 
chemoinformatics methods, like pharmacophore modeling, 
molecular docking, QSAR analysis etc. The result of the 
lead optimization is a drug candidate, showing the desired 
set of properties, which is finally transferred to a drug 
development program. 
 
2.1. Textbox 1. Standard representations 
 

Molecular structures are commonly drawn in 
three dimensions or as two-dimensional projections in the 
form of lines representing the bonds between atomic 

centers. These 2D and 3D drawings are referred to as Lewis 
structures (Figure 2), named after Gilbert N. Lewis (109), 
and as line models, Dreiding models (110), or wire-frame 
representations (Figure 3), respectively. Atoms are only 
represented as junctions of these lines or in Lewis 
structures with their atomic label. Colors are used to code 
atom types, different molecules in a complex or sometimes 
to highlight physicochemical properties. 

 
The advances in computer graphics allow the 

interactive generation of more user-friendly representations 
like balls-and-sticks, capped sticks, and Corey-Pauling-
Koltun (CPK) (111) models giving some indications of the 
depth and three-dimensional conformation of the molecule 



Molecular visualization in the rational drug design process 

2562 

 
 

Figure 2. Lewis structure of the inhibitor DX-9065a of coagulation factor Xa (73). 
 
 

 

 
 
Figure 3. 3D models of the factor Xa inhibitor of Figure 2: (a) wire frame; (b) balls-and-sticks, (c) capped sticks; and (d) CPK 
model. 
 
due to hidden-line removal (Figure 3). The latter also 
depicts the volume and the outer shape of the molecule in 
the hard-sphere approximation. 
 
3.  PROTEIN STRUCTURE PREDICTION 
 

The first step in the rational, computer-aided 
drug design should be the careful characterization of the 
protein target. One key element for doing so is the 
knowledge of the arrangement of the atoms composing the 

macromolecule in three-dimensional space, the protein 
structure. Proteins are linear polymer strings of amino 
acids. The structure of proteins can be represented in 
several different levels of detail. The so-called primary 
structure of a protein describes the amino acid sequence of 
the peptide chains. Mediated by inter-residue hydrogen 
bonds, the linear chain of amino acids folds into discrete 
secondary structure motifs, like helices or strands, known 
as alpha helices and beta sheet strands. The three-
dimensional arrangement of these often rigid and conserved 
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secondary structure elements and more flexible protein 
regions (coil or loop regions) form the tertiary protein 
structure. The formation of this overall fold is driven and 
stabilized by several different types of interaction such as 
the burial of hydrophobic residues inside the core, 
formation of hydrogen bonds, salt bridges, and disulfide 
bonds. Knowledge of the tertiary structure is important for 
studies of protein function. 

 
Experimental determination of the three-

dimensional protein structure (e.g. via X-ray diffraction or 
NMR experiments) is still a difficult process and much 
more demanding than determining the protein sequence 
(primary structure). This difference is evident in the ratio of 
known protein sequences versus three-dimensional 
structures (~5 million sequences in the UniProt database 
(19), ~47,000 structures in the Protein Data Bank (20)).  

 
As outlined above the structure is important for 

functional studies. When it is not feasible to determine the 
structure experimentally, one can resort to a variety of 
computational methods, which try to predict and construct 
an atomic-resolution model on the basis of the amino acid 
sequence. Homology modeling (15,21,22), also known as 
comparative modeling, is such a technique. It is based on 
the observation that related proteins within a protein family 
have similar three dimensional folds (tertiary structure) 
even when their amino acid sequences show weak 
similarity (23). The homology modeling process can be 
divided into several distinct steps. First one or more known 
protein structures, which can be used as templates for the 
protein structure prediction, are identified. The sequences 
of these homologs are then aligned to the protein sequence 
to be modeled (known as query or target sequence) (see 
Figure 4). This alignment maps the residues in the query 
sequence to the residues in the template sequences. The 
next step then is to construct a core model using the 
structural features, which are conserved over the templates 
and the sequence alignment. This model of structural 
conserved regions (SCRs) is often composed of secondary 
structure elements like alpha helices and beta sheets. Next 
the structurally variable regions (SVRs or loops) 
connecting the secondary structure elements are modeled. 
A variety of algorithms including database searches, ab-
initio modeling, or force field guided methods exist for this 
task.  Depending on the details of the employed algorithm, 
the amino acid side-chains are added during the modeling 
of the structurally conserved regions and loops, or added in 
an additional step. The final steps of the model construction 
include optimization of the atomic structure with e.g. 
energy minimizations to relieve local stress and validation 
of the overall model quality by analyzing the protein 
geometry and comparing its properties, like dihedral angles 
etc., with distributions from experimental structures as it is 
done in Ramachandran plots. 

 
During all steps of the homology modeling 

process visualization of the data is helpful and therefore 
important. A wide variety of different visualization 
techniques and their combinations can be used. In the 
alignment step the sequence information of the homologs 
and the target sequence are often shown as simple strings of 

letters, each letter representing a single amino acid (e.g. A 
= alanine, G = glycine, etc.). Additional information about 
e.g. the secondary structure can be added as color code or 
text style of the sequence string letters (see Figure 4). 
Homology programs also often link the sequence strings 
representing the primary structure to a three-dimensional 
view of the corresponding homolog or model structures, so 
that the researcher can combine the strength of the various 
visualizations types to improve the model building results. 
Additionally the three-dimensional representation of the 
homolog and model structures varies from step to step. At 
the structural alignment stage and SCR building step the 
display of just the protein backbone atoms or just a 
ribbon/tube rendering is favored (see Figure 5), while at the 
side-chain placement stage the positions of all side-chain 
atoms and their possible interactions like hydrogen bonds 
or atom clashes are important and shown. The visualization 
types used during the whole model building process have to 
fit the specific needs of each step. 
 
3.1. Textbox 2. Simplified molecular representations 
and special features 
 

The standard models of Textbox 1 based on an 
atomic representation are not well suited for biochemical 
applications because they become increasingly confusing if 
the number of atoms increases to more than a few 
hundreds. Here a reduction of complexity is necessary to 
generate better understanding. For proteins, DNA, and 
RNA this can be achieved by drawing only the backbone of 
the biopolymers as strands, ribbons, or tubes (Figure 6). 
Secondary structure elements can be highlighted in the so-
called Richardson style (112) by arrows and cylinders. The 
simplified representations can be mixed with standard 
representations to generate detailed insights into particular 
parts of the scenario. 
 
4. BINDING-SITE IDENTIFICATION AND 
CHARACTERIZATION 
 

For the understanding of the function of a protein 
and to model ligands interfering with this function, the 
highly accurate characterization of the ligand- or protein-
binding site of the specific pharmaceutical target is the next 
step towards successful structure-based drug design. 
However, sometime even the location of the site for direct 
or allosteric ligand binding - let alone its specific properties 
- is not known. Additionally, finding ligand binding sites to 
modulate protein-protein interactions as well as additional 
binding sites, where appropriate targeting could result in 
new biological effects or new classes of inhibitors, is of 
increasing interest. Therefore, tools for the automatic, 
computer-based prediction of binding sites 
(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43
,44,45,46,47,48,49) have become quite popular especially 
as front-ends to molecular docking (see next section). For 
these algorithms, the huge amount of data available from 
experimentally determined complex structures as stored 
e.g. in the Protein Data Bank (20) was used to analyze the 
properties of proteins in general and of binding sites in 
particular. All these investigations stress the large 
complementarity of the shape as well as the 
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Figure 4. Multiple sequence alignment of a query sequence and related homologs as generated by the program FUGUE (24). The 
sequence characters of the homologs are color coded by the secondary structure classification. 

 
complementarity of the molecular properties between the 
two molecular partners building a complex. They also show 
that binding sites share some common features but depend 

on the molecule to which the protein is bound. In this way, 
protein–protein interfaces are more hydrophobic than other 
parts of the protein surface, even if they are less 
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Figure 5. Sequence and structural alignment of the homologs color coded by the local RMSD of the aligned residues. The 
alignments were generated with the program BATON which is part of  ORCHESTRAR inside the SYBYL molecular modeling 
suite (12). Blue indicates that the C-alpha atom of the residues in one column of the sequence alignment deviates less then 1 Å 
from the mean position (green: <2 Å, yellow: <3Å, red: >3 Å). This visualization type enables the user to judge the quality of the 
sequence and structural alignment. Red regions indicate either structural variable regions like loops which are acceptable or a 
misalignment, which should be investigated in order to achieve the best possible protein modeling result. 
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Figure 6. Simplified molecular representation of the factor 
Xa – inhibitor complex and a B-DNA dodecamer. The 
backbones are represented as tubes. α-helices are 
highlighted as  red cylinders and β-sheets as green arrows. 
The inhibitor is shown as a CPK model and the DNA bases 
as pentagons and hexagons. 
 
hydrophobic than the core region (31,33,37,39). Thus, on 
one hand, hydrophobic interactions are important not only 
in folding - resulting in the tertiary structure - but also in 
complex formation resulting in the quaternary structure. On 
the other hand, the number of charged amino acids is 
significantly increased in binding sites compared to the 
core region. Elcock et al. (35) related this to the fact that, 
while charged groups destabilize the hydrophobic core of a 
protein, these groups can stabilize complexes by building 
salt bridges across the binding interface. E.g. to bind to a 
DNA molecule, the binding site of a protein has to be 
positive polarized to favor interactions with the negative 
charges of the phosphate backbone (42). Thus, positive 
charged amino acids, like arginine, occur more often in 
DNA binding sites. In addition, the number of hydrogen 
bond donors is also increased. Binding sites for small 
molecules are mainly characterized by their concave shape. 
They are located in deep cavities, like bags and clefts of the 
molecular surface (49,32,34,46,48,44,47). 

 
These special features open the possibility to find 

binding sites by comparing the molecular properties at 
different parts of the protein surfaces and locate those that 
differ from the average. For small molecule-binding sites 
often the identification of large clefts or bags in the protein 

surface are sufficient (49,32,34,46,48,44,47). The inclusion 
of additional features of the surface, like lipophilicity, 
electrostatic potential, hydrogen-bond acceptor / donor 
profiles, and amino-acid composition may be needed to 
increase the accuracy or even make a prediction possible 
in the first place (especially for protein-protein 
interactions). The visualization of these features or a 
combined score of these points the researcher directly to 
the important parts of the surface. E.g. Keil et al. (30) 
analyzed the electrostatic potential, local lipophilicity, 
hydrogen bond donor and hydrogen bond acceptor 
density, surface topography, and cavity depth of the 
molecular surface of the target protein and combined 
them by a neuronal network to identify protein-ligand, 
protein-protein, and protein-DNA binding sites. By 
visual inspection, binding sites can then be easily 
identified as large regions with a high probability of 
belonging to a specific binding type (Figure 7). Finally, 
even more sophisticated force-field-based methods can 
be applied to calculate explicit interactions of the 
protein with probes (50,29,34,51,52,53,54,55), 
representing e.g. hydrophobic or water molecules, 
molecular fragments, or small organic molecules to 
identify interaction hot spots belonging to druggable 
binding regions. 

 
Another interesting question related to 

pharmacokinetics is how a ligand can access the active site. 
For proteins, where the binding site is located at the 
molecular surface, this is straight forward. But there exist 
also catalytic sites, which are buried deep inside the protein 
and can only be reached trought a large channel. To predict 
the path of the ligand, the displacement of water molecules 
occupying the channel, and possible gating mechanisms, 
these channels have to be detected. One famous example is 
the family of cytochrome P450 playing a central role in 
most phase I metabolisms by oxidizing a variety of 
substrates, of both endogenous and exogenous origin. Here, 
the active site is composed out of a heme group inside the 
protein. The specificity of the different subfamilies for 
substrates as well as inhibitors is probably highly related to 
the size and the physicochemical properties of the channel 
leading to the extremely active iron (see Figure 8). 

 
If the active site is identified, it can be further 

characterized using various visualization techniques. As a 
first example, we demonstrate this with the p53 tumor 
suppressor protein-DNA complex (Figure 9). Additional 
examples will be shown in the following sections. The p53 
protein controls the cell cycle checkpoint responsible for 
maintaining the integrity of the genome. When DNA is 
damaged, the p53 level increases stopping the cell cycle 
and allowing DNA repair followed by normal cell growth 
or inducting apoptosis (57). The inactivation of p53 by 
single point mutations is found in almost half of human 
cancers (58). By projecting the mutation hotspots onto the 
molecular surface, the influences of these point mutations 
on the structure as well as the physicochemical properties 
can be analyzed (59). E.g. the mutation R248W shown in 
Figure 9 is too bulky to fit into the minor grove of the 
DNA and, additionally, removes the positive charge 
interacting favorably with the DNA backbone
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Figure 7. Binding site of the thymidilate kinase dimer (A) 
and the dihydrofolate reductase–Methotrexate (B) complex. 
The property describing the ability to form the specific 
complex type is shown color-coded on the molecular 
surface of the target protein (30) (red, high probability for 
complex formation; green, low probability). The second 
protein and the ligand are represented as a stick and balls-
and-sticks models, respectively. 

 
4.1. Textbox 3. Molecular surfaces and mapped 
properties 
 

Atoms and molecules do not have any surface 
such as macroscopic objects have. They are composed out 
of nuclei and electrons and are, following quantum 
mechanics, best described by an electron (or even nuclear) 
distribution function or density occupying the total 3D 
space. Due to the higher probability to find an electron near 
the nuclei, isovalue surfaces (see Textbox 4), connecting all 
points in space with the same value of the electron density, 
can be used for the visualization of the shape of the 
molecule. This physics-based approach to generate a 
molecular surface is mainly suitable for small molecules, 
for which quantum mechanical calculations are feasible. In 
the life sciences, the definition of molecular surfaces 
introduced by Richards (113) describing a molecular 
envelope accessible by a solvent molecule is more 
commonly and very successfully used. A smooth surface 
based on a hard sphere model can be generated by rolling 
another hard sphere model particle (e.g. a water molecule 
with an effective sphere radius of r = 1.4. Å) over the CPK 
model of a molecule. This procedure was first applied by 
Richards (113) and Connolly (114,115) and forms as so-

called “Connolly surface” a reference standard in many 
molecular modeling packages (Figure 10). 
 

The surfaces are not only used for imaging the 
"bulkiness" and shape of molecules, they also serve as 
screens for the visualization of higher dimensional 
information. A popular method of displaying scalar values 
on molecular surfaces is achieved by the use of color codes 
(2,1). 3D properties like the electrostatic potential can be 
calculated at the position of the surface and atom-based 
properties like the molecular lipophilicity can be projected 
onto the surface allowing an immediate identification of 
important molecular regions (2,1). A useful application of 
multiple property mapping is the introduction of transparency 
for encoding an additional chemical property. Such filter 
methods enable the scientist even more to distinguish between 
important and irrelevant information. Another example of 2D-
texture mapping is using a normal color ramp for one property 
and saturation of these colors for the second property. 

 
5.  PROTEIN-LIGAND DOCKING 
 

Protein-Ligand Docking, as the term implies, 
means the placement of small chemical entities (ligands) 
into the active site of a protein (receptor) in a valid pose and 
the assessment of the binding affinity between the ligand and 
the receptor. Therefore, the ligand under consideration must 
fulfill two major criteria. First of all it must obey a topological 
fit citerion, i.e. its size and shape must be compatible with the 
size and shape of the protein’s binding site. Secondly, the 
ligand’s molecular features must complement the features 
found in the protein’s binding site in order to allow for the 
binding of the ligand. Following these considerations most 
docking programs work in a two-step approach.  

 
In the first step, the ligand is placed into the 

binding site considering only the shape and size of the 
ligand. Because, even relatively small ligands are quite 
flexible, the shape and size of a given ligand can vary 
tremendously. It is therefore of paramount importance to 
explore the configurational and conformational degrees of 
freedom of the ligand under consideration sufficiently in 
order to find the optimum solution. This can be 
accomplished by either pre-generating all possible 
conformations and configurations like e.g. tautomers and 
storing them in a database for a subsequent docking using a 
rigid docking approach or it can be accomplished on the fly 
during the placement of the ligand. In practice, often a 
combination of both methods is used. While the 
conformational space is sampled during the placement of 
the ligand, the configurational space is sampled by pre-
generating all possible and meaningful tautomers and 
stereoisomers (61). A number of different algorithms for 
the exploration of conformational space are implemented in 
the different docking programs using systematic and 
stochastic approaches as well as deterministic methods. For 
a detailed discussion of these approaches see (62). 
Deterministic approaches however, are mainly used in 
single ligand docking due to their computational 
expensiveness. In virtual high-throughput docking 
experiments the faster and computational cheaper 
systematic and stochastic search methods are applied
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Figure 8. Channel leading to the active site of cytochrome 
P450cam (56). The molecular surface of the channel is color-
coded according to the local lipophilicity. The large 
entrance on the right side is leading directly to the iron ion 
of the heme group. On the left, another opening can be 
seen, which is possibly an exit for the water molecules 
replaced by the substrate. 
 

 
 
Figure 9. (A) the wild type p53 protein-DNA complex 
(pdb entry 1tup) is shown taken from the crystal structure 
of Cho et al. (60). The mutation hot spots are shown in 
balls-and-sticks representation (59). They are also color 
coded on the molecular surface of the interface (red=high 
and blue=low mutation rate). (B) the R248W mutation and 
its influence on the interface are exemplarily visualized. 

Once the ligand is placed in the protein’s binding 
site, its binding pose must be assessed and transformed into 
a binding affinity. For this purpose a number of scoring 
functions have been developed in recent years. Scoring 
functions allow to estimate the binding energy of the 
complex on the basis of individual interactions of the 
ligand and the protein residues. The available scoring 
functions can be classified according to Brooijmans and 
Kuntz (62) into four main categories: (i) first-principles 
methods, (ii) semi-empirical scoring functions, (iii) 
empirical methods, and (iv) knowledge-based methods. 
First-principles methods rely on functional terms for 
explicit interactions between atoms in the two molecules. 
Interaction parameters are taken directly from force fields 
without modulating them with empirically derived 
parameters (63,64). Solvent effects caused by the 
surrounding solvent molecules are taken into account 
implicitly by solving the Poisson-Boltzmann equation or 
estimating the desolvation term of the Born equation 
(65,66). Semiempirical scoring functions use similar terms 
like first-principles methods but weigh these terms in order 
to tune the calculated energies towards the experimentally 
derived values. A common semiempirical scoring function, 
is the GOLD Scoring Function (67). Empirical scoring 
functions are directly derived from a training set of known 
complexes and their binding energies. They are constructed 
as a sum of energy contributions which account for the 
different interaction types. Each summand is penalized by a 
factor accounting for derivations from the respective ideal 
geometry. A common example for an empirical scoring 
function is implemented in the docking program FlexX 
(68). The last category –  knowledge-based scoring 
functions – are derived from statistical analyses of the 
frequency of occurrence of atom-atom interactions 
observed in known complexes. The frequencies of 
occurrence can also be converted into free energies 
resulting in Potentials of Mean Force (PMF) which can also 
be used as scoring functions. In contrast to empirical 
scoring functions, the complexes’ structures are sufficient 
for the determination of knowledge-based scoring function, 
no measured binding energies are necessary. A modern 
knowledge-based scoring function is DrugScore, developed 
by Gohlke et al. (69). The latter two categories are 
considered to be more general than regression-based 
scoring functions (semi-empirical scoring functions) 
because they implicitly account also for effects not 
understood so far (62). Even if visualization is not very 
often used in the development of scoring functions, it can 
nevertheless give helpful hints about the scoring function 
space. For examples, scoring functions values for specific 
problematic complexes can be visualized on a regular grid 
around the target by centering a rigid (or even flexible) 
ligand on each grid point and calculate the relative rotation 
(and conformation) with the strongest binding energy 
(Figure 11). In this way, in the case of a scoring function 
failure, the wrong global minima, not corresponding to the 
experimental structure, can be easily identified and then 
analyzed in detail hopefully leading to reasons for the 
failure. Additionally, special features of the scoring 
function like extreme roughness resulting in convergence 
problems can also be recognized by many adjacent local 
minima.
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Figure 10. Molecular surface of the factor Xa – inhibitor 
complex. The representation is the same as in Figure 6. 
Additionally, the Connolly surface is partly shown color-
coded by the local lipophilicity (blue: almost hydrophilic, 
brown: almost lipophilic). A cutting plane is used to hide 
the surface on the left side. 
 

 
 
Figure 11. Fitness landscape for docking an inhibitor to 
coagulation factor Xa (PDB-entry 1fax) (70). The two 
slicing planes are color-coded from blue (low scoring 
function values) to red (high scoring function values). 
Additionally, blue isosurfaces mark low-scoring regions 
throughout the whole binding site. 
 

Because, the best scored and highest ranked 
docking solution may not be the optimal one, which is due 
to the inaccuracy of the scoring functions, often a limited 
number of docking solutions is stored. The question is now, 
how to find the optimal solution in this set of possible 
solutions. Quite often, the researcher has already a clear 

idea of the desired binding mode, e.g. hydrogen bonds between 
the ligand and specific protein residues or the occupation of 
specific binding site pockets by the ligand. While it would be 
possible to analyze the results numerically the interpretation of 
the results is difficult. At this point intelligent visualization 
techniques are extremely helpful. Modern molecular 
visualization programs allow to sift through the different 
docking solutions and to inspect them visually. Hydrogen 
bonds and other important interactions are detected and 
visualized on the fly, which allows the researcher to quickly 
find the docking solutions which comply with the desired 
binding mode (see Figure 12a). Moreover, this technique 
allows to identify additional beneficial interactions, which 
probably had remained unnoticed when the results had only 
been analyzed numerically. However, not only the three-
dimensional representation is used for the analysis of docking 
solutions but also a two dimensional representation of the 
protein-ligand contacts (71,72) can be of great use (Figure 
12b). In this representation only the ligand and the protein 
residues bound by hydrogen bonds are depicted in 2D 
molecule representation. Residues in hydrophobic contact to 
the ligand are drawn as symbols and identified with their three-
letter abbreviation and their residue number. Because the 
human eye is very good in identifying patterns in different 
images, the 2D interaction representations are well suited to 
identify docking solutions complying with a special binding 
mode. Moreover, they are especially used in reports and 
publications to explain the actual binding mode.  

 
For more complicated active sites, the visualization 

of shape complementarity using standard techniques like 
molecular surfaces can be, on one hand,  little informative or, 
on the other hand, very confusing. Even if these surfaces (if 
prepared carefully) highlight unfilled cavities or problematic 
regions with steric overlap, there is no quantitative information 
on the strength of the steric overlap or the size of the void 
space. In contrast, specially designed surfaces, lying exactly 
between the ligand and the protein (e.g. separating surface (76) 
(see Figure 13) and intersurf (77)) can be of great advantage in 
this respect, because e.g. the shortest distance between the two 
molecules has to be calculated during the generation anyways 
and, thus, can be directly color coded on them. Differences in 
both complex partners, e.g. variations in substituents of the 
ligand, dissimilarities in different homolog targets or even in 
structures determined by different experimental methods, will 
show up in the shape of the surface and the properties mapped 
onto them. 
 
5.1. Textbox 4. Three-dimensional data fields 
 

Physicochemical properties often depend on the 
position in 3D space in respect to the system under 
investigation at which they are measured or calculated. A 
common example is the electrostatic potential, which 
describes the interaction of a positive charge with the 
system at each point in space. The visualization of these 3D 
data sets has always been a challenge in interactive 
computer graphics applications. Several methods are used. 
Possibilities, which are capable of displaying 3D data 
directly, are voxel-based volume rendering or 3D texture 
mapping. In these representations, the data is visualized 
color-coded on a regular 3D grid (Figure 14)
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Figure 12. 3D (A) and 2D (B) visualization of the complex 
of coagulation factor Xa with inhibitor DX-9065a (73). In 
the 3D model the local lipophilicity is shown color coded 
on the molecular surface of the active site. Additionally, 
important residues of the target and hydrogen bond 
between the target and the ligand are highlighted in yellow 
and green, respectively. The 2D model was generated and 
visualized with the program LIGPLOT (71). Hydrogen 
bonds and solvent accessibilities were calculated with 
HBPLUS (74) and NACCESS (75), respectively.  
 

These volume rendering techniques are well 
suited to obtain a general overview of the extrema of the 
property. But for more complex scenarios and for in-depth 
investigations of specific regions, theses become, on the 
one hand, very demanding in respect to the graphics 
hardware and, on the other hand, more and more confusing 
and meaningless due to the overlapping features. In such a 
case it is preferred to apply an intermediate step to derive a 
representation on a geometric object, e.g. a plane or a solid 
surface. So-called slicing planes sample the contents of the 
volume as if it were exposed by cutting the object with a 
knife (Figure 15). Multiple slicing planes or the interactive 
moving and rotating of one slicing plane can be used to get 
a feeling of the total 3D property. 
 

As described above in Textbox 3, the molecular 
surfaces can be used as screens for the 3D data as well 
(Figure 16). Another approach is the generation of isovalue 

surfaces or short isosurfaces (Figure 16 and 17). These 
connect points in 3D space with the same value of the 
specific property. Prominent examples for the use of 
isosurfaces are the visualization of electron densities or of 
individual atomic or molecular orbitals. 
 
6.  LIGAND-BASED DESIGN 
 

The methods described so far are dependent on 
the receptor’s 3D structure. This 3D structure can either be 
derived experimentally by X-ray crystallography or high-
resolution nuclear magnetic resonance spectroscopy or it 
can be derived by comparative homology modeling. Many 
interesting target proteins, however, e.g. GPCRs (G-
protein-coupled receptors) or ion channels, cannot be 
crystallized and are not accessible to NMR-based structure 
elucidation and, therefore, receptor-based drug design 
methods are unsuited. At this point ligand-based drug 
design methods come into play. Common to all ligand-
based methods is, that they derive information on the 
binding mode from the molecular structure of a number of 
known ligands. One such method is pharmacophore 
modeling and screening. The pharmacophore is the spatial 
arrangement of the functional groups of a ligand which are 
necessary for binding to its receptor (78) or the framework 
of molecular features that carries the pharmacological 
activity of the compound (79). Ligands that have a common 
binding mode, therefore, must share a set of molecular 
features. The idea behind pharmacophore modeling and 
screening is thus, to derive the common set of molecular 
features and their spatial arrangement from a set of known 
ligands, and to use this set of features to identify 
compounds in a compound database, which possess a 
similar set of features in a similar arrangement. 

 
Although, pharmacophore models consider the 

spatial arrangement of the features, the bond network 
between the features is neglected. In addition, usually 
features are defined very generically, e.g. instead of an 
hydroxy-group (-OH) at a given position a hydrogen bond 
donor feature is placed, which can be satisfied by either a 
hydroxy-group or an amino-group (-NH2). The method is 
therefore ideally suited for scaffold hopping. Scaffold 
hopping means the replacement of a given chemical core 
structure by a new core structure belonging to a different 
chemical class. 

 
The most critical step in pharmacophore 

modeling is to create a hypothesis for how the ligands bind 
to the protein, because the energetically favorable 
conformation and configuration of a small chemical 
compound resulting from a conformational search must not 
necessarily be the biologically active one (80). Aligning the 
ligands in the wrong, i.e. the biologically inactive 
conformation or configuration would thus lead to an 
incorrect pharmacophore hypothesis. Sufficient 
conformational and configurational exploration is, 
therefore, at least equally important than it is in receptor-
based methods, like molecular docking. Once the ligands 
are correctly aligned, common molecular features can be 
derived and translated into a pharmacophore hypothesis. In 
a second step, the pharmacophore hypothesis can be used to
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Figure 13. Separating surface between the structures of the 
Trypsin/BPTI complex (76). The surface shows the form of 
the active site and how well the inhibitor fits into the 
binding pocket. The surface is color coded by the distance 
between the atoms of both binding partners (red: close 
distance). No large bumping regions are visible, the red 
spots can be attributed to atoms within hydrogen bond 
contact distance. 
 

 
 
Figure 14. Volume rendering representation of the N,N,N-
trimethylamine-N-oxide (TMAO) density distribution 
around cellohexaose in a 1:1 TMAO/water mixture (116) 
using 3D texture mapping. Large and low densities are 
shown in red and blue, respectively. 
 

 
 
Figure 15. Electrostatic potential of the amino acid 
argentine shown on a slicing plane cutting through 
the molecule. On the left side, the values are color-
coded from red (positive) to blue (negative). On the 
right side, only some isolines, connecting points with 
the same value (like contour line in geographical 
maps), are shown. 

 
identify potential ligands in a compound database. Each 
individual compound is fitted onto the pharmacophore 
hypothesis and assessed according to the degree of overlap. 
Due to the three dimensional nature of pharmacophore 
models, the compounds in the databases must first be 
converted into 3D representations before the database can 
be screened. At this point ligand flexibility comes into play. 
The conformer generation is thus as crucial for this 
screening method as the pharmacophore search itself. 
 

Almost every integrated molecular design 
package nowadays offers a program for ligand-based 
pharmacophor modeling. Tripos’ SYBYL module 
DISCOtech (81) was recently supplemented by Galahad, 
which uses a newly developed genetic algorithm (82). 
Accelrys included HipHop (83) and HypoGen into its 
molecular design suite Catalyst and also the modeling 
package MOE (Chemical Computing Group, Inc.) has a 
pharmacophore modeling module included. While 
pharmacophore model building is generally based on the 
molecular features of the ligands, some of these programs 
also can take activity data into account. 

 
Like other methods, pharmacophore screening 

has a couple of limitations. Quite often, not only one 
pharmacophore exists, but different pharmacophore models 
can be derived from subsets of the set of known ligands. In 
this case, one has to be careful not to derive a too general 
and therefore worthless model. For an extensive review of 
the pharmacophore screening approach and its limitations 
see Nicklaus (79) and Horvath et al. (84).  

 
Pharmacophore modeling is a highly interactive 

process. Very often quite a few different pharmacophore 
models can be built from the same set of known ligands. It 
is, therefore, important to choose a model, which is 
sufficiently specific to identify potential inhibitors in a 
compound database, but which is not too specific, so that 
no novel compounds or only compounds from the same 
chemotype are identified. In addition, the quality of the 
model must be assessed by judging the topological fit 
between the model’s features and the features of each of the 
ligands the model is build from. The topological fit is 
easiest judged by visual inspection, because it allows the 
researcher to include his chemical intuition into the 
process. The results from the pharmacophore screening are 
judged in the same way. The pharmacophore model is 
displayed as a set of spheres, cones or other geometric 
primitives and the potential inhibitors identified by the 
screening are fitted to the model as depicted in Figure 18. 
Analogous to the analysis process of molecular docking 
results, one can then sift through the different solutions and 
identify the most promising ones. 

 
The major advantage of pharmacophore 

screening is its speed compared with virtual screening 
using molecular docking. However, usually pharmacophore 
screening does result in relatively large hit sets, which must 
be processed further to enter the biological assays. These 
hit sets can either be screened again using additional 
pharmacophore queries or can be submitted to a cluster
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Figure 16. Electrostatic potential of the factor Xa inhibitor 
of Figure 2. In the upper half (A), the values are color-
coded from red (positive) to blue (negative) on the 
molecular surface. In the lower half (B), two isosurfaces 
are shown (red: 0.1. a.u and blue:-0.1. a.u.). 

 
Figure 17. Electron density of the factor Xa inhibitor of 
Figure 2. Multiple isosurfaces are shown in (A) with 
decreasing isovalue (red: 0.1. a.u., green: 0.0.1 a.u., blue: 
0.0.01 a.u., and yellow: 0.0.001 a.u.). To see the isosurfaces 
with higher isovalue, a cutting plane removes parts of the 
surfaces in the upper part. A more unconventional but 
nevertheless informative visualization of the electron 
density is shown in (B). It uses a cutting plane like Figure 
15 but the values are shown as height in the third 
dimension as well as color coded. The very high electron 
cusps at the nuclear positions are truncated for clarity. 

 
analysis in order to reduce the size of the hit set. The 
quality of pharmacophore screening varies with respect to 
the amount of information that is available about the active 
ligands. In cases, where enough information is available its 
performance is comparable to molecular docking (86). 

 
Besides using pharmacophore screening as a 

stand-alone method it is often, due to its speed, used as a 
pre-filter method for virtual screening using molecular 
docking. In this case, the knowledge about the 3D structure 
can even be used within the pharmacophore concept 
(87,88). E.g. LigandScout (87) is a fully automated method 
to create a pharmacophore from known complex structures. 
In this way, the advantages of both worlds, structure-based 
and ligand-based screening are combined by (i) 
guaranteeing that the bioactive conformations of the 
inhibitors are used for model building, (ii) encoding more 
information about the complexes in the models, and (iii) 
allowing very high throughput due to the efficient point-
matching algorithms used in the pharmacophore screens. 
Point (i) is accomplished by aligning the active sites in all 
complex structures. In this way, the ligands are placed so 
that the functional groups, which interact with the same 
groups in the protein, are aligned or at least are lying very 
close in space. Other possible combinations of functional 
groups leading to wrong models will not be considered 
making the pharmacophore much more reliable. An 
example for point (ii) is the inclusion of so-called 
excluded-volume spheres, which mark regions in space 
occupied by the protein (Figure 19). Ligands overlapping 
with these spheres are too large for the binding site and are 
energetically penalized by the pharmacophore model. 
Additionally, by overlaying the pharmacophore model with 
the experimental complex structure, it can be checked if 
each feature of the model is really paired with a 
corresponding functional group of the target protein. E.g a 
hydrogen-donor feature is only meaningful if a hydrogen-
acceptor group of the protein is in close proximity. 
Otherwise it should be removed because it was generated 
just by chance and would guide the database search into the 
wrong direction. 

 
All pharmacophore models described so far are 

based on an atomistic representation of the ligands. All 
atoms are assigned to classes of functional groups and 
combinations of atoms belonging to the same group are 
aligned to define a pharmacophore feature. But the physical 
fundamental of molecular recognition are not functional 
groups but the interaction field generated by the whole 
molecule, i.e. the overall sum of protein-ligand interactions 
in solution. This field is normally approximated by dividing 
it into different contributions, like the electrostatic 
potential, steric interactions, lipophilic interactions (defined 
as interactions with a CH3 group), or solvation/desolvation 
(interactions with a water molecule). This is the foundation 
for 3D quantitative structure-activity relationships (3D-
QSAR) using comparative molecular field analysis 
(CoMFA) (89,90,91). This procedure involves statistical 
methods to compute the contributions of e.g. steric or 
electrostatic molecular fields, providing physical 
parameters which can then be correlated to specific
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Figure 18. Pharmacophore model for CDK-inhibitors 
generated by the program Catalyst (85). The molecular 
features are depicted as geometrical bodies, H-bond donors 
are represented as a set of two green spheres and a cone 
indicating the direction of the H-bond. H-bond acceptors 
are represented in the same way, but with purple spheres. 
Blue spheres represent hydrophobic features and ocre-
colored spheres stand for aromatic, hydrophobic features. 
The blue square represents the plane of the aromatic 
system. The two inhibitors Staurosporine (A) and 
Purvalanol (B) are mapped into the pharmacophore model. 
Although, both inhibitors match the pharmacophore 
hypothesis, the agreement of the molecular features and the 
model is worse for Purvalanol than it is for Staurosporine, 
which is indicated by the length and direction of the H-
bond cones and the small solid blue sphere, representing 
the location of the hydrophobic feature. 
 

 
 
Figure 19. Pharmacophore model of the PDB entry 1ncr 
aligned with Pleconaril and the rhinovirus protein hull as 
automatically generated by LigandScout (87). The 
excluded-volume spheres are shown in dark gray. 
Reproduced in part with permission from (87). Copyright 
(2005) American Chemical Society. 

 
biological properties of the molecules. The ideal case 
would be to align the molecules based on these molecular 
fields. But then the fields must be calculated for each 
conformation of the possibly very flexible molecules and a 
similarity measure must identify the best overlap of these 
fields for each relative translation and rotation of the 
molecules. This is by far too time consuming so that in the 
standard procedure the molecules are first aligned on the 

atomistic level and only the molecular fields for this 
alignment are correlated. Visualization of the results may 
then improve the understanding of the interactions and help 
in designing compounds with improved activity without the 
bias of a specific structure generating the changes in the 
molecular fields. This will be demonstrated with two 
examples taken from the literature (Figure 20 and Figure 
21). Beside the illustration of the method, these Figure s 
also show the huge improvement of clarity which can be 
obtained with raster graphics (Figure 21) in comparison to 
older vector graphics (Figure 20). 
 
6.1.  Textbox 5. Three-dimensional vector fields 
 

For 3D vector fields, like the electric field 
surrounding a molecule or a reaction field determining the 
most favorable direction of an incoming reaction partner, 
yet additional visualization techniques are needed to 
capture the size as well as the direction of the field at a 
certain point. The vectors can be visualized using small 
cones or arrows positioned on a regular grid (Figure 22). 
The size and/or the color indicate the field strength and the 
orientation the field direction. Another method to visualize 
vector fields uses field lines (sometimes also called “lines 
of force”), which are drawn as curves so that the tangent 
line to the curve at an arbitrary point is directed along the 
vector of the electric field at this point, and the density of 
lines is directly proportional to the magnitude of the field 
(Figure 22). 
 
7.  LIGAND OPTIMIZATION 
 
As described in the OVERVIEW OF THE DRUG DESIGN 
PROCESS section, after the identification of lead structures 
using virtual screening followed by experimental screening, 
these structures are chemically modified to optimize their 
activity as well as other required characteristics like 
selectivity and ADME-Tox parameters. This is the most 
complicated part of the rational design, because an extreme 
amount of expert knowledge on the experimental as well as 
the theoretical side is needed. The structures are looped 
through a number of design steps building the lead 
optimization cycle. First, possible regions of the ligand, in 
which modifications could increase the needed 
characteristics, are identified. Different substituents are 
then added and tested applying chemoinformatics methods, 
like pharmacophore modeling, molecular docking, QSAR 
analyses etc. As mentioned, not only the binding affinity is 
important at this stage but also all other properties 
characterizing the drug-likeness of a substance. The most 
promising modifications (and sometimes also some of the 
less potent ones in order to check a hypothesis) are 
synthesized and experimentally tested. Using the best 
candidates as lead structures the cycle is then started again 
until no further improvements can be obtained. Last but 
definitely not least, the drug candidate will go into the pre-
clinical and clinical test phase. A failure at this clinical 
stage can be disastrous for a pharmaceutical company due 
to the high cost of these tests. It is extremely important that 
the chance for success of a drug candidate is already 
maximized, which is tried to guarantee by large scale 
experimental and computational testing during the whole
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Figure 20. (a) Visualization of CoMFA steric field 
contours of receptor-binding properties of halogenated 
estradiol derivates. The green and cyan polyhedra indicate 
regions where lower steric interaction would increase the 
binding affinity. The red and yellow contours surround 
regions where higher steric interactions would increase 
binding affinity. Dotted clouds represent vdW surfaces of 
the 21 iodine atoms with 20E- (magenta) and 20Z- (purple) 
configurations; (b) Visualization of the CoMFA 
electrostatic field contour. The red and yellow contours 
indicate regions where addition of negative charge would 
increase binding affinity. Cyan and green contours indicate 
regions where addition of positive charge would increase 
the binding affinity. Dotted clouds represent vdW surfaces 
as indicated in (a). Reproduced in part with permission 
from (92). Copyright (1994) American Chemical Society. 

 
design process leading up to these test phases. Because 
there are so many fields involved especially in lead 

optimization covered in this section, we cannot describe all 
of them here in detail. Therefore, we will concentrate on a 
few examples, in which visualization can be a surplus.  

 
Theoretical methods are at the moment not 

reliable enough to be a suitable replacement for the 
experiment. Compared to the identification of lead 
compounds this is even more the case during lead 
optimization, because here pharmacokinetics, i.e. how is 
the drug taken up by, distributed throughout, and removed 
from the body, must be considered as well. The human 
being is such a complex system that no theoretical model 
will exist for it in the foreseeable future. Therefore, 
computational methods can only concentrate on specific 
parts. Nevertheless, good progress has been made in the 
last decades. Many of the techniques described so far are 
also used in lead optimization. Because a specific class of 
compounds was already identified as lead, more 
computational time can be invested for describing their 
binding properties or their interactions with other key 
players in the life cycle of a drug, for examples 
cytochromes P450 involved in almost all routes of drug 
metabolism.  

 
The first example is dealing with possible 

improvements of the description of the complex between 
the target and the ligand. The model of the protein used in 
molecular docking is very basic. It is treated as a rigid body 
witout any solvents surrounding it. In some complexes the 
interaction of the ligand with the protein is mediated 
through a water molecule. Therefore, newer docking 
algorithms can include these essential water molecules and 
remove them on the fly, if they are replaced by a part of the 
ligand (94,95,96,97). Additionally, induced fit can be 
simulated in more advanced algorithms. This is mainly 
done by making specific side chains flexible but sometimes 
also backbone flexibility is considered. The easiest way to 
Figure out which side chains adapt to the incoming ligand, 
is to overlay different complex structures of the same target 
with different ligands (holo forms) and/or the uncomplexed 
structure (apo form). Overlaps between ligands of one 
complex structure and side chains of another one are strong 
evidence that all known ligands can only be docked 
correctly into the binding site if a flexible approach is used 
(see Figure 23).  

 
The scoring functions used in docking algorithms 

are at the moment the main reason for failures to predict the 
correct complex structure. But the improvement of these 
general-purpose functions is not an easy task due to the two 
goals which have to be achieved at the same time: accuracy 
and computational efficiency. In lead optimization, 
however, one is not interested in a general-purpose docking 
approach, but in the best performing algorithm for the 
specific target. Weak to medium binders are already known 
for the target from the lead finding stage and experimental 
structures for the binders are solved in most cases. All this 
information can be used to generate a tailored scoring 
function, i.e. a function which is trained to best reproduce 
all known experimentally determined complex structures of 
a specific target (98,99,100,101,102). The training 
procedure is equivalent to those of general-purpose 
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Figure 21. Visualization of the CoMFA contour plots of (a) 
steric fields taken from a 3D-QSAR study on cyclic urea 
derivatives as HIV-1 protease inhibitors, the green 
polyhedra (80% contribution) represent areas where bulkier 
groups may enhance activity, whereas yellow polyhedra 
(20% contribution) indicate areas where bulk may have 
detrimental effects on activity; (b) electrostatic fields, the 
favored electrostatic areas with positive charges are 
indicated by blue polyhedra (80% contribution), whereas 
the favored electrostatic areas with the negative charges are 
indicated by red polyhedra (20% contribution). One of the 
most active compounds, DMP450, is shown as the 
reference compound. Reproduced in part with permission 
from (93). Copyright (1999) American Chemical Society. 
 

 
 
Figure 22. Electric field around the amino acid arginine 
shown as small cones (left) and as field lines (right). 

 
unctions only the training set is not chosen as diverse but as 
specific as possible. If not enough experimental complex 
structures are known for the target, very similar targets 
should be taken into account to minimize the problem of 
overfitting. After the training, the new function can be 
applied for a more focused screening. Additionally, the 
visualization of the differences in the general-purpose and 
tailored scoring functions (see Figure 24) will highlight the 
important interactions between the protein and the ligands, 
on which following optimization cycles can concentrate. 

 
If a single or a small number of complexes 

should be explored even more accurately, molecular 
dynamics simulations can be used (see related articles in 

this issue). Full protein flexibility and an explicit or implicit 
solvent model will increase the accuracy of the calculations 
but also increase the computational demand drastically. In 
favorable cases, even quantitative binding free energies can 
be obtained using free-energy perturbation ( (17) and 
references therein), thermodynamic integration ( (17) and 
references therein), or the molecular mechanics – Poisson 
Boltzmann / surface area (MM-PBSA) approach (103). 
 

The second example for visualization in lead 
optimization is dealing with another important property of a 
drug: specificity. If a ligand is binding strongly to one 
target, the chance that it also binds and inhibits other 
similar proteins is very high resulting in side effects. There 
is no drug without side effects but the minimization of 
these is highly desirable and can seal the fate of a drug. 
One prominent example are kinases, which transfer 
phosphate groups from high-energy donor molecules, such 
as ATP, to specific substrates. At least 500 distinct kinases, 
which can be grouped into roughly 20 known families on 
the basis of structural relatedness, have been sequenced in 
the human genome (104). Many of them are excellent 
targets for developing new drug candidates and treatment 
strategies for major diseases like cancer, autoimmune 
disorders, vascular diseases and degenerative brain 
diseases. This has led to the fact that at the moment kinases 
are beside GPCRs the most prominent target family in 
pharmaceutical research despite many associated concerns: 
The high intracellular ATP concentrations versus ATP site-
directed inhibitors; a common catalytic mechanism across 
the many families of kinases; structural similarity of other 
features of kinase enzyme active centers; and the 
importance of kinase activities to many, totally unrelated 
physiological processes (104). These concerns create 
obligations for highly specific inhibitors. It is not possible 
to examine the interactions of a drug candidate with all 
possible kinases, but the visualization of the differences of 
the target kinase with some highly homologues ones can 
identify regions of the active site, in which interactions 
could lead to higher specificity (see Figure 25). For doing 
so, one starts with a superposition of the various enzymes. 
Interaction fields, like GRID (50) or FLOG (105) maps, are 
calculated around each individual enzyme on a common 
grid for all homologs. E.g. FLOGTV (105) uses five probe 
types by default: donor/cation, acceptor/anion, polar, 
hydrophobic, and all other atoms feeling only van der 
Waals interactions. So-called trend vectors are then 
calculated as a weighted sum of the interaction energy with 
a specific probe multiplied by the normalized activity, 
capturing the differences in map space between desirable 
and undesirable enzymes. Large positive values correspond 
to regions, in which an atom of the specific probe type 
should be placed for higher selectivity. By contrast, a 
placement of the atoms of this type should be avoided in 
regions with large negative values. Therefore, contouring 
of the maps with the help of isosurfaces will directly draw 
the attention to the regions important for specificity, which 
are very hard to determine from looking at the structure 
alone (see Figure 25).  

 
These are only two examples subjectively chosen 

by the authors. Many others could be given especially
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Figure 23. Superimposition of the eight protein kinase A 
structures (the protein backbones are illustrated as ribbon) 
(70). The side-chain conformations of residue PHE327 for 
each protein structure are shown as green and red balls-
and-sticks (for the sake of clarity all other residues are 
hidden). Ligand staurosporine (shown as green wire frame 
in the middle along with all other ligands shown in red) 
clashes with this residue in all non-native structures 
 

 
 
Figure 24. Per-atom contributions to the total scoring 
function value of a general purpose scoring function (left) 
and a target-specific scoring function (right) (70). Bigger 
spheres contribute more than smaller ones to the total 
scoring function value. The score values per atom are 
additionally color-coded from blue (low scoring function 
values) to red (high scoring function values). The trypsin 
protein structure (PDB-entry 1tnh) is represented as tubes. 
Key-residues interacting with the ligand are shown in 
green. 
 
demonstrating the advantages of modern visualization 
techniques for the communications between computational 
and experimentally working medicinal chemists (see 
Textbox 6). Combined with high-performance computer 
clusters, more and more exact but also demanding methods 
like the already mentioned molecular dynamics simulations 
or ab initio quantum mechanical calculations on larger 
systems will enter into the rational drug development 
process. At some point of time, it will hopefully be possible 
to perform the calculations on computer clusters on the fly 
and then visualize them according to the needs of an 
ongoing discussion. Interactive docking experiments were 

already performed in a cave, in which the computer gives 
feedback about the docking pose using haptic devices such 
as force-feedback joysticks and graphical effects 
(106,107,108). 
 
7.1. Textbox 6. Interactive modeling 
 

Images are well suited for the presentation of 
final results in publications or at conferences and meetings. 
These results are worth that much time can be invested into 
the right presentation. The author can choose the right view 
and abstraction of the molecular data to highlight his 
findings. But in ongoing research, it is not clear what is 
important to look at. Therefore, the molecular scenario 
must be inspected from many different angles and with 
different resolutions and representations to generate new 
ideas. Today’s graphic systems are fast enough to generate 
all representations described in this paper from existing, 
pre-calculated data in real time, which makes interactive 
modeling possible without annoying waiting periods. Even 
most of the calculations for the advanced representations, 
like ribbons, molecular surfaces and slicing planes, can be 
done one the fly. In this way, discussions of groups of 
researches can be supported directly with the interactive 
visualization of the data at hand. Different representations 
can be chosen to fit the needs of each individual researcher. 
This describes a scenario in which the researchers are in a 
common room using the same computer display. But in 
many cases, collaborations are established between groups 
a long way apart from each other sometimes distributed all 
over the world. Then it is important to transport the visual 
information from one site to the other. This can be done by 
images or short videos or animated gifs, which can be 
automatically produced by many visualization programs. 
Even if multiple images or animations can pinpoint the 
chain of reasoning of the researcher producing the 
visualization, they are still limited to the ideas of the 
producer, because they cannot be changed afterwards. 
Nevertheless, they are especially helpful for dynamic data 
as generated e.g. during molecular dynamics calculations 
(see related articles in this issue). 
 

Scripting is another possible way to transmit 
visualization data. Many programs (RasMol (117) as 
prominent long existing examples) have the ability to 
access their functionality, besides the graphical interface, 
within a text console. In this way, multiple commandos can 
be combined in a script and then executed one after each 
other. On one hand, complex visualization and analysis 
procedures can be automated in this way. E.g. in the 
program VMD (10) the scripting capability is so powerful 
that even totally new functionality can be included in the 
program using the Tcl or Python scripting language. On the 
other hand, the scripts can be transmitted with the 
underlying data to another research site. At the beginning 
of a joint discussion, researchers at different sites can load 
the scene in exactly the same orientation and representation 
but can then manipulate it to their own needs. Using plug-
ins to standard web-browsers the communication can be 
done directly over the intra- or internet. In the early stages, 
the Virtual Reality Modeling Language (VRML) developed 
for web-based visualization of all kinds of 3D scenes was 
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Figure 25. Trend vector maps of the comparison of P38 vs. ERK protein kinase as calculated by the program FLOGTV (105). 
P38 kinase are shown as purple wire, ERK kinase as white wire. The inhibitor SB-218655 is shown as ball and stick. Positive 
contours are where the specified probe would selectively bind to P38: kinase: donor/cation, blue; acceptor/anion, red; 
hydrophobic, green. Negative contours are where the probe would selectively bind to ERK kinase: donor/cation, blue–gray; 
acceptor/anion, orange; hydrophobic, yellow. Reproduced in part with permission from (105). Copyright (2002) Elsevier 
Limited. 
 
used (2,59) (Figure 26). The advantage was that almost all 
features of a visualization software, including surfaces, 
slicing planes, etc., can directly be translated into a VRML 
scene. Problems are that the scenes are complicated to 
generate and cannot be manipulated afterwards (expect the 
normal rotation, translation and zoom) as well as the 
inconsistencies between different VRML players and 
standards. In the last time, more and more plug-ins 
specially designed for transferring chemical information are 
developed. The probably best know one is MDL Chime. 
Chime masters all standard representations and simplified 
models for bio-macromolecules as well as Van der Waals 
surfaces and hydrogen bonds. Another example is the 
Chem3D plug-in from CambridgeSoft. Additionally, the 
platform-independent programming language JAVA has let 
to a large number of chemical applets with various 
capacities (118,119), e.g. JME, Marvin Sketch/View, Jmol, 
JChemPaint, and WebMol to name just a few. 
 

Some programs have the capability to 
automatically log all actions performed by the user using 
their scripting language. These log files can be used to go 
back to a specific time of the modeling session or restore 
the scene at a later occasion or after a crash of the system. 
Additionally, these automatically generated scripts can be 
used in joint discussion as described above. Then, even the 
manipulations done at one site can be reproduced at the 
other by transferring the output of the logging and 
executing all logged commands. An even more advanced 
version of this technique is based on a server-client 
application. Here, all commands are sent to the server, 
which distributes them to all the clients. In this way, users 

at all sites can manipulate the scene and view the results 
from these manipulations. The server-client architecture is 
also needed for visualizations beyond the normal computer 
screen. The probably most impressive visualization 
hardware is the CAVE virtual reality system. The images 
are projected onto three walls, the ceiling, and/or the floor 
of a small room build out of rear-projection screens. Each 
of the projectors is controlled by a client getting the needed 
data for the specific viewing angle from the server process. 
The user will go inside the CAVE wearing special glasses 
creating the 3D impression of the images. This is 
accomplished by rendering two images with a little offset 
in the viewing angle, which are drawn in turn, one for the 
right and one for the left eye, and by the glasses preventing 
the other eye from seeing the image not ment for it. In this 
way, our human brain is tricked to see a three-dimensional 
image in which one can walk around. To interact with the 
scene, special input devices like spaceballs, joy sticks, or 
the CAVE wand are used. With a lower budget, the 3D 
glasses, e.g. shutter glasses, can also be combined with a 
standard monitor (or one or multiple projectors for 
classrooms or tiled-display theaters). 

 
8.  CONCLUSION 
 

Everyday new information is generated which 
can be visualized using existing or new visualization 
techniques. This review shows with a number of examples, 
taken from the rational drug design field, how well-
designed presentation of molecular data using state-of-the-
art techniques can help to judge numerical results and 
outputs of modeling programs and to discuss experimental
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Figure 26. VRML scene of the p53 protein-DNA complex (pdb entry 1tup) (60) displayed with the Cortona VRML Client from 
ParallelGraphics. 

 
and theoretical findings. Computer Graphics and its 
applications in molecular science have developed and 
hopefully will develop further very rapidly in the near 
future. However, this can not be achieved alone by 
advances in the hardware and software development. Only 
if one focuses on what should be represented in order to 
obtain a maximum of information from the underlying data 
and to get an optimal insight from the image, new ideas can 
be generated from and communicated with (beautiful and 
appealing) images. For doing so, on the one hand, new 
graphical representation forms have to be found in order to 
optimize the man-machine communication and also the 
communication between humans over globally accessible 
networks. The direct, interactive experience with three-
dimensional objects by visualization and manual interaction 
has and will increase the efficiency of this communication. 
On the other hand, the preprocessing of the data becomes 
more and more important especially if the scenes are 
getting increasingly complex. In almost all examples given 
here, not the primary data is directly visualized, but it is 
first analyzed with more or less time-consuming algorithms 
specially optimized for generating secondary data for the 

visualization of the most important findings. Especially 
here, only the interplay between many disciplines, like 
computer science, theoretical, computational but also 
experimental chemistry, biology, and above all arts, will 
lead to further improvements of the field. 
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