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1. ABSTRACT 
 

Angiogenesis is the process of formation of new 
blood vessels from pre-existing vessels or endothelial cell 
progenitors. It plays an essential role in embryogenesis, 
inflammation, wound healing, tumor growth and 
metastasis. The tumor microenvironment contains 
excessive amounts of pro-angiogenic factors derived from 
neoplastic, stromal, and infiltrating immune cells. The 
imbalance of pro-angiogenic and anti-angiogenic factors 
promotes abnormal angiogenesis, creating numerous blood 
vessels with structural abnormalities and functional defects. 
These defective vessels often create an inflammatory 
environment within the tumor that promotes coagulation, 
thrombosis, and impairs blood supply, causing further 
complications to the cancer patient. The structural and 
functional abnormalities of the tumor vessels promote 
hematogenous metastasis, which is strongly associated with 
shorter patient survival. Furthermore, tumor blood vessels 
are poorly perfused, which impedes drug delivery to the 
tumor, thus reducing the efficacy of anti-cancer agents. 
Tumor angiogenesis is widely studied as an important 
target for suppressing tumor growth and metastasis. This 
review will briefly summarize the current findings related 
to regulation of angiogenesis by the tumor 
microenvironment, while highlighting potential targets for 
inhibiting this process. 

 
 
 
 
 
 
2. INTRODUCTION 
 
 Blood vasculature is essential for tissue health 
serving as a highway for the delivery of oxygen and 
nutrients. Diffusion of oxygen through the tissues is limited 
to approximately 200 µm (1), thus cells must be located 
within this distance from a blood capillary to prevent death 
from hypoxia and nutrient deprivation. The blood 
vasculature also transports growth factors, cytokines, and 
hormones throughout the body. Additionally, blood vessels 
regulate vascular tone essential for controlling both 
systemic and local blood flow. Blood vasculature also 
contributes to regulation of the immune response by 
controlling access of circulating immune cells to the sites 
of inflammation and immune stress. Blood vessels control 
the fibrinolytic status of the normal endothelium permitting 
coagulation upon vascular injury to prevent excessive 
blood loss. Wound healing relies heavily on all functions of 
blood vessels, including control of the coagulation cascade, 
immune cell trafficking, and angiogenesis. 
 

Angiogenesis is defined as the formation of new 
blood vessels from pre-existing vessels with the possible 
aid of endothelial cell progenitors. Normal physiological 
angiogenesis plays an essential role in embryogenesis, 
inflammation, wound healing and female reproductive 
functions. The formation, maturation and regression of new 



Regulation of tumor angiogenesis 

196 

 
 

Figure 1. Steps in generation of new blood vessels.   Five discrete steps in angiogenesis have been highlighted in this review: 1) 
Angiogenic switch; 2) Destabilization; 3) Sprouting; 4) Migration, Survival, and Proliferation; and 5) Maturation and 
Stabilization.  All stages occur in both normal and tumor angiogenesis, but tumor vessels are defective due to abnormalities of 
their microenvironment. 

 
vessels induced by normal physiological needs are 
regulated by the environmental cues that coordinate blood 
delivery and tissue expansion or remodeling. In contrast, 
abnormal angiogenesis induced by tumors that typically 
contain disproportionately high levels of pro-angiogenic 
factors creates structurally deficient and functionally 
impaired blood vessels (2). These incorrectly constructed 
vessels often create an inflammatory environment within 
the tumor that promotes coagulation and thrombosis, 
causing further complications to the patient (3,4). The 
structural and functional abnormalities of the tumor vessels 
promote hematogenous metastasis, which is linked to 
decreased patient survival (5).  Importantly, tumor blood 
vessels are poorly perfused, which impedes drug delivery 
to the tumor, thus reducing the efficacy of anti-cancer 
agents. It is, therefore, widely accepted that tumor 
angiogenesis is an important target for suppressing tumor 
growth and metastasis. This review will briefly summarize 
the current concepts of angiogenesis in the context of the 
tumor microenvironment, while highlighting potential 
targets for inhibiting this process. 

 
3. MECHANISMS OF TUMOR BLOOD VESSEL 
FORMATION 
 
 The process of angiogenesis can be tentatively 
separated into five main steps regulated by the 
microenvironment. In reality, no step is clearly separated 
from another and some steps might occur simultaneously. 
For the purpose of this review, we will describe five 
discrete steps in the tumor-inducing angiogenic cascade 
that are typically required to form a new vessel. As 
illustrated in Figure 1, these steps include: 1) induction of 

angiogenesis by tipping the balance of pro- and anti-
angiogenic factors; 2) vessel destabilization; 3) vascular 
sprouting; 4) induction of endothelial cell migration, 
proliferation, and survival; and 5) vessel maturation and 
stabilization.  
 
3.1. Step 1: tipping the angiogenic balance 

In adulthood, blood vessels generally remain in a 
state of quiescence in which they are neither growing nor 
regressing.  Maintenance of the quiescent state requires a 
balance of pro- and anti-angiogenic factors whose 
expression is regulated by the local environment of the 
vessel, endothelium-supporting mural cells and the 
endothelial cells themselves. However, conditions created 
by solid tumors turn on an angiogenic switch that tips the 
balance in favor of angiogenesis, resulting in 
transformation of quiescent vessels to actively sprouting 
vessels (6). The angiogenic switch is a complex mechanism 
involving a wide array of factors. Of these, vascular 
endothelial growth factor (VEGF-A) has been shown to 
play a particularly important role (7).   

 
3.1.1. Role of VEGF-A in induction of tumor 
angiogenesis 

The vascular endothelial growth factor (VEGF) 
family includes VEGF-A, VEGF-B, VEGF-C, VEGF-D, 
VEGF-E, and placental growth factor (PlGF).  Each of 
these proteins participates in angiogenesis, 
lymphangiogenesis, or both to varying degrees. VEGF-A is 
a homodimeric glycoprotein that is generated through 
several alternatively spliced isoforms (8). VEGF-A165 is the 
most abundant of the three main isoforms (i.e., VEGF121, 
VEGF165, and VEGF189) (8).  VEGF-A can be produced by
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Table 1. Cell-type expression of VEGF-A and VEGF-A receptors in human cancers 
Protein Tumor Type Expressed in  Reference 
VEGF-A Breast Tumor cells (161,162) 
  Gastric Tumor cells (163) 
  Hepatocellular Tumor cells (164) 
  Melanoma Tumor cells (165) 
  Non small cell lung cancer Tumor cells (166) 
  Melanoma Endothelial cells (165) 
  Hodgkin lymphoma Endothelial cells, Dendritic cells (167) 
  Melanoma Fibroblasts, Macrophages (165) 
VEGFR-1 Breast Tumor cells (162) 
  Non small cell lung cancer Tumor cells (166) 
  Ovarian  Tumor cells, Endothelial cells (168) 
  Uterine Sarcoma Tumor cells (169) 
  Non small cell lung cancer Pericytes (170) 
  Head and neck squamous cell carcinoma Macrophages, Fibroblasts (171) 
VEGFR-2 Bladder Tumor cells (172) 
  Colorectal Tumor cells (173) 
  Non small cell lung cancer Tumor cells (166) 
  Ovarian  Tumor cells, Endothelial cells (168) 
  Hepatocellular Endothelial cells, Macrophages  (174) 
  Head and neck squamous cell carcinoma Macrophages (171) 
NRP-1 Colon Tumor cells (175) 
  Non small cell lung cancer Tumor cells (176) 
  Ovarian Tumor cells (177) 
  Pancreatic  Tumor cells (178) 
  Neuroblastoma Endothelial cells  (179) 
  Pituitary  Endothelial cells  (180) 
NRP-2 Non small cell lung cancer Tumor cells (176) 
  Pancreatic Tumor cells (181) 
  Neuroblastoma Endothelial cells  (179) 
VEGF-A and its receptors are expressed in a variety of cell types within the tumor including neoplastic cells, endothelial cells, 
pericytes, infiltrating macrophages, dendritic cells, and fibroblasts. Abbreviations: VEGF-A, VEGFR-1 and VEGFR-2 
correspond to vascular endothelial growth factor A, receptor 1 and receptor 2; NRP-1 and NRP-2 correspond to neuropilin-1 and 
-2.   
 
a variety of cell types present in the tumor 
microenvironment, including infiltrating macrophages 
(9,10,11), mast cells (12), neutrophils (13), platelets (14), 
stromal fibroblasts (15), endothelial cells (16) and 
neoplastic cells (17) (Table 1). Thus, both the local 
environment and the tumor contribute to high intratumoral 
concentrations of VEGF-A.  

 
Members of the VEGF family bind two types 

of receptors: 1) VEGF receptors (VEGFR) that contain a 
tyrosine kinase domain; and 2) neuropilins that lack a 
cytosolic domain. The tyrosine kinase VEGFR family 
consists of VEGFR-1, -2, and -3. They are primarily 
expressed on blood and lymphatic endothelium, but 
have also been detected on monocytes, a subset of 
hematopoietic cells, and on neoplastic cells of different 
tumor types (18,19). VEGF-A binds VEGFR-1 and 
VEGFR-2, but not VEGFR-3 (8).  VEGF-A has a higher 
affinity to VEGFR-1 but the signaling transduction of 
VEGFR-2 has increased functional impact on 
endothelial cells (20). One study concluded that 
VEGFR-2 is the primary signaling receptor, whereas 
VEGFR-1 is a decoy receptor (21).  However, other 
studies demonstrated a functional role for both receptors 
on tumor (22,23) and endothelial cells (24). Expression 
of functional VEGFR-1 and VEGFR-2 receptors was 
also shown in several human tumors on both endothelial 
and malignant epithelial cells (Table 1). Based on these 
studies, both receptors can contribute to tumor 
progression through autocrine (25) and paracrine (26) 
loops.  

 VEGF ligands also have affinity for members of 
the Neuropilin (NRP) family, including neuropilin-1 (NRP-
1) and neuropilin-2 (NRP-2). Originally, NRP-1 and NRP-
2 were identified as neuronal receptors involved in axon 
guidance (8). Subsequently, both neuropilins were found to 
be expressed on vascular smooth muscle and endothelial 
cells, and to participate in angiogenesis (27) and 
lymphangiogenesis (28). Blood vascular endothelial cells 
primarily express NRP-1 (27), where lymphatic endothelial 
cells mainly express NRP-2 (29). NRP-1 binds an exon of 
VEGF165 encoding for a heparin-binding domain, which 
contrasts the binding site known to interact with its cognate 
tyrosine kinase receptor, VEGFR-2 (28). NRP-1 
presumably plays an ancillary role in VEGFR-dependent 
activation of endothelial cells by cooperating with tyrosine 
kinase receptors and enhancing their signaling (28,30). Co-
expression of NRP-1 with VEGFR-2 on porcine aortic cells 
mediated a four-fold increase in VEGF-A binding to 
VEGFR-2 that subsequent increase in chemotaxis response 
of these cells for VEGF-A (31). Both NRP-1 (32,33) and 
NRP-2 (32) also form functional complexes with VEGFR-1 
that enhance its activity. In addition, VEGF-A can signal 
through neuropilins in the absence of VEGFRs (34,35). 
Neuropilins are abundantly expressed on both endothelial 
(36,37) and malignant epithelial cells (38,37) in a variety of 
tumors, and contribute to tumor progression through 
paracrine and autocrine mechanisms.  

 
3.1.2. Regulation of VEGF-A expression and activity 

Expression of VEGF-A is elevated in response to 
hypoxia and inflammation, conditions characteristic of
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Table 2. A selected list of inflammatory factors that induce VEGF-A expression in the tumor environment 
Factor  The main responder cell type responsible for VEGF-A  production Reference 
IL-1 beta Macrophages (182,183,10) 
IL-6 Tumor cells Macrophages, Macrophages (48, 11) 
IL-8 Tumor cells, Neutrophils, Endothelial cells (184, 185, 186) 
IL-18 Tumor cells, Macrophages, Dendritic cells (187, 188, 189) 
Oncostatin M Macrophages, T lymphocytes (190, 191) 
TGF-beta1 Tumor cells, Stromal cells (192, 193) 
TNF alpha Tumor cells, Macrophages (13,194, 195) 
Abbreviations: IL-1, interleukin-1; IL-6, interleukin-6; IL-8, interleukin-8; IL-18, interleukin-18; TGF, transforming growth 
factor; TNF, tumor necrosis factor 
 
most epithelial malignancies (39). All solid tumors contain 
hypoxic pockets primarily caused by the lack of 
coordination between growth of the tumor mass and 
generation of new blood vessels to support tumor cell 
proliferation (8). Tumor hypoxia promotes expression of 
VEGF-A through stabilization of a transcription factor, 
hypoxia inducible factor-1 (HIF-1) alpha that binds the 
VEGF-A promoter and activates its transcription (40,41). 
Upregulation of VEGF-A by hypoxia has been 
demonstrated in many human tumors, including breast (42), 
colorectal (43), brain (42,44) and gallbladder cancers (45) 
(see Table 1). 

 
Another parameter that plays a significant role in 

regulation of VEGF-A expression is tumor-associated 
inflammation. Many inflammatory cytokines that are 
present in the tumor environment up-regulate VEGF-A 
expression (Table 2). For instance, IL-1 beta induces 
VEGF-A expression in gastric carcinoma cells via 
extracellular signal regulated kinases 1 and 2 (ERK1/2) and 
p38-dependent pathways (46). IL-6 dependent upregulation 
of VEGF-A has been shown in non-small cell lung (47) and 
gastric cancers (48). VEGF-A transcription is potently 
enhanced by the binding of the transcription factor nuclear 
factor kappa B (NF-κB) to the VEGF-A promoter (49,50). 
Increased production of VEGF-A exacerbates tumor 
inflammation by recruiting macrophages and neutrophils 
(51,52,53) that secrete additional angiogenic factors and 
further promote vascular formation (54). 

 
VEGF-A signal transduction activates pathways 

that mediate survival, proliferation, migration and invasion 
of endothelial cells, all of which are essential for induction 
of angiogenesis. VEGF-A binding to VEGFR-1 induces the 
activation of phospholipase C gamma and the mitogen-
activated protein kinase (MAPK) cascade, promoting 
migration and proliferation of endothelial cells (55,56). 
VEGFR-2 signaling induces endothelial cell proliferation, 
survival and changes in gene expression via activation of 
the MAPK and phosphatidylinositol 3-kinase (PI3K)/AKT 
pathways (57,58). Additional downstream gene targets of 
VEGF-A signaling are nitric oxide (NO) (59,60) and 
angiopoietin-2 (Ang-2) (61), both of which regulate steps 
of angiogenesis that immediately follow the induction of 
the angiogenic switch. 
 
3.2. Step 2: destabilization of pre-existing vessels 

New vessels sprout and branch from pre-existing 
vasculature (62).  Normally, tight endothelial cell-to-cell 
interactions and contacts between endothelial and peri-
endothelial mural cells keep the vasculature stable (62). 

These contacts must destabilize to permit sprouting, 
division and migration of the endothelial cells in order to 
initiate the formation of new blood vessels (63). 
Destabilization of blood vasculature decreases the number 
and intensity of endothelial cell interactions with mural 
cells, creating leaky and dilated vessels that are primed for 
the action of VEGF-A (63). Ang-2 is thought to be 
primarily responsible for this critical event (64,65). 

 
3.2.1. Role of angiopoietins in stabilization and 
destabilization of blood vessels 
 The angiopoietin (Ang) family consists of four 
secreted glycoproteins: Ang-1, Ang-2, Ang-3, and Ang-4 
(64,63). Ang-1 and Ang-2 were the first discovered and are 
the most well-studied members. Ang-1 is secreted by 
endothelial cells, pericytes and vascular smooth muscle 
cells, whereas Ang-2 is primarily produced by endothelial 
cells, stored in Weibel-Palade bodies, and released upon 
activation (66). While Ang-1 is expressed in many tissues, 
Ang-2 expression is localized to areas of vascular 
remodeling (65). These secreted proteins are the ligands for 
a tyrosine kinase receptor, Tie-2 (63). A structurally related 
receptor, Tie-1, does not bind known angiopoietins but 
might facilitate binding and signal transduction mediated 
by Tie-2▪angiopoietin interactions (63). Tie receptors are 
expressed on endothelial cells (67), leukemia cells (63,68) 
and a sub-set of hematopoietic cells (69,27). Tie-2 is also 
expressed on smooth muscle cells, neuronal cells and stem 
cells (70,66). In blood vascular endothelial cells, both Ang-
1 and Ang-2 bind Tie-2, but only Ang-1 causes Tie-2 
phosphorylation under normal conditions. Based on these 
observations, Ang-1 has been proposed to stimulate Tie-2 
signal transduction in blood vascular endothelial cells, 
whereas Ang-2 is suggested to antagonize activation of the 
Tie-2 pathway (65).  
 

The signaling of Tie-2 induced by Ang-1 
resulting in stabilization of blood endothelium is mediated 
through the PI3K pathway (71,72) that induces NOS 
expression and promotes endothelial cell survival (71,73). 
Endothelial cell motility is also induced by the PI3K 
pathway through interaction with signaling components, 
such as growth factor receptor-bound protein 7 (GRB-7) 
and src homology 2-containing tyrosine phosphatase 
protein (SHP2), leading to activation of focal adhesion 
kinase (FAK) (71). Association of the docking protein, 
Dok-R, with phosphorylated Tie-2 leads to the 
phosphorylation of Nck/Pak kinases that are involved in 
cell migration (71). Induction of Tie-2 signaling by Ang-1 
binding mainly results in activation of endothelial cells. 
However, in some contexts, angiopoietin-dependent Tie-2 
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Table 3. Clinical significance of angiopoietins in human cancers 
Angiopoietin  
Type 

Tumor Type Comments Reference 

Ang-2 Bladder Positive expression correlated with histological stage (P=0.0.09), histological grade (P=0.0.26) and 
decreased survival (P<0.0.5) (196) 

Ang-2 Breast Immunostaining of 198 human breast cancers showed a significant correlation between Ang-2 and 
increased MVD (P=0.0.006), VEGF-A (P=0.0.04) and a worse DFS (P=0.0.3) (197) 

Ang-2 Breast Ang-2 transcript levels correlated with positive lymph nodes (P=0.0.05) and decreased DFS 
(P<0.0.001) and OS (P<0.0.003) (82) 

Ang-2 Colon Immunostaining showed Ang-2 expressed in both tumor and normal endothelium while Ang-1 was 
primarily expressed in normal vessels (85) 

Ang-2 Colorectal Ang-2 expression significantly correlated with  lymphatic metastasis (P=0.0.42), venous invasion 
(P=0.0.31), high MVD (P<0.0.01) and decreased overall survival (83) 

Ang-2 Gastric Increased Ang-2 mRNA correlated with advanced disease stage and decreased survival (all P<0.0.5) (94) 

Ang-2 Glioma Ang-2 was expressed in tumor and microvascular cells. Its expression correlated with increased 
number of immature vessels (198) 

Ang-2 Glioma Ang-2 had a similar expression pattern as MMP2 and was detected primarily on the borders of the 
invading tumor (95) 

Ang-2 Hepatocellular Ang-2 transcript level correlated with increased MVD (P=0.0.01) and tumor size (P=0.0.3) (199) 
Ang-2 Hepatocellular Ang-2 expression was associated with increased MVD (P=0.0.4) and decreased DFS (P=0.0.3) (200) 
Ang-2 Pancreatic Ang-2 expression was increased in tumor cells (201) 
Ang-2 Colorectal Ang-2 expression correlated with increased MVD (P=0.0.09) (83) 
Ang-1/Ang-2 Esophageal Transcript expression of both Ang-1 and Ang-2 correlated with increased MVD (P<0.0.001) (202) 
Ang-1/Ang-2 Hepatocellular High Ang-2/Ang-1 ratio was positively associated with MVD (P=0.0.1) (201) 
Ang-1/Ang-2 Ovarian High Ang-2/Ang-1 ratio correlated with increased MVD (P=0.0.03) and decreased OS (P=0.0.1) (203) 

Ang-1 Non-small cell lung 
carcinoma High Ang-1 expression was associated with poor prognosis (P=0.0.03) (204) 

Abbreviations: Ang-1 and Ang-2, angiopoietin-1 and -2; MVD, microvascular density; DFS, disease-free survival; OS, overall 
survival. 
 
activation can result in an inhibitory effect through 
activation of A20-binding inhibitor of NF-kappaB 2 
(ABIN2) (72,74).   

 
The destabilizing effect on vasculature is 

mediated by overexpression of Ang-2 in a variety of human 
tumors including liver (75,76), gastric (77), renal cell (78) 
non-small cell lung (79), ovarian (80), prostate (81) and 
breast (82) cancers (Table 3). In several cancers, 
overexpression of Ang-2 is associated with increased 
lymph node metastasis, venous invasion, and high 
microvascular density (MVD) (83,84). In normal tissues, 
expression of Ang-2 is restricted to the endothelium (65). 
In tumors, however, Ang-2 is expressed in both neoplastic 
epithelial (85,83) and endothelial cells (86). Similarly to 
VEGF-A, tumor expression of Ang-2 is regulated by 
hypoxia and inflammatory cytokines (86). 

 
Expression of Ang-2 is regulated by both VEGF-

A (61) and fibroblast growth factor-2 (basic FGF or bFGF) 
(7). Basic FGF has been shown to increase Ang-2 
expression up to 2-fold in bovine microvascular endothelial 
cells (7). The same study reported that hypoxic conditions 
also promoted Ang-2 expression by 3- to 5-fold (61,87). 
Hypoxia has been shown to significantly increase Ang-2 
(88) and Tie-2 (89) expression in bovine microvascular 
(88) and human umbilical cord vein endothelial cells 
(HUVEC) (89). However, it is currently unclear whether 
hypoxia induces Ang-2 directly, through binding of HIF-1 
alpha to the Ang-2 promoter, or indirectly, through 
upregulation of VEGF-A (41) or bFGF (90,91) that 
subsequently increases Ang-2 expression.  

 
Ang-2 competes with Ang-1 for the Tie-2 

receptor, and can prevent Ang-1-mediated stabilizing 
effects (92). The destabilization effect of Ang-2 prevents 
maturation of angiogenic vasculature, which can lead to 

regression of blood vessels.  In a rat glioma model, 
overexpression of Ang-2 in tumor endothelial cells in the 
absence of VEGF-A led to vessel regression (93). 
However, in the presence of both VEGF-A and Ang-2, 
vasculature growth is renewed (93). The results of this 
study suggested that in the absence of VEGF-A, Ang-2 
destabilizes vasculature leading to vessel regression, but in 
the presence of VEGF-A, Ang-2 promotes angiogenesis by 
priming the vessels (93). This showed, for the first time, 
that Ang-2 plays an important role in vessel dismantling 
that is mediated, in part, by increased expression of matrix 
metalloproteinases (MMPs).  Another study demonstrated 
that overexpression of Ang-2 in gastric carcinoma cells up-
regulated MMP-1 and MMP-9 expression (94). In human 
glioma cells, Ang-2 was shown to induce expression of 
another member of this family, MMP-2 (95). The MMPs 
promote angiogenesis by degrading the extracellular matrix 
(ECM) [reviewed in (96)] that allows tumor expansion and 
dissemination of metastatic cells. Thus, Ang-2 can promote 
tumor growth through both endothelial-dependent and -
independent mechanisms. 

 
3.3. Step 3: blood vessel sprouting 
3.3.1. Role of Notch and its ligand Delta-like 4 (Dll4) in 
regulation of tumor vessel sprouting 

The destabilization of the pre-existing capillaries 
by VEGF-A, Ang-2 and MMPs prepares for endothelial 
cell sprouting.  Tip cells, endothelial cells that guide the 
developing vessel, develop filopodia-like extensions and 
sprout from the primary vessel. The quantity and activity of 
tip cells are regulated by two cell surface proteins, Notch 
and its ligand, Delta-like 4 (Dll4) (97). Activation of Notch 
signaling occurs when Notch binds to Dll4 on a 
neighboring cell, leading to proteolytic cleavage of the 
Notch intracellular domain followed by downstream 
signaling (100). An in vitro model of angiogenesis 
demonstrated that suppression of Notch signaling in 
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HUVEC increased sprouting by 2- to 4-fold (101). 
Additionally, inhibition of Notch/Dll4 signaling by the 
inactivation of Dll4 allele, Notch cleavage inhibition, and 
deletion of Notch all enhance the number of tip cells in the 
mouse retina (99). Based on these observations, it is 
hypothesized that Notch signaling induction by Dll4 
regulates tip cell numbers and plays a major role in 
vascular sprouting (99).  
 

Dll4/Notch signaling between tip cells and 
supporting stalk cells acts as a negative feedback loop 
limiting endothelial response to VEGF-A. VEGF-A 
stimulates the activation of tip cells (97) that includes an 
increase in Dll4 expression (98). Overexpression of Dll4 in 
HUVEC was shown to increase expression of the 
angiogenic factors VEGF-A, basic FGF, hepatocyte growth 
factor (HGF) and VEGFR-1 (102).  At the same time, 
VEGFR-2 and NRP-1 expression decreased and soluble 
VEGFR-1 increased concomitant with a reduction of 
proliferation and migratory response to VEGF-A, which 
was reversed by inhibition of the Notch pathway (98,103).  

 
Tumor angiogenesis is modulated by both 

increased expression of Dll4 and Notch proteins, and 
activation of Notch signaling. Upregulation of Dll4 
expression has been reported in human bladder and renal 
cell cancers (98,104). Forced overexpression of Dll4 in 
murine tumor lines decreased blood vessel density, 
accompanied by a decrease in tumor size and an increase in 
hypoxia (105). The blockade of Dll4 in murine lung 
carcinoma and glioma models initially promoted vascular 
sprouting and branching, thus increasing vessel density.  
However, the blockade ultimately increased hypoxia due to 
incomplete vascular remodeling and poor perfusion, which 
led to inhibition of tumor growth (106). These studies 
suggest that the Dll4/Notch signaling pathway is a finely 
balanced regulatory system designed to control vessel 
sprouting and maturation.  As such, it is a potential target 
for inhibition of new tumor vasculature.  
 
3.4. Step 4: induction of endothelial cell migration, 
proliferation and survival 
 Tip cells lead the migration of endothelial cells, 
following signals from malignant and other cells within the 
tumor microenvironment. The main chemotactic signal 
inducing this step is VEGF-A, which stimulates migration 
of endothelial cells through binding to VEGFR-1 and 
activation of PLC gamma and MAPK pathways (55,56). 
VEGFR-2 can also mediate migration of microvascular 
endothelial cells via activation of Src homology 2 domain 
containing adaptor protein B (Shb) and the subsequent 
activation of the PI3K pathway (107). In addition to 
recruiting endothelial cells, VEGF-A also attracts 
hematopoietic stem cells and endothelial progenitor cells 
(EPC) (108).  An increase in endothelial cells at angiogenic 
regions has two causes: VEGF-A-dependent recruitment of 
EPC from the blood circulation and emergence of 
differentiated endothelial cells from pre-existing vessels.  
 
 Both Ang-1 and Ang-2 are also implicated in 
induction of migratory responses in blood vascular 
endothelial cells. Ang-1 has been shown to induce HUVEC 

migration, whereas Ang-2 was reported to block this 
response (109).  However, another study showed that Ang-
2 stimulates migration of a murine brain capillary 
endothelial cell line via activation of Tie-2 signaling (110). 
The question of whether Ang-2 causes phosphorylation of 
Tie-2 and downstream signaling is still debatable. It 
appears that a low concentration of Ang-2 does not induce 
Tie-2 signaling; however, a high dose of Ang-2 (more than 
800 ng/ml) was shown to cause Tie-2 phosphorylation in 
HUVEC (111). A significantly lower concentration of Ang-
2 (200 ng/ml) was sufficient for activation of Tie-2 
signaling in human cord blood-derived EPCs. This suggests 
that Ang-2 might contribute to tumor angiogenesis by 
promoting EPC recruitment (112), in addition to its known 
role in pre-sensitizing tumor vasculature to VEGF-A’s 
effect.  
 
 Migration of endothelial cells can also be induced 
by HGF and bFGF, both of which are up-regulated in a 
variety of solid tumors.  HGF induces endothelial cell 
migration through binding and activation of its tyrosine 
kinase receptor, C-mesenchymal-epithelial transition factor 
(c-Met), which leads to activation of several pathways 
(113). c-Met signaling increases cell motility by either 
direct activation of PI3K or through the indirect mechanism 
of phosphorylating the effector Gab1 (114). The PI3K 
pathway is also implicated in chemotaxis of endothelial 
cells induced by bFGF through activation of fibroblast 
growth factor receptor 1 (FGFR1) signaling (115). Other 
prominent stimulators of tumor endothelial cell migration 
are inflammatory cytokines such as IL-8 and IL-6, which 
play a role in tumor progression and angiogenesis 
(116,117).  
 
 Some of the factors involved in endothelial cell 
migration can also signal for proliferation and survival. 
Preventing apoptosis of migrating endothelial cells is 
extremely important because, after vessel destabilization, 
endothelial cells no longer receive pro-survival signals 
from interactions with the ECM or cell-to-cell contacts with 
peri-endothelial or adjacent stromal cells (118). Therefore, 
the survival of migrating endothelial cells intimately 
depends on the intracellular activation of pro-survival 
pathways by the tumor’s environmental cues. Numerous 
studies have shown that VEGF-A is one of the most potent 
pro-survival factors for endothelial cells under adverse 
conditions (58,119,120). For instance, the survival of 
serum-starved HUVEC is significantly increased when 
exogenous VEGF-A activates the pro-survival PI3K/AKT 
pathway (58). VEGF-A binding to VEGFR-2 also induces 
proliferation of endothelial cells via activation of PLC 
gamma pathway (121).  Both proliferation and survival 
traits promoted by VEGF-A signaling are essential for 
endothelial cells to complete the angiogenic cascade, 
culminating in creation of new vessels.  
 

Other factors that contribute to endothelial cell 
survival and proliferation are Ang-1 and bFGF. Ang-1 
increases endothelial cell survival by stimulating the AKT 
pathway and by up-regulating the expression of an 
apoptotic inhibitor, survivin (71). Blocking or neutralizing 
Ang-1 diminishes the ability of endothelial cells to survive 
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under stressful conditions (122,123). For instance, Ang-1 
has been shown to suppress endothelial cell death induced 
by the anticancer drug doxorubicin, demonstrating the 
potential chemoprotective ability of Ang-1 in the tumor 
microenvironment (124). Basic FGF also protects HUVEC 
from cell death, as demonstrated by the reduction of 
apoptosis induced by the cytotoxic HIV protein, gp120 
(125). All known endothelial pro-survival factors activate 
similar intracellular pathways involving ERK1/2, PI3K, 
and AKT signaling (125).  
 
3.5. Step 5: vessel stabilization 

Stabilization of the new vessels is essential for 
proper vessel function and is promoted by endothelial cell-
to-cell contact or by interactions between endothelial cells 
and pericytes. Two main factors that promote these 
interactions are platelet-derived growth factor (PDGF) and 
Ang-1.  
 
3.5.1. Role of PDGF factors in maturation and 
stabilization of new vessels 

The PDGF family consists of four factors: 
PDGF-A, -B, -C, and -D. These proteins form either 
homodimers or a heterodimer PDGF-AB factor (126).  
PDGF receptors (PDGFR) are dimers consisting of either 
PDGFR-alpha or -beta chains. PDGF ligands have different 
affinities to the receptor dimers. PDGF-AA binds only 
PDGFR-alpha homodimers, PDGF-AB can bind PDGFR-
alpha/alpha and PDGFR-alpha/beta, whereas PDGF-BB 
binds all three receptor dimers (i.e. PDGFR-alpha/alpha, -
alpha/beta, and -beta/beta). Differential expression of 
PDGF ligands and receptors creates a complex interplay. 
For example, PDGF-BB ligand and PDGFR-beta/beta 
receptor are expressed on endothelial cells and pericytes, 
respectively (127). PDGF-BB expressed by endothelial 
cells stabilizes newly-formed blood vessels by recruiting 
pericytes. This role of PDGF-B has been shown in retention 
motif-deficient (pdgf-betaret/ret) mice that had significantly 
fewer pericytes overall with remaining pericytes detached 
from the endothelium (128). Exogenous PDGF-B improved 
recruitment of pericytes but not the abnormal attachment of 
the pericytes to the endothelium. The role of PDGFR-beta 
in pericyte recruitment was also shown in a mouse wound-
healing model, where inhibition of this receptor correlated 
with a reduction in pericytes (127). In an in vivo angiogenic 
model, PDGF-AB co-expression with bFGF promoted 
stabilization of newly-formed blood vessels by pericyte 
recruitment (129). This effect was significantly blocked by 
inhibition of PDGFR-beta (129).  

 
Several studies showed that expression of PDGF 

ligands and receptors is regulated by VEGF-A, FGF-2 and 
other angiogenic factors commonly found in the tumor 
environment. For instance, VEGF-A was shown to enhance 
endothelial PDGF-B expression, whereas FGF-2 enhanced 
expression of PDGF receptor beta (PDGFR beta) on peri-
endothelial mural cells (130). FGF-2 increased expression 
of PDGF receptors on blood vascular endothelial cells 
(129). Both VEGF-A and bFGF induced migration of 
mural cells in vitro (130). PDGF expression is up-regulated 
by hypoxia in a HIF-1 alpha-dependent manner, as 
demonstrated in studies of glioblastoma cells (131) and 

human breast cancer (132). The induction of PDGF ligands 
and receptor expression by mediators of angiogenesis 
suggests that PDGF plays an important role during 
formation of new vessels, mainly through recruitment of 
pericytes and stabilization of the endothelial monolayer. 

 
3.5.2. Role of Ang-1 in regulation of vessel integrity 

Ang-1 is another regulator of vessel integrity and 
a potent inhibitor of vascular permeability (133). Both of 
these functions stem from the ability of Ang-1 to promote 
pericyte migration and survival (133,134). This is 
exemplified by the in vitro wound-healing study in which 
Ang-1 promoted migration and survival of pericytes 
stressed by TNF alpha or high glucose concentration (134). 
Antagonistic roles of Ang-1 and Ang-2 in regulation of 
blood vasculature were also shown in another study, 
demonstrating that Ang-1 increases expression of 
endothelial cell-activating HGF, whereas Ang-2 inhibits 
this effect (135). Neutralization of HGF blocked Ang-1-
induced migration of smooth muscle cells, suggesting that 
the effects of Ang-1 on perivascular cell recruitment might 
be mediated, in part, by HGF (135). Based on this study, it 
has been proposed that Ang-1 can stabilize blood vessels 
directly, on the endothelium via binding to the Tie-2 
receptor, and through indirect mechanisms such as 
upregulation of HGF.  

 
In the tumor microenvironment, Ang-1 and 

PDGF are expressed by endothelial, stromal, and tumor-
infiltrating immune cells.  Overexpression of Ang-1 was 
detected in brain, breast, and lung tumors (64), whereas 
high expression of PDGF was found in colorectal (136), 
pancreatic (137) and small cell lung cancers (138). 
Although both proteins are thought to stabilize vasculature, 
tumor vessels are notoriously leaky and characterized by 
abnormal pericyte coverage. This suggests that, in the 
tumor microenvironment, destabilizing vascular factors are 
more prevalent or more potent than Ang-1 and PDGF. 
Overexpression of Ang-1 and PDGF in tumors not only 
fails to promote maturation of blood vessels but also 
contributes to resistance to anti-angiogenic therapy and 
chemotherapy (139). Nevertheless, the presence of these 
factors ensures survival and functionality of a sufficient 
number of vessels to sustain the needs of a continuously 
expanding tumor mass.  
 
4. ABNORMALITIES OF TUMOR VESSELS AND 
CONSEQUENCES OF THEIR MALFUNCTION FOR 
TUMOR GROWTH AND ANTI-CANCER THERAPY 
 

Although tumors typically contain increased 
blood vessel density compared with normal tissues (140), 
tumor vessels are characterized by diverse abnormalities 
induced by the aberrant microenvironment. Tumor blood 
vasculature is chaotically arranged, disorganized, and has 
atypical branching patterns that lack a normal distinct 
vessel hierarchy (141,142). The morphological features of 
tumor vessels are blurred, which prevents their 
categorization to a specific vascular type. The following 
structural abnormalities of tumor vessels cause leakiness 
and dilation, resulting in irregular blood flow (143). First, a 
defective monolayer of disorganized, overlapping, and 
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loosely connected endothelial cells contributes to leaking 
(144). Second, the basement membrane includes redundant 
layers and extensions that project away from the vessel (2). 
Third, the plasma membrane of perivascular cells displays 
cytoplasmic processes extending away from endothelial 
cells rather than toward blood vessels (5). Collectively, 
these morphologic abnormalities prevent tight association 
of endothelial cells with the basement membrane and 
pericytes, which significantly contributes to 
hyperpermeability of the tumor vessels (2,5). 
 

Structural abnormalities associated with tumor 
vessels are attributed, in part, to an imbalance of pro- and 
anti-angiogenic factors found in the tumor 
microenvironment. In general, production of pro-
angiogenic factors vastly exceeds expression of negative 
vascular regulators (145). The most prominent angiogenic 
factors in all solid tumors include VEGF-A (146), Ang-2 
(82), basic FGF (136), and TGF beta (147). Notch/Dll4 
feedback that controls branching and endothelial tip cell 
number is also drastically increased in tumors (141). Other 
angiogenic factors produced in tumors include 
inflammatory mediators and chemokines that contribute to 
the lack of directional migration of the growing vessels, 
leading to heterogeneous and disorganized arrangement of 
the tumor vasculature.  

 
The prevalence of pro-angiogenic VEGF-A and 

Ang-2 over anti-angiogenic factors leads to overactive 
angiogenesis and a reduced number of stabilized and 
mature blood vessels. The abnormalities in the perivascular 
cells (5) and basement membrane (2) suggest that the local 
concentrations of pro-angiogenic factors are 
overwhelmingly higher than the stabilizing signals. As a 
result, the newly-formed vessels are unable to mature due 
to continuous stimulation by promoters of angiogenesis. 
One example of how pro-angiogenic stimuli may 
overpower stabilizing factors is in the fine balance between 
Ang-1 and Ang-2 proteins. Ang-2 is stored in Weibel-
Palade bodies within the endothelial cells and, when 
angiogenic signals are received, it is quickly released in the 
interstitial space between the endothelial and perivascular 
cells (66). Ang-2 concentration quickly exceeds Ang-1 
levels secreted by the endothelial and perivascular cells. 
Ang-2 then transiently replaces Ang-1 in the Tie-2 binding 
site, leading to destabilization of the vasculature. However, 
unlike Ang-1, Ang-2 does not bind to the extracellular 
matrix (148) and quickly dissipates, causing Ang-1 local 
concentration to increase. Once the balance is tilted toward 
the Ang-1 factor, interactions within the endothelial 
monolayer are tightened and the vessel becomes less 
permeable and more stable. This normal interplay 
maintained by a proper ratio between Ang-1 and Ang-2 is 
severely skewed in the tumor environment, where both 
factors are overexpressed (Table 3), thus off-setting the 
natural balance. Continuous destabilization of the new 
tumor blood vessels plays a major role in critical events 
underlying tumor pathology, including vascular 
hyperpermeability, chronic inflammation and poor tissue 
perfusion. Additionally, Ang-2 overexpression is likely to 
promote both hematogenous and lymphatic metastasis 

because of its potent ability to dismantle vessels, making 
them accessible to tumor cell penetration. 

 
Structural abnormalities of the tumor vessels 

result in malfunction of tumor blood vasculature. 
Insufficient blood perfusion prevents attainment of the 
necessary amount of oxygen and nutrients to match the 
continuous expansion of the tumor mass. This leads to 
perpetual hypoxia and nutrient deprivation within the tumor 
microenvironment that, in turn, increases the expression of 
angiogenic factors. Consequently, tumor angiogenesis: a) 
promotes growth of the primary tumor by increasing the 
vessel density and blood supply; b) promotes metastasis by 
increasing the number of easy-to-penetrate vascular 
channels; and c) generates a chronically inflamed site by 
creating dilated and leaky vessels that expose numerous 
adhesion sites for circulating immune cells.  Additionally, 
poor perfusion of the tumor tissue creates a major problem 
for delivery of anti-cancer drugs to avascular tumor 
regions.  Shielding these regions from cytotoxic drug 
activity creates reservoirs of tumor cells ready to repopulate 
necrotic areas accessible to chemotherapy. Thus, the 
pathology of tumor angiogenesis contributes to tumor 
progression by two independent mechanisms: functional 
blood vessels promote tumor expansion, while 
malfunctioning vessels protect tumor cells from cytotoxic 
drugs.  
 
5. ANTI-ANGIOGENIC THERAPIES FOR THE 
TREATMENT OF SOLID TUMORS 
 

Angiogenesis became a major target in cancer 
treatment because of its important role in tumor growth and 
metastasis. It was initially hypothesized that preventing or 
reducing tumor angiogenesis would inhibit tumor growth by 
decreasing delivery of nutrients and oxygen, which would 
ultimately lead to tumor death. VEGF-A has become the 
primary target for such a strategy, as a key mediator of tumor 
angiogenesis that is almost ubiquitously up-regulated in solid 
tumors (149). In the past decade, many drugs have been 
developed that target VEGF-A, including antibodies that 
neutralize this factor or block its receptors, and small organic 
compounds that inhibit VEGF-A receptor tyrosine kinase 
activity. In experimental human cancer xenograft models, the 
anti-VEGF-A strategy demonstrated a remarkable potency to 
suppress tumor growth, resulting in as much as a 90% tumor 
inhibition compared with untreated or saline-treated tumors 
(150,151). However, this success did not translate in human 
clinical trials. For instance, in a phase I/II trial of 75 metastatic 
breast cancer patients, only 17% of patients responded to a 
humanized anti-VEGF-A monoclonal antibody, bevacizumab, 
and only four patients remained progression-free for more than 
one year (152). Many other trials showed no objective 
responses in the majority of patients and no sustainable 
benefits for patients with partial response. One of the main 
differences between experimental tumor models and human 
patients is the status of angiogenic growth: in animal models, 
treatment typically begins when the tumors are barely 
established and angiogenesis is at  a vigorous stage, while 
human patients often have tumors with well-established 
vasculature that is no longer sensitive to VEGF-A. The 
attempt to translate anti-VEGF-A therapy as a single treatment 
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into clinics has proven to be largely ineffective, underscoring 
the extreme complexity of human cancers as compared to 
animal models. Recently, however, studies that combine anti-
VEGF-A therapy and chemotherapy show more promising 
results. For instance, in a phase III trial with 462 metastatic 
breast cancer patients, use of bevacizumab in combination with 
the chemotherapeutic drug capecitabine had a 19.8%  
response, compared to 9.1% for capecitabine alone (153).  
 

The relative success of combination therapy may 
lend support to the theory of vessel normalization (154). The 
inability to form properly functioning vessels within the tumor 
and the low perfusion of abnormal tumor blood vessels is 
believed to decrease the delivery of chemotherapeutic drugs 
and, therefore, decrease the effectiveness of cancer treatment 
(154). It has been hypothesized that stabilizing tumor vessels 
by balancing angiogenic factors might improve cancer 
treatment by normalizing the vessels and increasing perfusion, 
thus increasing drug delivery (155). Anti-VEGF-A therapy has 
shown a vessel-normalization effect, both in experimental 
models (156) and in human clinical trials (157). 

 
Several other angiogenic factors have been proposed 

as targets for anti-angiogenic therapy, including the Notch/Dll4 
pathway, PDGF receptors, and a combination of either target 
with anti-VEGF-A drugs. In rodent tumor models, blocking 
Dll4 increased hypoxia and retarded tumor growth (106,158). 
In mouse tumor models, combination therapy against VEGF-A 
and PDGFR reduced tumor vessel density, the number of 
perivascular cells, and tumor growth (159). In clinical trials for 
renal cell carcinoma, the addition of anti-PDGFR to anti-
VEGF-A increased the response from less than 10% to greater 
than 40% (160). Undoubtedly, insights gained in the rapidly 
developing angiogenesis field will continue to uncover new 
targets for attacking tumor vasculature. Additionally, the recent 
success of combinations of VEGF-A targeting reagents and 
chemotherapeutic drugs calls for inclusion of anti-angiogenic 
drugs as a standard modality for anti-cancer treatment.  
 
6. CONCLUDING REMARKS 

 
Tumor angiogenesis is a multi-step process 

involving interactions among epithelial, stromal, tumor-
infiltrating, endothelial, and endothelium-supporting cells. 
All components of the tumor microenvironment secrete 
factors that influence vascular formation. Tumors contain 
excessive amounts of angiogenic factors unbalanced by 
negative regulators, which disrupts the regulatory 
mechanisms of physiological angiogenesis. Consequently, 
tumor vessels develop abnormally, leading to increased 
tumor growth and metastasis, and resistance to therapy. 
Studying the similarities and differences of physiological 
and tumor angiogenesis will aid in a better understanding 
of tumor biology, and give rise to potential new anti-cancer 
targets.  
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