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1.  ABSTRACT 
 

Current immune therapies for cancer have been 
disappointing.  The various approaches to immunotherapy 
for cancer so far tried clinically include adoptive 
immunotherapy, vaccination strategies, and administration 
of anti-tolerogenic antibodies.  Each of these approaches 
basically involves the inhibition or circumvention of 
immune tolerance, activating immune effectors that have 
the capability to recognize and lyse tumor.  Unfortunately, 
only a relatively small population of patients respond to 
these therapies, and most of the responses are not durable.  
There is mounting evidence that immune interventions 
employing anti-tolerogenic strategies are insufficient to 
control tumor, as the tumor microenvironment is generally 
immunosuppressive.  The present review summarizes the 
current knowledge on the cellular constituents of tumor 
(excluding tumor cells themselves) that contribute to this 
immunosuppressive microenvironment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.  INTRODUCTION 
 

Tumor represents an abnormal growth directly 
derived from normal host tissues.  Therefore, the majority 
of antigens expressed by tumor are immunologically 
indistinct from normal tissues, hidden from the immune 
system by the same tolerogenic mechanisms that protect 
against autoimmunity.  It therefore seems intuitive that 
inhibition of tolerance would successfully control the 
growth of a malignancy. 

 
As a result of that teleologic reasoning, past 

attempts at harnessing the immune response for the purpose 
of controlling cancer have involved inhibition or avoidance 
of immune tolerance, activating immune effectors that have 
the capability to recognize and lyse tumor.  Such strategies 
include adoptive immunotherapy and vaccination strategies 
(1,2), as well as administration of antibodies that induce 
cell-mediated immunity (3-6).  Unfortunately, only a 
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Figure 1. Immune interactions between non-tumor stromal cells within the tumor microenvironment. Many immunoregulatory 
cells challenge CD8+ and CD4+ T cell effector function within tumor. Immature DC (iDC) may recognize T cell receptors, but 
do not provide proper co-stimulation, resulting in CD4+ and CD8+ T cell inactivation.  IDO secreting DC metabolize tryptophan 
required for CD4+ and CD8+ T cell proliferation. iDC and IDO-DC can induce Treg formation. Mature myeloid DC expand the 
peripheral Treg population through CD80/CD86-CD28 interactions and IL-2. Treg mediate direct suppression of CD4+ and 
CD8+ effector cells. Fibroblasts induce anergy and apoptosis in T cells.  MDSC inhibit T cell function by depleting L-arginine 
and by producing peroxynitrites, resulting in the downregulation of the CD3ζ chain.  Type 2 NKT cells secrete IL-13, which 
activates immunosuppressive activity in MDSC and promote conversion of M1 macrophages to the M2 phenotype. 

 
relatively small proportion of patients respond to these 
therapies, and most of the responses are not sustained. 

 
There are numerous reasons for the lack of 

success in inducing a reliable and durable response with 
immunotherapy.  Tumor may escape recognition by 
downregulation of MHC class I molecules or by loss of 
expression of the targeted antigen (7-9).  There may be 
insufficient co-stimulation, inducing T cell anergy (10).  
The active destruction of T cells or inhibition of T cell 
function has also been reported, as tumor elaborates a wide 
range of immunosuppressive factors (11).  Finally, tumor 
may contain various populations of immunoregulatory cells 
which further contribute to the immunosuppressive 
microenvironment (Figure 1). 

Our own fundamental studies have demonstrated 
that, even if a large number of tolerogenic mechanisms have 
been inhibited and despite priming of large numbers of T cells 
which recognize endogenous antigens on tumor, tumor 
emerges despite an immune response that is sufficiently strong 
to induce autoimmunity (12).  We believe that this 
experimental situation simulates an optimal multimechanistic 
vaccination strategy and that this demonstrates the limitations 
of the current immunotherapeutic strategies utilized clinically.  
Evidence so far obtained through this model suggests that the 
immunosuppressive tumor microenvironment is responsible 
for failure of protection against the tumor. 

 
Tumor is more than just a collection of 

transformed host cells.  Tumor is also comprised of a 
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melange of stromal cells, including endothelial cells, 
various inflammatory cells, and fibroblasts.  Some of these 
stromal cells contribute to the immunosuppressive 
microenvironment.  The roles of these immunomodulatory 
inflammatory cells on tumor biology and immune escape 
comprise the focus of this review. 
 
3.  REGULATORY T CELLS 

 
A number of regulatory T cell subtypes have 

been described in the literature.  In general, they can be 
classified as natural regulatory T cells (nTreg) or inducible 
(adaptive) regulatory T cells (iTreg).  Inducible Treg 
develop from conventional T cells, arising from repetitive 
antigen stimulation, under the influence of functionally 
polarizing cytokines or due to interference with 
costimulatory signals.  These include CD4+Foxp3- 
regulatory cells (Tr1), which mediate suppression via IL-10 
(13,14); CD4+CD25- (Th3) cells, which immunosuppress 
through a transforming growth factor (TGF)-beta 
dependent mechanism and which also secrete IL-4 and IL-
10 (15); as well as CD8+ regulatory cells that can be 
Foxp3+ or Foxp3- (16-18).  Each of these regulatory T cell 
subtypes inhibit the antigen specific immune response in a 
cytokine or cell contact-dependent manner, preventing 
autoimmunity. CD4+CD25+Foxp3+ suppressor cells have 
perhaps been best described in the literature.  These occur 
naturally, generated in the thymus, although they may also 
be inducible in the periphery (19-21). 

 
CD4+CD25+Foxp3+ T cells represent the 

population that is best known to infiltrate tumor.  Other 
regulatory T cell populations have not been well studied in 
the context of tumor.  Therefore, CD4+CD25+Foxp3+ T 
cells will represent the primary focus of this section. 

 
The most specific marker for this population is 

the nuclear transcription factor Foxp3.  Foxp3 is a critical 
regulator of CD4+CD25+ regulatory T cell development 
and function;  its expression correlates with the capability 
to immunosuppress (19).  The IL-2R-alpha chain (CD25) is 
highly expressed in Tregs, which increases the affinity of 
IL-2 to its receptor complex (22).  CD127 (IL-7 receptor) is 
expressed at low levels (23,24).  Glucocorticoid-induced 
TNF receptor (GITR), a member of the TNF receptor 
family, is present on CD4+CD25+Foxp3+ T cells (25,26), 
although it is also present in a small proportion of 
CD4+CD25- T cells capable of immunosuppression (27).  
Cytotoxic T lymphocyte associated antigen (CTLA)-4 
appears at the cell surface when these cells are activated 
(28,29).  Neither GITR nor CTLA-4 are considered specific 
markers for regulatory T cells. 

 
Antigen stimulation results in suppressive 

function, but the proliferative response of 
CD4+CD25+Foxp3+ cells to antigen stimulation depends 
on the experimental conditions. In vitro studies have found 
CD4+CD25+Foxp3+ T cells do not proliferate following 
agonistic T cell receptor (TCR) ligation (30,31). In vivo, 
these regulatory cells behave differently. They are seen to 
proliferate at a high rate, possibly in response to self 
antigen recognition or commensal bacteria (32,33).  

Suppressive activity of CD4+CD25+Foxp3+ cells is 
enhanced with repeated stimulation by antigens displayed 
by antigen presenting cells (APCs), including dendritic 
cells and B cells (34,35,35).  Despite some evidence 
indicating that CD4+CD25+Foxp3+ cells are naturally 
anergic to activation via the TCR (31), they do require 
TCR-mediated stimulation to exert their suppressive 
function and to inhibit the expansion of conventionally 
responsive CD4+ and CD8+ T cells (36,37). 

 
Activated CD4+CD25+Foxp3+ cells suppress T 

cell function (inhibiting responder IL-2 production) in an 
antigen non-specific fashion, and this requires cell-to-cell 
contact (38,39).  High levels of CTLA-4 on regulatory T 
cells appear to be important in conferring the suppressive 
phenotype (29).  Stimulated regulatory cells also produce 
IL-10 and/or TGF-beta, depending on experimental 
conditions (34,40), although neither of these cytokines 
appear to be essential for their suppressive function 
(29,34,40).  Thus, regulatory cells are capable of inducing 
their suppressive effects through direct cell-to-cell contact, 
as well as through soluble mediators. 

 
There is much evidence to support an important 

role of CD4+CD25+ cells in suppressing tumor immunity. 
In animal models, CD4+CD25+ regulatory T cells have 
been observed to be present in tumor. Their depletion 
enhances tumor immunogenicity (41,42).  There is also 
mounting clinical evidence of the impact of Treg. 
CD4+CD25+ T cells with immunosuppressive 
characteristics comprise a significant proportion of tumor 
infiltrating lymphocytes in breast and gastrointestinal 
adenocarcinomas (43-45), head and neck cancers (46), lung 
cancer (47,48), and ovarian cancer (49).  Treg exist in 
markedly high proportions in the peripheral blood of 
patients with cancers as compared to controls, reportedly 
increasing with tumor progression (43,50,51).  The 
presence of higher numbers of CD4+CD25+ T cells is 
associated with a worse prognosis (49,51). Experimental 
and clinical evidence therefore strongly suggest that 
CD4+CD25+ Treg alter tumor biology, which has a direct 
impact on patient outcomes. 
 
4.  DENDRITIC CELLS 

 
Dendritic cells (DC) represent a central point of 

intersection between the innate and adaptive elements of 
the immune system.  They have long been recognized as 
the most potent and efficient professional APC, capable of 
stimulating naïve T cells to become fully competent.  They 
have also been found in some circumstances to have 
immunoregulatory, or tolerogenic, properties. 

 
Different DC subsets vary in their functional 

properties.  Immature DC function mainly to capture 
antigen, then gain the capability to stimulate T cells as they 
mature in the presence of appropriate “danger” signals.  
Immature DC express low levels of co-stimulatory 
molecules (CD80, CD86, ICOS ligand), and are unable to 
form a stable immunological synapse with T cells.  Rather 
than stimulating conventional effector T cells, they induce 
effector T cell anergy and they activate regulatory T cells 
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(34,52,53).  Recently, semi-mature DC were described, 
which originated from exposure of immature DC to 
TNF-alpha (54).  These cells have upregulated co-
stimulatory molecules (like mature DC), but they 
produce only low levels of the pro-inflammatory 
cytokines IL1-beta, IL-6, TNF-alpha, and IL-12p70.  
Semi-mature DC predominately encourage the 
development of inducible regulatory T cells.  Finally, in 
addition to the myeloid DC subsets described above, 
plasmacytoid DC have been described, which express 
lymphoid markers and are thought to be lymphoid in 
origin (55,56).  Plasmacytoid DC freshly isolated from 
blood can induce CD4+ T cell anergy (57,58).  Thus, 
while DC are widely considered to be potent activators 
of T cell mediated immunity, there is a variety of DC 
subsets which have the capability to tolerize. 

 
The effects of tolerizing DC on regulatory T cells 

is not unilateral, however.  In addition to DC being capable 
of activating regulatory T cells, there is growing evidence 
that regulatory T cells are reciprocally capable of 
modifying the maturation status of DC and other APC 
(18,59-61).  In general, CD4+CD25+ T regulatory cells 
induce a tolerogenic DC phenotype:  maturation is 
inhibited, they are less capable of presenting antigens, and 
there is a diminished production of proinflammatory 
cytokines (62,63).  The mechanism for tolerizing DC is 
unclear, but cell-to-cell contact appears to be required (62).  
Another population of regulatory T cells present in humans, 
characterized by their CD8+CD28- phenotype, have also 
been found to render APC tolerogenic (18).  This effect is 
accompanied by upregulation of immunoglobulin-like 
transcript 3 and immunoglobulin-like transcript 4, 
inhibitory receptors essential to their tolerogenic 
phenotype.  It is not clear why this reciprocal tolerization 
occurs between Treg and DC except that this may serve as 
a mechanism for accelerating immunoregulatory effects in 
the event of an exuberant inflammatory response. 

 
Normally, immature DC reside in the periphery 

as well as in lymphoid organs, where they encounter 
antigens.  Upon activation and maturation, they migrate via 
the lymphatic vessels into draining lymph nodes, where 
they present processed antigen to naïve T cells.  Tumors are 
also known to contain significant numbers of DC (64,65).  
Tumor infiltrating DC have been reported in breast cancer 
(65), ovarian cancer (66), renal cell carcinoma (67), lung 
cancer (68,69), and melanoma (70).  Several investigators 
have demonstrated that they are mainly comprised of the 
immature phenotype, expressing relatively low levels of 
costimulatory molecules (64,65,71).  Plasmacytoid DC 
have been described as the prevailing population in ovarian 
cancer, head and neck squamous cell cancer (HNSCC) and 
melanoma lesions (72-75).  Tumor infiltrating DC have 
also been reported to have a reduced capacity to take up 
antigen (64) as well as a reduced ability to stimulate T cells 
(76).  DC isolated from ovarian carcinoma constitutively 
express B7-H1 (PD-L1), which is known to inhibit T cell 
function (66).  Moreover, DC in tumor-draining lymph 
nodes overexpress indoleamine 2,3-dioxygenase (IDO). 
IDO-expressing DC induce Treg and have a number of 
other immunomodulatory activities (77). 

Clinically, the effect of these tumor-infiltrating 
DC on tumor biology is less clear, as several studies have 
reported the presence of tumor-infiltrating DC to be 
associated with a relatively good prognosis (69,78,79).  
Thus, while tumor-infiltrating dendritic cells appear to be 
functionally immunosuppressive, their actual influence on 
tumor biology and the tumor-bearing host is unclear. 
 
5.  TUMOR ASSOCIATED MACROPHAGES (TAMs) 

 
Macrophages have numerous functions and 

considerable phenotypical heterogeneity, depending on the 
tissue in which they reside and also on the local 
microenvironment.  Prototypical tissue-specific functions 
include bone resorption (osteoclasts), phagocytosis of 
inhaled particulate matter (alveolar macrophages) and 
hepatic clearance of bacteria, toxins and debris (Kupffer 
cells).  Non-residential macrophage phenotype and function 
appears to be more plastic, shaped by the 
microenvironment.  This differentiation is reflected by their 
general classification into classically activated (M1) or 
alternatively activated (M2) macrophages. 

 
M1 macrophage activation occurs in response to 

microbial products (eg: LPS) or proinflammatory cytokines 
such as IFN-gamma or TNF-alpha (80,81).  M1 
macrophages express opsonic receptors such as Fc-gamma-
RIII (CD16) (82).  They typically express high amounts of 
IL-12 and low levels of IL-10, and they elicit 
proinflammatory cytokines such as IL-1, IL-6 and TNF-
alpha (80,83).  M1 macrophages express high levels of 
inducible nitric oxide synthase (iNOS/NOS2), and produce 
reactive oxygen species (ROS) and reactive nitrogen 
species (RNS) (80,81,84).  M1 macrophages are considered 
to be potent effector cells that kill microorganisms and 
tumor cells. 

 
M2 macrophages are derived from the presence 

of anti-inflammatory molecules such as glucocorticoid, 
hormones, IL-4, IL-12, IL-13 and IL-10 (80,81,85-87).  In 
contrast to M1 macrophages, they typically produce high 
amounts of IL-10 and very little IL-12 (80,88).  M2 
macrophages function poorly as APC; curtail Th1 adaptive 
immunity by producing IL-10, TGF-beta and prostaglandin 
E2 (89); scavenge debris; promote tissue remodelling and 
repair; and encourage angiogenesis.  M2 macrophages 
preferentially express non-opsonic receptors such as 
mannose receptor and scavenger receptors (80).  Thus, M2 
macrophages could be considered immunoregulatory and 
proneoplastic. 

 
Sica and co-workers (80) recently suggested that 

M2 macrophages can be classified to subtypes which are 
derived from different stimulatory milieus. M2a 
macrophages are generated as a result of exposure to IL-4 
and IL-13.  They promote a Th2-biased adaptive immune 
response and also support the killing of encapsulated 
parasites.  M2b macrophages appear following stimulation 
with immune complexes and toll-like receptor agonists or 
IL-1R ligands.  This subpopulation activates the Th2 
response and also appears to regulate inflammation and 
immunity.  M2c macrophages emerge from stimulation 
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with IL-10, TGF-beta or glucocorticoids and these 
macrophages have the capability to regulate the immune 
response as well as to promote matrix deposition and tissue 
remodelling (90). 

 
One particularly important feature of M2 

macrophages is that they elaborate arginase 1 (ARG1). 
ARG1 expression is stimulated in mouse macrophages by 
Th2 cytokines (91); TGF-beta (92); macrophage 
stimulating protein (93); and GM-CSF (94).  Increased 
uptake of the amino acid L-arginine results in reduced 
extracellular levels of L-arginine, which culminates in the 
impairment of the ability of activated T cells to proliferate.  
Macrophages that produce ARG1 (but not macrophages 
that produce NOS2) cause loss of the CD3-zeta chain and 
inhibit T cell proliferation (95).  L-arginine depletion 
similarly impairs the expression of the CD3-zeta chain of 
the T cell receptor (96).  Expression of ARG1 by M2 
macrophages is therefore an important mechanism for their 
immunosuppressive effects. 

 
Tumors have frequently been reported to contain 

large numbers of tumor infiltrating macrophages (TAM).  
The phenotype of TAM may change as tumor progresses, 
depending on the type of tumor.  In lungs containing pre-
malignant lesions, macrophages express ARG1 but not 
NOS2.  As invasive carcinoma develops, the pulmonary 
macrophages express NOS2 but not ARG1 (97).  On the 
other hand, in early melanoma lesions, TAM expressing 
NOS2 prevail over ARG1 (98).  These data demonstrate a 
degree of plasticity of TAM which may be due to a 
changing tumor microenvironment or to differential 
recruitment of various macrophage subsets as tumor 
progresses. 

 
In the majority of reports on established tumors, 

TAM have the phenotype and function attributed to M2 
macrophages.  TAM express high levels of macrophage 
scavenger receptor 1 and the mannose receptor and they 
also express ARG1 (80,99,100).  Low amounts of 
proinflammatory cytokines such as IL-12, TNF-alpha, and 
IL-1 are elicited, but high amounts of the 
immunosuppressive cytokine IL-10 are produced 
(80,100,101).  TAM produce low amounts of nitric oxide 
(102); only a minority express iNOS, and they are poor 
producers of ROS (103).  TAM have poor antigen 
presenting capacity and can suppress T cell activation and 
proliferation (80,81).  Mediators involved in 
immunosuppression include prostaglandins, IL-10, TGF-
alpha, and IDO metabolites.  The cytokine and metabolite 
milieu produced by TAM is typical of M2 macrophages 
and would be expected to support a response by regulatory 
T cells. 

 
In addition to promoting an immunosuppressive 

microenvironment, TAM may promote tumor progression 
through their support of angiogenesis.  TAM can produce 
proangiogenic factors such as TGF-beta, VEGF, PDGF, 
bFGF, and angiogenic chemokines such as CXCL1, 
CXCL5, CXCL8, and CXCL12 (80,104).  Indeed, the 
density of microvessels in tumor correlates with the level of 
TAM infiltration in cancer (105,106).  TAM have been 

found to accumulate preferentially in poorly vascularised, 
hypoxic regions of tumor where they secrete proangiogenic 
factors, taking on the M2 macrophage program (107-109).  
This appears to be dependent on HIF-1-alpha, as 
suppression of HIF-1-alpha inhibits migration of TAM to 
these hypoxic regions (110), although hypoxic 
macrophages upregulate both HIF-1-alpha and HIF-2-alpha 
(108,109). 

 
TAM may also affect tumor invasiveness and its 

capability to metastasize because of their involvement in 
tissue remodelling.  Enzymes such as matrix 
metalloproteinases, plasma urokinase-type plasminogen 
activator (uPA), and its receptors (uPAR) are produced by 
macrophages.  These enzymes are involved in the 
breakdown of the extracellular matrix, and their expression 
correlates with a much more aggressive tumor phenotype 
(111).  It is thought that these enzymes are involved in the 
dissolution of the basement membrane, which acts as a 
point of anchorage within the primary tumor.  Thus, 
because of the actions of TAM on the extracellular matrix, 
tumor cells are endowed with the capability of escaping 
from the primary tumor, metastasizing to distant organs 
through lymphatics and the vasculature.  The matrix 
remodelling activities of TAM are therefore important 
contributory factors in tumor growth as well. 

 
Experimental and clinical observations support 

the proneoplastic role of macrophages, although it is 
difficult to discern how much of that phenomenon is related 
to immune suppression as opposed to other mechanisms.  
In APC(Delta716) mice, macrophage depletion results in 
suppression of gastric tumorigenesis by mechanisms that 
are not directly immune mediated (112).  In a murine 
model of mesothelioma, depletion of macrophages using 
liposomal clodronate reduces the size and number of 
tumors (113).  There are also clinical series in which TAM 
are associated with a worse prognosis (114-117).  The 
observation that the presence of TAM is associated with an 
impaired response to cancer immunotherapy suggests that 
at least some of the effect seen in clinical series is immune-
mediated (118). 

 
6.  MYELOID DERIVED SUPPRESSOR CELLS 

 
Tumor development is frequently accompanied 

by an accumulation of myeloid cells in the periphery, as 
well as in the tumor.  These myeloid derived suppressor 
cells (MDSC) have only recently been the focus of 
investigation.  A number of MDSC subsets have been 
described, and it has been speculated that they may be 
related to TAM. 

 
In mice, MDSC are commonly defined as 

CD11b+Gr-1+ cells, which are predominately present in 
bone marrow, but also exist in spleen and blood.  The 
marker Gr-1 identifies at least two populations comprising 
polymorphonuclear cells (CD11b+Gr-1High) and 
mononuclear cells (CD11b+Gr-1Int/Low) (119).  It is the 
monocytic fraction which expresses the common alpha 
chain of the receptor for IL-4 and IL-13 (IL-4R-alpha) and 
which has immunosuppressive functions (120).  Other 
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markers on murine MDSC include CD31 and ER-MP58 
(121).  In humans, the MDSC phenotype is not well defined 
and probably consists of a number of related 
subpopulations.  MDSC have been variably described as: 
CD34+ (122,123); Lin-CD33+CD15- (positive or negative 
for HLA-DR) (124); CD11b+ CD14- HLA-DRNeg/Low 
CD15+ (125); and CD11b+CD14+ HLA-DRNeg/Low  cells 
(126). 

 
MDSC have a number of immunoregulatory 

actions. Given the heterogeneity of this population, it may 
be that not all of these actions can be attributed to the same 
subset.  One way that MDSC incite immunosuppression is 
by controlling the metabolites contained within their 
microenvironment.  MDSC regulate T cell responses 
mainly by controlling the availability of L-arginine.  They 
typically express high levels of ARG1 and, like M2 
macrophages, the low levels of L-arginine in their 
microenvironment influence T cell function by 
impairing the expression of the CD3-zeta chain of the T 
cell receptor (96).  MDSC also produce substantial 
amounts of ROS and RNS, which impair DC maturation 
(119).  Reactive nitrogen species such as peroxynitrites 
impair the response of CD8+ T cells to antigen (127).  
In addition to the immunosuppressive effects of MDSC 
on the microenvironment, they can inhibit T cell 
function through cell-to-cell contact.  This primarily 
affects CD8+ T cell function by inhibiting their 
secretion of IFN-gamma (128).  The effect on CD8+ T 
cells requires the co-expression of ARG1 and NOS2 
(96,129) in MDSC and it also appears to be dependant 
on IL-13 and IFN-gamma (120,130).  Other 
immunoregulatory effects attributed to MDSC include 
the expansion of regulatory T cells (131,132); inhibition 
of NK cell activity in a contact-dependant fashion (133); 
impairment of NKT cells (134); and polarization of 
macrophages to the M2 phenotype (135). 

 
The presence of tumor is associated with 

increased numbers of circulating MDSC.  This has been 
described in head and neck cancer, lung cancer, and breast 
cancer (124), as well as melanoma (126), and renal cell 
carcinoma (125).  Tumor infiltrating MDSC have been well 
described in animal models (120,136).  Unfortunately, in 
human studies, it is much more difficult to completely 
characterize the tumor infiltrating inflammatory response in 
sufficient detail to fully distinguish TAM from MDSC.  
Therefore, in studies on human tissue in which TAM are 
described, it is possible that at least some of the 
macrophage-like population may actually represent subsets 
of MDSC. 

 
While it is difficult to determine the effect of 

circulating and tumor-infiltrating MDSC on prognosis, 
there is evidence that MDSC are at least partly responsible 
for the failure of some vaccine trials.  For example, in a 
recent trial of a GM-CSF-based vaccine, increased numbers 
of MDSC were seen following vaccination.  This increased 
MDSC activity was not found in patients receiving non-
GM-CSF-based vaccines.  In that trial, the presence of 
MDSC was associated with a lack of immunologic 
response to the vaccine (126). 

7.  NKT CELLS 
 

CD1d restricted natural killer T (NKT) cells 
consist of at least two subsets.  Type 1 semi-invariant TCR-
alpha chain-expressing NKT cells express V-alpha14J-
alpha18 in mice and V-alpha24J-alpha18 in humans.  They 
have NK-like cytolytic activity, produce large amounts of 
both Th1 and Th2 cytokines, and they are known to be 
involved in anti-tumor immunity (137,138).  Type 2 
variable TCR-alpha chain-expressing NKT cells appear to 
have an immunosuppressive role. 

 
In a fibrosarcoma model, type 2 NKT cells 

expressing CD4 were found to produce IL-13, which 
induced production of TGF-beta by CD11b+Gr-1+ MDSC, 
which subsequently resulted in suppression of CD8+ T cell 
mediated immunity against tumor (139,140).  The 
immunosuppressive role of NKT cells has also been 
demonstrated in a number of other tumor models, including 
CT26 colon carcinoma (141,142), a 4T1 mammary 
carcinoma model (142,143), and an orthotopic K7M2 
osteosarcoma model (144).  In this latter model, the effects 
of NKT cells on tumor immunity did not appear to be 
dependent on IL-4R-alpha signalling, IL-13, or TGF-beta, 
suggesting that other mechanisms of CD1d restricted NKT 
cell mediated immunosuppression exist.  Selective 
stimulation of type-2 NKT cells by sulphatide significantly 
enhances growth of CT26 colon carcinoma lung metastases 
(145).  It has been postulated that sulphatide, which can be 
found in tumors as well as many other tissues, stimulates 
type 2 NKT cells to induce immunosuppression in tumor 
bearing individuals (146).  NKT cells have been shown to 
regulate Treg function in an autoimmune myasthenia model 
(147), but interactions between NKT cells and Treg have 
not been demonstrated in tumor models.  Moreover, in 
clinical cases of cancer, there is little information on the 
influence of type 2 NKT cells on the tumor 
microenvironment. 
 
8.  FIBROBLASTS 

 
The tumor framework is maintained by 

fibroblasts, cells which deposit the extracellular matrix, 
maintain the basement membrane and produce matrix 
metalloproteinases and other enzymes responsible for tissue 
remodelling.  Generally, fibroblasts are not considered 
immunoregulatory cells.  However, in the context of the 
tumor microenvironment, fibroblasts have been shown to 
have some immunosuppressive properties. 

 
Mesenchymal stem cells from bone marrow, 

which have the capability to differentiate into bone, 
cartilage and fat, are known to have immunomodulatory 
effects.  They cause direct suppression of T cell 
proliferation (148-150); induce T cell anergy (151); 
promote T cell apoptosis (152); inhibit dendritic cell 
maturation (153-155); and inhibit function of B cells (156) 
and NK cells (157).  Recently, it was shown that this 
capability to immunosuppress was a fundamental property 
shared by all stromal cells (158,159).  Chondrocytes, as 
well as fibroblasts from synovial joints, lung and skin can 
each inhibit T cell proliferation.  Stromal cells require 
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Figure 2. Immunosuppressive mediators of the tumor microenvironment. Tumor-infiltrating immunosuppressive stromal cells, 
tumor cells, and hypoxia contribute to a generally immunosuppressive microenvironment.  Factors within this environment 
encourage the migration of more immunosuppressive cells, convert inflammatory cells to an immunomodulatory phenotype, and 
directly inhibit tumor immunity. 

 
licensing by activated T cells to acquire 

antiproliferative functions (158,159).  However, the role of 
IFN-gamma in this fibroblast-mediated suppression is not 
completely clear as only one of the reports demonstrated 
that IFN-gamma may be important in mediating these 
effects (159).  In that report, IFN-gamma induced IDO in 
fibroblasts, an enzyme known to have a number of 
immunosuppressive effects (160). 
 
9.  RECRUITMENT OF IMMUNOREGULATORY 
CELLS TO TUMOR 
 

Tumor elaborates its own signals to attract 
immunosuppressive cells to its lair.  Factors derived from 
proinflammatory cells infiltrating tumor further modify the 
tumor microenvironment, encouraging recruitment of 
suppressive immune effectors meant by nature to prevent 
uncontrolled immunity (Figure 2).  What is not completely 
clear is whether the cells that are recruited to tumor are 
intrinsically immunosuppressive or whether the tumor 
microenvironment induces an immunosuppressive phenotype.  
There are data that support each of these possibilities. 

 
Tumor appears to have interesting effects on 

CD4+CD25+Foxp3+ Treg.  In patients with ovarian cancer, 

Curiel and co-workers demonstrated the preferential 
migration of CD4+CD25+ cells to tumors and ascites.  
Because macrophages contained in malignant ascites 
produce large amounts of CCL22 (which was shown to 
induce migration of regulatory T cells into tumor in an 
animal model), this group speculated that the recruitment of 
Treg was secondary to the presence of macrophages within 
the tumor microenvironment (49).  This supports the 
hypothesis that recruitment of tumor infiltrating Treg is 
secondary to the primary inflammatory response to tumor. 
Tumor may itself also elaborate substances capable of 
attracting Treg.  In head and neck cancer patients, the 
number of circulating CD4+CD25+ T cells is significantly 
reduced following curative resection (161).  Once in the 
tumor, the presence of TGF-beta may promote expansion 
of infiltrating Treg (162).  Tumors have been described to 
produce IL-10 (163,164).  High concentrations of TGF-
beta and IL-10 are known to induce CD4+CD25- T cells 
to develop suppressive function (165).  Moreover, once 
in tumor, the presence of large amounts of secreted 
tumor antigens may stimulate Treg (166).  Thus, Treg 
appear to traffic to tumor due to chemokines elaborated 
by other inflammatory cells.  Once there, their 
immunosuppressive phenotype is promoted by various 
tumor-derived factors. 
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The presence of DC in tumor seems to be 
secondary to signals elaborated by tumor.  Tumor cells 
produce MIP-3-alpha/CCL20, which is selectively 
chemotactic to immature DC expressing CCR6 (65).  Once 
in the tumor, factors in the microenvironment are present 
which may inhibit maturation.  Cytokines secreted by 
tumor which are known to inhibit DC maturation include 
IL-10, TGF-beta, VEGF, and IL-6 (167-171). 

 
Macrophage recruitment to tumors is mediated by 

a number of chemokines and cytokines, including 
CCL2/MCP-1, VEGF and macrophage colony stimulating 
factor (M-CSF, or CSF-1).  Most human carcinomas 
produce CCL2 and its levels of expression correlate with 
increased infiltration of macrophages (80).  CCL2 produced 
by TAM may accelerate trafficking of monocytes to tumor 
(172).  In breast cancer and esophageal cancer, CCL2 
levels correlate with the extent of macrophage infiltration, 
which appears to be related to a propensity for lymph node 
metastases and clinical aggressiveness (173,174).  VEGF-
mediated recruitment of TAM is dependent on VEGFR2 
expression on macrophages (175,176).  Finally, high 
expression of macrophage colony stimulating factor (CSF-1) 
in peritumoral liver tissue and TAM infiltration is associated 
with poor survival after resection of hepatocellular carcinoma 
(117).  Thus, a number of factors that promote macrophage 
trafficking to tumor have been identified. 

 
Mobilization of MDSC also appears to be a result 

of factors elicited by tumor.  MDSC are seen in higher 
numbers in animals and humans with tumor; tumor burden 
is correlated with the number of circulating MDSC; and 
resection of tumor is associated with diminished numbers 
of MDSC (177-179).  One example of a tumor-derived 
factor that could incite MDSC mobilization is GM-CSF.  
Some tumors have been shown to elaborate GM-CSF (180-
182).  High serum levels of GM-CSF are accompanied by 
higher numbers of circulating MDSC (89,120,126).  Thus, 
tumor appears to stimulate MDSC mobilization and 
migration to its locale. 

 
The nature of the monocytic infiltrate in tumor is 

intriguing. TAM and tumor-infiltrating MDSC originate 
from common progenitors, but it is not clear how plastic 
their differentiation is.  It has been postulated that 
circulating MDSC could differentiate into TAM (183), 
particularly M2 polarized TAM (135).  It is therefore 
possible that TAM and MDSC co-exist in the tumor 
because they are actually of common origin and really 
represent different stages of differentiation incited by 
factors in the tumor microenvironment.  Another possibility 
is that MDSC and macrophages are already terminally 
differentiated prior to migration to tumor and that the two 
populations represent distinct populations with different 
functions.  It was recently observed in a 4T1 murine 
mammary carcinoma model that direct cell-to-cell contact 
between MDSC results in IL-10 production by MDSC, 
which inhibits IL-12 production by macrophages (135). 
This cross-talk between MDSC and macrophages inhibits 
tumor immunity.  More investigations are required to 
delineate the relationship between MDSC and macrophages 
in tumor. 

It has recently been suggested that macrophage 
phenotype changes during the natural history of tumor 
(184).  This was mostly suggested because of the 
observation that tumors derived in the inflammatory 
premalignant state initially contain M1 macrophages.  
Then, as tumor grows, the TAM consist mainly of M2 
macrophages.  This is thought to be mainly due to a 
defective NF�B function in TAM as tumors grow 
(100,185).  Hypoxia, which occurs in some regions of 
established tumors, may also affect the monocytic infiltrate.  
The transcription factors HIF-1-alpha and HIF-2-alpha are 
both upregulated in macrophages exposed to hypoxia and 
this results in increased secretion of VEGF and MMP7.  
Hypoxia also encourages the expression of IL-10, arginase, 
and PGE-2; typical of M2 macrophages (109).  These 
observations suggest that the phenotype of TAM may be 
mostly a result of changes in tumor microenvironment as 
tumor evolves, rather than differential recruitment of a 
particular subtype of macrophages. 

 
Another well documented mechanism for the 

emergence of an immunosuppressive tumor 
microenvironment involves IDO.  The tumor cells 
themselves are a source of IDO (186,187).  Tumor 
infiltrating dendritic cells may also express IDO.  IDO-
expressing DC potently suppress T cell responses and 
induce tolerance to tumor derived antigens (188,189).  IDO 
causes local depletion of tryptophan.  The local depletion of 
tryptophan and the production of toxic tryptophan 
catabolytes inhibits activation of NK cells (190).  Thus, 
IDO elaborated by the tumor as well as by tumor 
infiltrating DC, is a contributing factor to the 
immunosuppressive microenvironment in some tumors. 

 
Until recently, the origin of tumor fibroblasts was 

not well defined.  In particular, it was not clear whether 
they were derived from the local milieu in which the tumor 
emerged or whether they migrated to tumor from afar.  
Studies in an insulinoma model revealed that about 25% of 
tumor fibroblasts are bone marrow-derived (191).  The 
origin of the remainder of these cells was not delineated.  It 
is possible that the rest of the stromal fibroblasts represent 
locally derived cells.  Whether there are phenotypical 
differences (eg: elaboration of immunosuppressive factors) 
between these two subpopulations of stromal cells is not 
yet known. 
 
10.  SUMMARY 

 
Present immunotherapeutic strategies for cancer 

typically involve the inhibition of immune tolerance.  
While some successes have been seen in individuals, 
cancer immunotherapeutics have not had dramatic 
successes.  This may partly be because of the 
immunosuppressive tumor microenvironment.  While it is 
well known that the tumor cells themselves produce 
immunomodulatory factors, tumor stroma also contains a 
number of immunoregulatory cell populations.  Some of 
these may be recruited to the tumor secondary to 
chemokines produced by a primary immune response or by 
the tumor itself.  However, very little is understood about 
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the factors responsible for recruitment of these 
immunoregulatory cells to tumor.   

 
It is becoming obvious that, in order for 

immunotherapy to be successful in the context of 
malignancy, not only do we require the capability of 
priming tumor-specific immunity, we also need to sustain 
that immune response. This may be possible by inhibiting 
the immunosuppressive actions of tumor and its stromal 
constituents, either by blocking inhibitory factors or by 
(functionally) depleting immunoregulatory effectors. 
Blocking factors that encourage the migration of any 
immunosuppressive cell populations to tumor may be 
useful on a therapeutic basis. Finally, it is possible that 
some of the inhibitors of angiogenesis, especially VEGF 
antagonists, may be useful in encouraging the immune 
response against tumor. Our recent recognition of the 
immunosuppressive qualities of the tumor 
microenvironment has therefore provided new 
opportunities for therapeutic innovation for cancer. 
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