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1. ABSTRACT 
 

Emerging evidences on the nuclear localization 
of alpha-Synuclein in neurons and a close look in to its 
primary sequence/structural organization led us to examine 
its DNA binding ability. Subsequently, we first time 
demonstrated the interaction of DNA with alpha-Synuclein 
which was also confirmed by others. We recently showed 
that double-stranded oligos induce partial folding in alpha-
Synuclein and promote its aggregation, where as single-
strand circular DNA and supercoiled plasmid DNA induced 
a helix-rich conformation and protected the protein from 
fibrillation. In turn, alpha-Synuclein modulates DNA 
conformation from B- to an altered B-form, which may 
affect DNA transactions. Interestingly, amyloid-beta 
peptides and prion proteins implicated in Alzheimer’s 
disease and Prion diseases respectively, were also shown to 
have DNA binding activity which suggests that DNA 
binding may be a common property of many 
amyloidogenic proteins associated with various 
neurodegenerative disorders. In this review, we debate the 
biological significance of DNA-alpha-Synuclein 
interactions; it’s beneficial vs. toxic role in relevance to 
Parkinson’s disease.  

 
 
 
2. INTRODUCTION 
 

alpha-Synuclein is a highly conserved protein of 
yet undetermined function, which has been implicated in 
the pathogenesis of several neurodegenerative diseases, 
including Parkinson’s disease (PD), dementia with Lewy 
bodies (DLB) and multiple system atrophy (1-7). The 
protein accumulates in intracellular inclusions and 
abnormal neurites (Lewy bodies and Lewy neurites) that 
are characteristic of PD, the second common 
neurodegenerative disorder (4). However, the role of alpha 
Synuclein in neuropathology leading to degeneration of 
neurons is not clearly understood. 

 
Although alpha-Synuclein was originally 

believed to be a presynaptic protein and its accumulation 
was predominantly cytosolic, interestingly, several recent 
studies have shown the presence of the protein in the cell 
nucleus (8-16). A recent study involving semiquantitative 
analysis in different subcellular compartments revealed that 
a significant fraction of alpha-Synuclein is in nucleus of 
neuronal cells in rat brain (16). In addition to the normal 
localization in nucleus, the increased permeability of 
nuclear membrane in the neurons of PD affected brain 



Alpha-synuclein-DNA interactions 

419 

regions, and conditions of oxidative stress could result in 
non-specific translocation of alpha-Synuclein in to nucleus 
(13). With these evidences for localization in nucleus and 
the knowledge of primary sequence of alpha-Synuclein, 
where it has the positively charged amino acids clustered 
towards N-terminal end, we hypothesized that alpha-
Synuclein may be having a DNA binding role in nucleus 
(17). Subsequently, we have recently provided the first 
evidence for DNA-binding activity of alpha-Synuclein (17-
19). We showed that alpha-Synuclein alters the helicity of 
supercoiled plasmid DNA in vitro (17), and single-strand 
circular DNA induces an alpha-helical conformation in 
alpha-Synuclein, while various other linear DNA sequences 
induce partially folded conformations (19). We also 
showed that DNA binding significantly modulates 
fibrillation properties of alpha-Synuclein (19). This was 
also further shown independently by other groups (20). 

 
In this article, we will extensively review the 

DNA binding property of alpha-Synuclein and debate its 
potential significance in the pathophysiology of PD. We 
will also explore the potential utilization of DNA binding 
property for protection from alpha-Synuclein aggregation 
and/or toxicity in relevance to PD and related alpha-
Synucleinopathies. 
 
2.1. General characteristics of PD 

PD was first formally described in "An Essay on 
the Shaking Palsy," published in 1817 by a London 
physician named James Parkinson (21). It is a common 
progressive neurological disorder that results from 
degeneration of nerve cells in a region of the brain called 
‘substantia nigra’ (SN) that controls balance and 
coordinates muscle movement. This degeneration creates a 
shortage of dopamine, a neurotransmitter, which causes 
impaired movement. In the United States alone, about a 
million people are believed to suffer from PD, and about 
50,000 new cases are reported every year (22-24). Because 
the symptoms typically appear later in life, these figures are 
expected to grow as the average age of the population 
increases over the next several decades. 

 
There is no cure for PD to date. Available drugs 

suppress symptoms early in PD, but progressively fail as 
more nerve cells die. The emergence of drug-induced 
dyskinesias and motor fluctuations often limits drug 
benefits. Developing therapies to prevent PD, to suppress 
symptoms, to halt disease progression, and to repair 
damage are all fundamental goals in modern day research, 
besides early diagnosis of PD. The preclinical diagnosis of 
PD is critical, so that neuroprotective therapies might be 
administered during the early stage and efficiently slow 
down the diaease progression. To achieve therapeutic 
goals, new and innovative studies are required, from basic 
research advances to translating the same in to animal 
testing, and safety studies in human patients.           
       
2.1.1. Pathology: Lewy bodies 

Pathologically, PD is characterized by the loss of 
the pigmented dopaminergic neurons from the substantia 
nigra pars compacta (SNpc). These nerve cells, for reasons 
that are not fully understood, are especially vulnerable to 

damage of various sorts, including drugs, disease, and head 
trauma. These neurons project to the striatum and their loss 
leads to alterations in the activity of the neural circuits 
within the basal ganglia that regulate movement. Disruption 
of dopamine along the non-striatal pathways likely explains 
much of the neuropsychiatric pathology associated with 
PD. Excessive accumulations of iron, which are toxic to 
nerve cells, are also typically observed in conjunction with 
the protein inclusions. Other pathological events include 
the presence of extracellular melanin (a dark pigment), 
released from degenerating neurons, reactive gliosis 
(increase in numbers of glial or support cells), and pink-
staining cellular inclusions known as Lewy Bodies (LBs) in 
the remaining SNpc neurons (25). The LB, which was first 
described by Frederick Lewy in 1913, is present in 
essentially all cases of PD (25). The major protein 
constituent of LBs is alpha-Synuclein, a natively unfolded 
protein having high propensity for fibrillation/aggregation.  
The mechanism by which the brain cells in Parkinson's are 
lost may consist of an abnormal accumulation of the 
protein alpha synuclein bound to ubiquitin in the damaged 
cells. 
 
2.2. Oxidative stress and DNA damage in PD 

Substantial evidence implies that redox 
imbalance or oxidative stress following overproduction of 
reactive oxygen/nitrogen species overwhelming the 
protective defense mechanism of cells contributes to the 
pathogenesis of PD (26-35). Nigral dopaminergic neurons 
in human brain are particularly exposed to oxidative stress 
because the metabolism of dopamine gives rise to various 
molecules that can act as endogenous toxins if not handled 
properly (36, 37). In PD, nigral cells seem to be further 
under a heightened state of oxidative stress, as indicated by 
elevations in by-products of lipid, protein and DNA 
oxidation, and by compensatory increase in antioxidant 
systems (38-43). The level of iron, which is significantly 
higher in the normal SN than in other regions owing to its 
binding affinity to neuromelanin, was further increased in 
the SN of PD further contributing to oxidative stress (41, 
44-49). 
 

One of the consequences of redox imbalance is 
apoptosis and/or necrosis which are associated with 
neurodegeneration in PD (50-56). Studies have also shown 
that the levels of the nucleoside, 8-hydroxy -2’-
deoxyguanosine (8-OHdG), a product of free radical attack 
on DNA were generally increased and differentially 
distributed in PD brains with highest levels in caudate, 
putamen, SN and cerebral cortex (42). Features of  
apoptosis based on histochemical methods to mark 
endonuclease-induced DNA fragmentation by in situ 
terminal deoxynucleotidyl transferase-mediated dUTP 
nick-end labeling-TUNEL/ISEL (57) or in situ nick 
translation (58) have been reported  in SN in PD (30, 51, 
53, 59-63). 

 
We have recently shown increased DNA 

fragmentation and decreased DNA stability in affected 
human brain regions of PD (64). Similarly, we also showed 
an altered DNA conformation in hippocampus of human 
brains affected with Alzheimer’s disease (AD) (65)
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Figure 1. The ‘cross-Talk’ or interplay of environmental 
and genetic causative factors for Parkinson’s disease. 
 

In addition to DNA damage, extensive RNA 
damage has been reported in PD brain (66). Nunomora et 
al., (67) demonstrated using immunoreactivity to 8-
hydroxyguanosine in neurons that RNA was a major site of 
nucleic acid oxidation in DLB. The authors suggested that 
normal RNA oxidation might represent one of the 
fundamental abnormalities in age-associated 
neurodegeneration including PD and AD. 
 

Furthermore, studies suggested that an alteration 
in the genetic material within mitochondria in PD, 
including a common 4977-bp deletion in mitochondrial 
DNA (68, 69). However, Zhang et al., (70) recently 
demonstrated that this 4977-bp deletion is associated with 
normal ageing and there is no particular association with 
neurodegeneration. 
 
2.3. Cause: cross-talk of environment and genome 

The precise causes of PD remain undetermined. 
The causes are likely to include both genetic (Parkin and 
alpha-Synuclein) and environmental factors (metals, 
pesticides etc). However, very few cases of PD have pure 
genetic or environmental etiology; while in vast majority 
both genetic and environmental factors are involved. 
Understanding this ‘cross-talk’ between genetic and 
environmental factors is important in PD research. 

 
During the past decade, genetic approaches to the 

study of PD have resulted in major insights. The number of 
genes implicated in the pathogenesis of PD has been 
constantly increasing, and includes genes encoding for 
alpha-Synuclein, Parkin, DJ-1 and PINK1 (71). These 
genes are thought to be involved in the proteasomal protein 
degradation pathway, in the cell's response to oxidative 
stress, and in mitochondrial function, respectively (71). 
Over the last few years, several genes for rare, 
monogenically inherited forms of PD have been mapped 
and/or cloned. In dominant families, mutations have been 
identified in the gene for alpha-Synuclein. Although most 
people do not inherit PD, studying the genes responsible for 
the inherited cases is advancing our understanding of both 
common and familial PD. 

 
Evidence has accumulated steadily to support the 

view that PD can originate from long-term, subclinical 
damage to the nervous system caused by environmental 
toxins (72-75). In fact, several studies have implicated such 
environmental factors as pesticides, herbicides, and heavy 
metals in the PD origin (30, 76-82). Our lab recently 
showed that trace metal homeostasis is significantly 

affected in serum samples from PD affected human 
subjects and there is a direct link between disturbance of 
trace metal levels in serum and brain (83), suggesting 
important role played by metals in PD pathology (84-87). 

 
There is interaction between the environment and 

the genome; in some disorders inheritance establishes 
susceptibility and environment triggers pathology (88). 
Hence, the recent trend to study PD is to look at the 
interplay or cross-talk between genetics and environmental 
triggers (Figure 1). Hence, it is important to 
understand/explore the complex interactions between 
genetic predisposition and environmental influences that 
probably cause most cases of PD. 
 
3. ALPHA-SYNUCLEIN AND PD 
 

The synucleins are a family of proteins whose 
function in normal cell is not well understood. The first of 
the synuclein proteins described in 1988 was alpha-
Synuclein. The name ‘synuclein’ was chosen because the 
protein was found in both synapses and nuclear envelope 
(8). Later, it was also named the non-amyloid component 
(NAC) of beta-amyloid plaque precursor protein. The NAC 
peptide was isolated from amyloid-rich senile plaques of 
brains of patients with AD. Amyloid plaques are one of the 
hallmarks of AD. NAC peptide was shown to be identical 
to a certain part of alpha-Synuclein. The second member of 
the synuclein family is known as beta-synuclein. Both these 
proteins are found in the presynaptic terminals of neurons 
and many researchers believe they may be involved in 
synaptic function. The third member of synuclein family is 
gama-synuclein. All synucleins have in common a highly 
conserved alpha-helical lipid-binding motif with similarity 
to the class-A2 lipid–binding domains of the exchangeable 
apolipoproteins (89). Synuclein family members are not 
found outside vertebrates, although they have some 
conserved structural similarity with plant ‘late-embryo-
abundant’ proteins. The alpa and beta Synuclein proteins 
are found primarily in brain tissue. The gama-Synuclein is 
found primarily in the peripheral nervous system and 
retina, but its expression in breast tumors is a marker for 
tumor progression. While alpha-Synuclein has been 
implicated in neurodegenerative disorders mainly PD, until 
recently there has been no evidence to suggest a role for the 
other synucleins in neurodegeneration. alpha-Synuclein 
forms fibrillar aggregates known as LBs in PD brain, 
these insoluble protein aggregates are morphologically 
similar to the amyloid fibrils found in AD neuritic 
plaques and in protein deposits associated with other 
amyloidogenic diseases (90, 91). 

 
Three missense mutations in the alpa-

Synuclein gene have been reported to be associated with 
families susceptible to inherited forms of PD (92-94). 
These mutations cause alterations in the amino acid 
sequence of alpa Synuclein (at residues Ala30Pro or 
Ala53Thr or Glu46Lys) in regions predicted to influence 
the secondary structure of alpha-Synuclein. The 
substitutions may disrupt the structure of alpa-Synuclein, 
rendering the protein more prone to self- aggregation 
(95, 96)
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Figure 2. PONDR plot of the predicted secondary structure 
of alpha-Synuclein.The protein sequence is obtained from 
NCBI database. PONDR score of 0.5 and higher indicates 
disordered structures (114). The C-terminal ~40-50 
residues in alpha-Synuclein are disordered. The lower panel 
shows alpha-Synuclein aminoacid sequence, the regions 
with disoreder propensity are underlined. 
 

Several lines of converging evidence directly 
implicate alpha-Synuclein in mechanisms underlying the 
onset/ progression of PD (97). They are: (i) Missense 
mutations in the alpha-Synuclein gene (A53T, A30P and 
E46K) cause familial PD in rare kinds (92-94); (ii) 
Antibodies to alpha-Synuclein specifically detect LBs, (3, 4, 
98-104); (iii) LBs purified from PD brains contain abnormally 
aggregated alpha-Synuclein and insoluble forms of alpha-
Synuclein (4, 98). The precise mechanism whereby such 
aggregates of  alpha-Synuclein cause degeneration of 
dopaminergic neurons is not known. The aggregates may be 
merely a normal reaction by the cells as part of their effort to 
correct a different pathological event, as-yet unknown. This 
issue is dealt with in detail in the latter part of the article. 

 
An important feature of alpha-Synuclein primary 

structure is six imperfect repeats within the first 95 residues. 
This brings the similarity of alpha-Synuclein with the 
amphipathic lipid-binding α-helical domains of 
apolipoproteins (105, 106), which show variation in 
hydrophobicity with a strictly conserved periodicity of 11. 
alpha-Synuclein shares the defining properties of the class A2 
lipid-binding helix, distinguished by the clustered basic 
residues at the polar-apolar interface, positioned ±1000 from 
the center of apolar face; predominance of lysines relative to 
arginines among these basic residues; and several glutamate 
residues at the polar surface (107-109). In agreement with the 
above structural features, alpha-Synuclein binds specifically to 
synthetic vesicles containing acidic phospholipids (109, 110). 
Further, this binding was shown to be accompanied by a 
dramatic increase in alpha-helix content. 

 
Recently, attempts have been made to analyze 

the structure of alpha-Synuclein using NMR studies (111-
113). It was shown that the conformation of alpha-

Synuclein consists of two alpha-helical regions that are 
interrupted by a short break (112). NMR study of free 
monomeric alpha-Synuclein revealed that the first 100 
residues in N-terminus region of free alpha-Synuclein 
have an overall preference for helical structure and there 
may be the presence of a transient helical structure from 
residues 6 to 37. In contrast, the final 40 residues of free 
alpha-Synuclein exhibited secondary shifts indicative of 
highly unfolded and extended form (113). We used the 
predictor of naturally disordered regions (PONDR, 
Molecular Kinetics, Inc.) (114) software to alpha-
Synuclein (Figure 2). This shows that about 40-50 
residues in in alpha-Synuclein C-terminus is relatively 
disordered. 

 
NMR data of alpha-Synuclein in presence of 

unilamellar vesicles suggested that the N-terminal region 
is responsible for lipid binding and the boundary for this 
region occurs between residues 102 and 103. The shifts 
in Calpha chemical shifts clearly indicated that there is the 
formation of helical structure upon alpha-Synuclein 
association with unilamellar vesicles. It was noted that it 
is only the N-terminal region of the protein containing 
the amphipathic apolipoprotein helical motifs, which 
binds and adopts a helical conformation. The C-terminal 
region remains in the same conformation as in the free 
alpha-Synuclein and does not bind to the lipid vesicle 
surface (113). 

 
alpha-Synuclein folding and fibrillation have 

been found to be promoted on binding to long chain fatty 
acids (115) and also upon its interaction with lipid 
droplets (116). It was also shown that membrane 
interactions induce a large conformational change from 
random coil to alpha-helix in alpha-Synuclein and these 
interactions may be physiologically important (117). On 
the basis of these observations, it has been assumed that 
alpha-Synuclein may exist in two structurally different 
isoforms in vivo: a helix-rich, membrane-bound form and 
a disordered, cytosolic form, with the membrane-bound 
alpha-Synuclein generating nuclei that seed the 
aggregation of the more abundant cytosolic form (118, 
119). The partially folded intermediate of alpha-
Synuclein is more prone for aggregation. The 
aggregation of alpha-Synuclein depends upon extent of 
folding induced by the membrane interaction but the 
mechanism is not clear. 

 
It is suggested that the misfolded or partially 

folded alpha-Synuclein is more cytotoxic than the protein 
aggregates. The intermediate partially folded or 
misfolded form may be entropically rich in energy and 
may bind to other components in the cell and may be a 
cause for neurodegeneration. Transgenic animal models 
expressing human alpha-Synuclein had shown 
neurodegeneration, without fibrillar alpha-Synuclein 
(120, 121). In that sense, the formation of aggregates could 
be a protective measure adapted by the cell against the 
toxicity of this intermediate. However, it is still a matter of 
debate regarding the toxic form of the protein (monomeric 
or oligomeric?) in neurodegenerative disorders (122). 
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3.1. Potential normal functions of alpha-Synuclein 
Dispite of strong evidence implicating alpha-

Synuclein in the pathogenesis of several meurodegenerative 
diseases, its physiological function remains poorly 
understood. The difficulty in determining the functions of 
alpha-Synuclein is because inactivation of the alpha-
Synuclein gene does not lead to a significant neurological 
phenotype. However, overexpression of alpha-Synuclein in 
rat substantia nigra was shown to cause loss of 
dopaminergic neurons, but is limited to the targeted region 
and does not mimic the broad pathology observed in the 
disease (123). Furthermore, mouse models based on 
overexpression of alpha-Synuclein through genetic 
methods lead to a wide variety of phenotypes accompanied 
by non-existant, late onset, or non-specific 
neurodegeneration (124). Understanding the role of alpha-
Synuclein in normal cell life might be critical importance 
since disruption of its normal function might indirectly 
result in neurodegeneration (125). The association with 
membrane lipids and its functional homology with 14-3-3 
chaperone proteins suggested that alpha Synuclein may 
play a role in cell signaling pathways (126). It was also 
suggested that alpha-Synuclein may modulate tau 
function. alpha-Synuclein was detected in axons and 
developing pre-synaptic terminals after their formation in 
rat embryonic hippocampal cells in culture, suggesting a 
possible role in synaptic development and maintenance. 
Alpha-Synuclein may contribute to neuronal 
differentiation as well (127-129). The involvement of 
alpha-Synuclein in synaptic plasticity and neuronal 
differentiation may be mediated by the selective 
inhibition of Phospholipase D2 by alpha-Synuclein (130, 
131). When alpha-Synuclein expression was markedly 
reduced in cultured rat neurons (132) or abolished in 
alpha-Synuclein knock out mice (133), the number of 
vesicles in the distal pool of the pre-synaptic terminal is 
reduced indicating a role for alpha-Synuclein in vesicular 
dynamics. According to Cole and Murphy (133) alpha-
Synuclein’s involvement in lipid metabolism cannot be 
ruled out, given its propensity to bind molecules with 
high hydrophobic content or exposed hydrophobic 
domains. Thus persuasive evidence of a role of alpha-
Synuclein in any pathway or function requires multiple 
approaches (133). The structure, expression and 
functions of alpha-Synuclein have been recently 
reviewed by Dev et al., (134). 
 
3.2.alpha-synuclein toxicity in diffuse Lewy body 
disease 

Diffuse Lewy Body Disease is the second most 
common cause of dementia after AD. It is also commonly 
reffered to as Dementia with LBs (DLB). DLB usually 
presents with a neurobehavioral syndrome that may include 
hellucinations, delutions, and psychosis, eventually leading 
to dementia. DLB overlaps in clinical, pathological, and 
genetic features with AD and PD. Pathologically DLB 
demonstrate prominent cortical and subcortical LB 
formation, which differentiates it from PD (135). In DLB, 
unlike PD, LBs are distributed widely through out 
paralimbic and neocortical regions (136). These LBs 
generally coexist plaques similar to the ones predominant 
in AD. 

Similar to PD, LBs in DLB are rich in alpha-
Synuclein protein aggregates. Infact the neuritic alpha-
Synuclein accumulation, density of cortical LBs and AD-
type pathology (senile plaques and hippocapal 
neurofibrillary tangles) are more intense in DLB than PD 
(137). Pathologically, most PD cases have minimal or no 
senile plaques and neurofibrillary tangles, while they are 
present in DLB. It is also suggested that alpha-Synuclein 
and amyloid beta interact in DLB (138). 
 
4. EXPRESSION AND SUBCELLULAR 
DISTRIBUTION OF ALPHA-SYNUCLEIN 
 

alpha-Synuclein appears to be expressed 
ubiquitously throughout the brain (139). In the early weeks 
of development, alpha-Synuclein redistributes from cell 
bodies to synaptic terminals (127, 128, 140). The 
transcription of alpha-Synuclein is developmentally 
regulated. The levels increase during development and are 
sustained at fairly high levels throughout adulthood (141). 
Furthermore, various cellular treatments have been shown 
to affect synuclein levels, including nerve growth factor 
(129), 1-methyl-4-phenyl-1,2,3,6-tetrahydropiridine 
(MPTP) (142, 143), certain inflammatory cytokines, 
cellular stress, and during megakaryocyte differentiation 
(143). However, a clearer understanding of the 
transcriptional and translational regulation of synuclein 
expression is needed before we can understand how any 
changes in these mechanisms may affect the disease 
process (133). 

 
 Recently Zhang et al., examined the 

subcellular localization and relative amounts in different 
subcellular pools in rat brain neurons (16). They showed 
that alpha-Synuclein was unevenly distributed in axons, 
presynaptic terminals, cytoplasm and nucleus in neurons. 
The density was more in presynaptic terminal and nucleus, 
compared to other subcellular compartments. Interestingly, 
alpha-Synuclein was also present in mitochondria. 

 
4.1. Nuclear localization of alpha-Synuclein 

Several studies have shown the presence of 
alpha-Synuclein in the neuronal nuclei. However, no 
definite nuclear functions have been attributed to alpha-
Synuclein to date. It is not known if nuclear localization is 
the common property of alpha-Synuclein or it is 
cause/consequence of PD pathology. Overexpression of 
alpha-Synuclein in neuronal cell lines showed diffused 
nuclear staining (144). The term alpha Synuclein was first 
coined by Maroteaux based on its localization in the 
synaptic region and nucleus (8). Mori et al., showed 
localization in the nucleus of substantia nigra and pontine 
nucleus neurons of rat brain (145). Further, nuclear 
localization of alpha Synuclein was shown in cultured 
primary neurons (146) and cell lines (147). Nuclear 
inclusions of neurons and oligodendroglia of multiple 
system atrophy contain the alpha-Synuclein protein (15). 
Yu et al., showed nuclear localization of alpha-Synuclein in 
the rat brain by immunoelectron microscopy using colloidal 
gold probes (147, 148). Mono and oligomeric forms of 
alpha-Synuclein were observed in the nuclear fractions of 
human dopaminergic neuroblastoma SH-SY5Y cells (12). 
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Extensive nuclear localization of alpha-Synuclein indicates 
that it might play important role in the nucleus (16-19). 

 
Although the above observations do not suggest 

what the function of alpha-Synuclein in nucleus is, Leng et 
al., (12) predicted that alpha-Synuclein may play a role in 
regulating processes in the PI- cycle in the nucleus and 
phosphatidyl inositol-linked activities may also occur in 
nucleus. 
 
4.1.1. Nuclear transport of alpha-Synuclein 

The mode of appearance of alpha-Synuclein into 
the neuronal nuclei and functions of alpha-Synuclein in 
nuclei is still obscure. According to Maroteaux et al., (8) 
the mode of localization of alpha-Synuclein in the nucleus 
could involve a lateral diffusion along the endoplasmic 
reticulum and outer nuclear membrane (149) or more 
conventional transport through nuclear pores. They 
proposed that alpha-Synuclein family proteins may be 
involved in coordinating nuclear and synaptic events. 
However, under PD conditions, the nuclear localization of 
alpha-Synuclein could be enhanced due to non-specific 
transportation through oxidatively damaged nuclear 
membrane (17). The highly oxidative cytological 
environment in PD brain, because of increase in 
paramagnetic ferrous and other free radical generating 
metals, are known to disrupt the biological membranes 
leading to translocation of alpha-Synuclein in to the 
nucleus. Sangchot et al., (13) have provided new evidences 
for nuclear membrane disruption by lipid peroxidation 
caused by increase in iron and consequent translocation of 
alpha-Synuclein aggregates in to perinuclear and 
endonuclear regions of human dopaminergic 
neuroblastoma SK-N-SH cell lines. Leng et al., (12) also 
observed alpha-Synuclein both in monomeric and 
oligomeric forms in nuclear fractions of human 
dopaminergic neuroblastoma SH-SYSY cell cultures. 
 
4.2. alpha-Synuclein genotoxicity 

With several evidences showing the presence of 
alpha Synuclein in neuronal nuclei, as discussed above, the 
question arises about its function/role in the nuclein. 
Further, it is interesting to discuss whether nuclear alpha-
Synuclein is an active or passive response to PD pathology. 
It was shown that alpha-Synuclein interacts with histones in 
vitro and this interaction if confirmed in vivo, might alter 
the gene transcription (14). To support this, when, 
transfected to cell lines, alpha-Synuclein changes the 
expression of many genes (150). alpha-Synuclein alters 
gene expression changes of stress response genes, 
transcription regulators, apoptosis inducers, transcription 
factors, membrane bound proteins and protein involved in 
the dopamine synthesis. In alpha-Synuclein transfected 
dopamenergic cell lines, tyrosine hydroxylase was inhibited 
(147). Furthermore, alpha-Synuclein over expression in 
PC12 cells showed enhanced proliferation and enrichment 
of cells with S-phase, again suggesting enhanced gene 
expression (118). 

 
alpha-Synuclein nuclear targeting accelerated the 

neurodegenerative process in the dopaminergic neurons of 
flies (151). Histone deacetylase inhibitors prevented this 

neurodegenerative process when administrated. This may 
be explained assuming that alpha-Synuclein induces its 
toxicity by inhibiting the histone acetylation. alpha-
Synuclein was also shown to associate with histone H3 and 
inhibit its acetylation.  

 
Further, widespread DNA damage is observed in 

the brain regions affected with synucleinopathies in which 
neurodegeneration is observed (64, 152). These brain 
regions have been quite often linked to excess iron 
accumulation. In presence Fe (II) alpha-Synuclein can 
generate reactive oxygen species and damage DNA 
indirectly in the neuronal cells (153, 154). Although, this is 
an indirect indication, the fact that ncreased DNA damage 
is observed in cells transfected with wild type alpha-
Synuclein and mutants A30P, A53T after treating with Fe 
(II), strengthens this hypothesis. The above observations 
suggest that alpha-Synuclein contributes to genotoxicity in 
various ways. 

 
Our lab reported the ability of alpha-Synuclein to 

directly bind to DNA molecule that results in altered DNA 
conformation and damage which will be discussed later in 
this review.  
 
5. ALPHA-SYNUCLEIN DNA INTERACTIONS: A 
NEW CONCEPT 
 

We recently made an interesting observation that 
alpha-Synuclein has DNA binding property which has 
created a new opportunity in understanding role of alpha-
Synuclein in PD pathology (17-19). Previously we also 
showed for the first time that amyloid beta peptides 
implicated in AD can also bind to DNA (155, 156). The 
origin of the above concept and subsequent progress are 
discussed below. 
 
5.1. Our hypothesis on DNA binding of alpha-
Synuclein- genesis of model 

As stated earlier, several studies showed that 
alpha-Synuclein is localized in the chromatin region of 
nuclei in the brain (8-16). This strongly indicated the 
association of alpha-Synuclein with chromatin in the 
nucleus. It was also shown previously that several cationic 
and anionic ligands interact with alpha-Synuclein such as 
polyamines and metals (157, 158). Furthermore, a close 
look into the peculiar primary sequence/structure of alpha-
Synuclein shows presence of several positively charged 
lysine residues at its N-terminus, suggesting a possible 
DNA binding property. It was recently observed that alpha-
Synuclein interacts with histone proteins, a major 
component of chromatin, which modulates its conformation 
and aggregation properties (14). We thought it is interesting 
to investigate the DNA binding property of alpha-
Synuclein and study the effect of DNA binding on alpha-
Synuclein folding/conformation and aggregation properties. 
Moreover, we had previously observed DNA binding of 
amyloid beta peptides, which led us to examine alpha-
Synuclein in similar lines (155, 156). We also proposed 
that understanding the effect of DNA binding on alpha-
Synuclein stability, conformation and fibrillation could lead 
to a better understanding of PD pathogenesis and could also 
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be exploited for DNA binding based therapeutic 
interventions. 
 
5.2. New evidence for DNA binding property of alpha-
Synuclein 

We first time demonstrated that alpha-Synuclein 
binds to DNA in vitro, a new and novel property of alpha-
Synuclein (17-19). This was independently confirmed by 
other groups as well (20). This is the first report on DNA 
binding property/ability of alpha-Synuclein and presents an 
interesting curiosity about the implications of this property 
in PD. The association of DNA with alpha-Synuclein is not 
limited to wild-type protein. Familial mutants A53T and 
A30P also showed DNA binding (20). Numerous studies 
have demonstrated that various intracellular factors affect 
folding and fibrillation properties of alpha-Synuclein. 
Histones, one of the important components of chromatin 
was shown to specifically interact with alpha-Synuclein 
and significantly stimulate its aggregation (14). DNA being 
another component of chromatin, its interaction with alpha-
Synuclein strongly suggests an important role of alpha-
Synuclein in the nucleus. The possible mechanisms and 
implications of alpha-Synuclein-DNA interactions are 
discussed below. 
 
5.3. alpha-Synuclein affects DNA conformation 

Circular dichroism (CD) spectra of alpha-
Synuclein-supercoiled DNA complex demonstrated a 
strong binding of alpha-Synuclein to supercoiled DNA, 
causing a conformational change from the B-form of DNA 
to an altered B-form (17). It was further shown that alpha-
Synuclein uncoils supercoiled DNA to open cicular form. 
Differential sensitivity of synuclein-supercoiled DNA 
complex to chloroquine induced topoisomers separation 
compared to DNA alone suggested destabilization of DNA 
by alpha-Synuclein (17). The modulation of DNA 
conformation and stability by alpha-Synuclein could be 
important in PD pathology as it may affect DNA 
transactions such as replication and transcription and hasten 
accumulation of DNA damage. However, considering that 
alpha Synuclein is expressed ubiquitously in the brain, the 
question arises, if this interaction could eventually take 
place in any other brain region not affected during PD? Or 
is there brain region selectivity?. Our recent observations 
show that the most pathological, misfolded form of alpha 
Synuclein found in dopaminergic neurons exhibit 
significantly higher DNA binding and damage activity 
compared to the native monomeric form found in normal 
brain which suggests that the DNA interaction of  alpha 
Synuclein might be higher in PD affected brain regions (18, 
122); Hegde et al., unpublished observation). 

 
A plausible scenario for DNA binding to alpha-

Synuclein could be as follows: It appears that initially on 
mixing with alpha-Synuclein in solution, alpha-Synuclein 
monomers interact electrostatically with DNA phosphate 
groups. DNA interacts possibly with the positively charged 
lysine side chains located predominantly in the N-terminal 
and partly in the central region of alpha-Synuclein 
sequence. Because it is highly unlikely to bind to the C-
terminal end of alpha-Synuclein which is rich in negatively 
charged amino acid residues (20). These electrostatic 

interactions may lead to (i) formation of non-sequence 
specific complex of alpha-Synuclein with DNA, and (ii) 
increase in the local concentration of alpha-Synuclein on 
DNA (20). Once alpha-Synuclein binds to DNA by 
electrostatic forces, there could be a conformational change 
in alpha-Synuclein making the protein enzymatically bind 
to DNA. 
 
5.4. DNA induced folding of alpha-Synuclein 

We observed that various DNAs significantly 
modulate conformation and fibrillation properties of alpha-
Synuclein. Single strand circular DNA binding to native, 
random coiled alpha-Synuclein resulted in about 80% 
increase in alpha-helix content of the protein (19). 
Although, double strand circular DNA also bound to alpha-
Synuclein, it did not change its conformation, indicating 
specificity of single strand DNA binding. However, 
supercoiled plasmid DNA caused a biphasic 
conformational transition in alpha-Synuclein. On 
immediate mixing of the DNA and alpha-Synuclein a 
partial folding was induced in alpha-Synuclein, while 
alpha-helix conformation was formed on long term 
incubation (19). 

 
We also provided interesting insight on sequence 

specific binding affinity of DNA to alpha-Synuclein. Poly 
d(GC).d(GC) caused a partially folded conformation, where 
as poly d(AT).d(AT) binding to alpha-Synuclein did not 
result in any such conformational transition. It was further 
observed using GC- and AT-specific 8-mer 
oligonucleotides that only d(GCGCGCGC) induced a 
partial folding in alpha-Synuclein. Interestingly, 
d(GCATGCAT) also induced a partial folding in alpha-
Synuclein,while, d(ATATATAT) did not. Closer 
examination of the CD data indicated that the folding 
induced by d(GCGCGCGC) was more in magnitude 
compared to d(GCATGCAT). 

 
The effect of binding of large genomic DNA 

(lamda and Calf-thymus DNA) on alpha-Synuclein 
conformations showed that both these genomic DNA 
caused the formation of a partially folded structure in 
alpha-Synuclein. However, the amount of folding induced 
by lamda DNA was more when compared to calf-thymus 
DNA. The GC content of calf-thymus DNA is ~70%, while 
for lamda DNA it is ~42% which should explain the 
differential ability of calf-thymus and lamda DNA in 
inducing conformational transition in alpha-Synuclein. 

 
The above studies from our lab indicated 

specificity of single stranded DNA and GC sequence in 
inducing folding in alpha-Synuclein. It appears that the 
DNA binding to alpha-Synuclein is mediated through 
electrostatic interaction between negatively charged 
phosphate groups of DNA and the epsilon amino group of 
lysine aminoacids in alpha-Synuclein. The DNA molecule 
is richly negatively charged on its surface as it is laced with 
phosphate groups, where as alpha-Synuclein has 15 basic 
lysine residues which are mostly clustered in the N-
terminal of its sequence. The neutralization of basic charge 
on epsilon amino group side chain of lysine residues will 
reduce the repulsion between the like charges in the N-
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terminal end of alpha-Synuclein and this appears to be the 
driving force in inducing DNA mediated folding in the 
protein. Studies have shown that the N-terminal half of 
alpha-Synuclein sequence has a very high propensity to 
form ordered conformation (112). 
 
5.5. alpha-Synuclein aggregation and DNA binding 

Previous studies have shown that the 
transformation of alpha-Synuclein into a partially folded 
conformation (induced by pH or temperature or metal ions) 
is strongly correlated with the enhanced formation of alpha-
Synuclein fibrils (157, 159). alpha-Synuclein is a natively 
unfolded protein with little or no ordered structure under 
physiological conditions. At neutral pH, it is calculated to 
have 24 negative charges (15 of which are localized in the 
last third of the protein sequence), leading to a strong 
electrostatic repulsion, which hinders the folding of alpha-
Synuclein (157). As a consequence of the structural 
flexibility of alpha-Synuclein, many diverse ligands change 
its conformation and modulate its aggregation property 
(20). Generally, transition from random coiled alpha-
Synuclein to partially folded conformation accelerates the 
fibrillation reaction, while stabilizing alpha-Synuclein in to 
alpha-helix-rich conformation delays fibrillation. 
Aggregation or self-association is a characteristic property 
of a partially folded (denatured) proteins and most 
aggregating protein systems probably involve a transient 
partially folded intermediate as the key precursor of 
fibrillation (160, 161). It has also been shown that in some 
cases the self-association induces additional structure and 
stability in the partially folded intermediates. 

 
Recently it was shown that double stranded DNA 

promotes aggregation of alpha-Synuclein (20). They 
showed that the morphology of the fibrils remains 
unchanged in the presence of linear double stranded DNA. 
In this context, we analyzed the aggregation propensity of 
alpha-Synuclein in the presence of different DNAs which 
induce partially folded conformation and also alpha-helix. 
Our studies showed that DNA induced aggregation of 
alpha-Synuclein correlated with the ability of that DNA to 
induce partially folded conformation in alpha-Synuclein 
(19). DNA which   induced   partial folding in alpha-
Synuclein such as GC-rich oligonucleotides resulted in a 
very substantial acceleration of the kinetics of aggregation 
indicated by a shorter lag time and a larger rate of fibril 
formation compared to alpha-Synuclein alone. However, 
single-strand circular DNA which formed alpha-helix 
conformation in alpha-Synuclein delayed the aggregation 
significantly by nearly ~25 hrs. The structure of alpha-
Synuclein aggregates/ fibrils were qualitatively similar in 
the presence or absence of DNA. 

 
Similar observations were made by Uversky et 

al, (162), where they showed that trimethylamine-N-oxide 
(TMAO) induces a partial folding and acceleration of 
fibrillization in alpha-Synuclein at low concentrations, 
where as, at high concentrations causes the formation of 
alpha-helix conformation and inhibits aggregation to a 
considerable extent. Our results are in agreement with 
Uversky et al., (162). Hence, it appears that a partially 

folded intermediate conformation is a very critical step in 
alpha-Synuclein aggregation pathway. 

 
The possible mechanisms of double stranded 

DNA promoting alpha-Synuclein fibrillation has been 
proposed recently by Cherny et al., (20). The authors 
observed that neuronal nuclear inclusions potentially 
account for a significant fraction of the total amount of 
alpha-Synuclein in a cell. Hence, minute variations in local 
alpha-Synuclein concentrations or the presence of factors 
enhancing its fibrillation, e.g., DNA or histones, may 
stimulate the aggregation of alpha-Synuclein significantly. 
It was further proposed that effective mechanisms 
preventing occasional conversion of a soluble alpha-
Synuclein into insoluble isoforms must exist in both 
cytoplasm and nucleus (20). We provided a comprehensive 
picture of DNA binding effect on alpha-Synuclein 
fibrillation using different DNAs such as double and single 
stranded DNA, AT and GC sequence specific DNA of 
different sizes etc and showed that only those DNA which 
induce a partial folding in alpha-Synuclein promote its 
aggregation, while, single strand circular DNA forms 
alpha-helix conformation in alpha-Synuclein and inhibits 
aggregation to a considerable extent. Hence, we feel that 
extrapolation of in vitro results on DNA binding property 
of alpha-Synuclein to in vivo system in PD has to be more 
cautiously done. 

 
We used effect of osmolytes on alpha-Synuclein 

conformation to understand the mechanism of DNA 
induced folding/fibrillation of alpha-Synuclein (19). 
Osmolytes such as TMAO, Betaine, sarcosine converted 
natively unfolded alpha-Synuclein to partially folded form 
which accelerated the kinetics of fibrillation. The ability of 
DNA and osmolytes in inducing conformational transition 
in alpha-Synuclein, indicates that two factors are critical in 
modulating alpha-Synuclein folding: (i) Electrostatic 
interaction as in the case of DNA, and (ii) Hydrophobic 
interactions as in the case of osmolytes.  
 
6. OUR MODEL ON ALPHA-SYNUCLEIN 
GENOTOXICITY 
 

We propose alpha-Synuclein-mediated 
genotoxicity as one of the key underlying mechanisms of 
disease progression in the PD. Normally alpha-Synuclein is 
in random coil conformation in aqueous solutions in vitro. 
It is suggested that free alpha-Synuclein in neuronal 
cytoplasm may also be in random coil conformation. 
However, in association with membranes alpha-Synuclein 
is in alpha-helix-rich conformation. alpha-Synuclein is 
diversly/unevenly distributed in various subcellular mileu 
such as cytoplasm, presynaptic terminus, nucleus, 
endoplasmic reticulum and mitochondria (16). The factors 
that govern alpha-Synuclein distribution in cell are not fully 
understood. However it is known that oxidative stress and 
other cytological scenario that exists in PD such as metal 
toxicity may modulate alpha-Synuclein subcellular 
translocation significantly, especially the nuclear alpha-
Synuclein, because these factors greatly affect the 
permeability of membranes. 
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Several studies have reported higher levels of 
iron (Fe) and other transition metals in PD brain substantia 
nigra, the main target of PD (41). However, how a 
specific increase in the total Fe content of SN should occur 
in PD is not understood (163, 164). It has been argued that 
the increased Fe levels with the severity of 
neuropathological changes in PD are presumably due to 
increased transport through the BBB (165). Furthermore, in 
PD the increased total Fe level in SN was not associated 
with a compensatory increase in ferritin; instead the brain 
ferritin immunoreactivity was decreased (166). Hence the 
increased Fe load in PD may exceed the storage capacity of 
available ferritin, leading to excess reactive Fe, driving free 
radical generation. In the presence of these metals alpha-
Synuclein acquires a misfolded or partially folded 
conformation and promote aggregation in vitro (159). We 
hypothesized that the partially folded or misfolded alpha-
Synuclein induced by metals may not bind to vesicle 
membrane lipids as it does in normal brain. In addition, it 
was observed that one of the familial mutant alpha-
Synucleins, A30P completely abolished membrane-binding 
property of alpha-Synuclein (105). Hence, the disruption in 
membrane binding resulting from increase in metals and 
mutations in familial PD would result in the increase in free 
alpha-Synuclein (partially folded or unfolded native 
conformation) levels in cell. This possibly triggers the 
increase in precursor for alpha-Synuclein aggregation in 
PD (17). In addition to the accumulating evidence for 
normal nuclear localization of alpha-Synuclein, the 
increased oxidative stress and altered permeability of 
nuclear membrane could ensure significant amount of 
alpha-Synuclein in the nucleus. In the nucleus it exerts 
toxic role by altering chromatin organization or by directly 
binding to DNA or by both. alpha-Synuclein can bind to 
the histone proteins and affect their normal functioning of 
maintaining the chromatin integrity. As histones loss their 
function, chromatin will open up exposing DNA to alpha-
Synuclein and other targets. Now the transcription factors 
or inhibitors can bind to DNA altering the gene expression. 
alpha-Synuclein can itself bind to DNA and relax the 
supercoils in the DNA molecule and can induce a 
conformational change, which may further affect the gene 
expression profile. The altered gene expressions finally 
lead to altered neuronal cell metabolism leading to cell 
death. Besides, DNA induced partial folding in alpha-
Synuclein enhances its toxicity to the cell. Several studies 
have shown that partially folded intermediate form of 
alpha-Synuclein is more toxic than monomers or 
aggregates. Partially folded alpha-Synuclein has higher 
aggregation propensity and in PD the presence of metals 
and other free radicals can further stimulate the aggregation 
process. The aggregated protein can disrupt several 
processes in the nucleus including gene expression and 
DNA functioning. Our model on alpha-Synuclein 
Genotoxicity is represented in Figure 3. 
 
7. IS DNA BINDING COMMON PROPERTY OF 
MANY AMYLOIDOGENIC PROTEINS? 
 

It has been widely reported by us and others, that 
nucleic acids interact with different amyloid peptides such 
as beta-amyloid, tau protein, prion peptides and alpha-

Synuclein and modulate their folding and aggregation 
kinetics (19, 155, 156, 167-175).  In many cases double 
stranded DNA accelerated the kinetics of fibrillation. 
However, an extensive study by us on alpha-Synuclein 
showed that the effect was dependent on the structure of 
DNA (19). Nandi group by several well designed studies 
showed that nucleic acids can induce structural changes to 
beta-sheet rich conformation in prion peptides by forming 
stable complexes, which catalyzes/modulates their 
polymerization (168, 172, 173). Association of Abeta (1-
40) and Abeta (25-35) with double stranded DNA was 
detected (169). Abeta (25-35) was shown to cause 
formation of open circular DNA from supercoiled DNA in 
presence of ferrous ions (170). We have recently observed 
binding of Abeta (1-42) and Abeta (1-16) peptides with 
supercoiled DNA and their ability to convert supercoiled 
DNA into open circular form (155). Our lab showed that 
Abeta (1-42) can directly inflict DNA nicking which could 
contribute DNA damage associated in AD brain (156, 176). 
In similar lines latest studies from our lab shows DNA 
single-strand breaks directly induced by alpha-Synuclein in 
its partially folded form (19); Hegde et al., unpublished 
observation). 

 
The above scenario suggests that DNA binding 

could be a normal property of many amyloid-forming 
proteins associated with diverse neurodegenerative 
disorders. However, at this stage it is hard to pin down 
whether DNA binding contributes to PD pathology as a 
major causative phenomenon or if it is just a consequence 
of the disease process where non specific nuclear 
transportaion of amyloid proteins result in DNA binding. 
We feel that a parallel approach to DNA binding of these 
amyloid proteins in several neurodegenerative diseases may 
yield better results. In addition, the finding of insoluble 
protein-containing materials in different neuronal and glial 
cell populations in a broad range of syndromes suggests 
that many of these disorders have something in common 
(177). Even though these syndromes express different 
symptoms and lesions, the mechanisms underlying filament 
formation may be similar. The assembly of normally 
soluble protein subunits into insoluble filaments in these 
diseases does not normally occur in healthy brain. Hence, 
another way to approach these disorders is to consider the 
disease state as one of an abnormality in protein 
metabolism. Future research efforts will pursue molecular 
analyses of shared protein abnormalities across several 
disorders. This approach should provide insights into 
disease mechanisms underlying one or more degenerative 
disorders characterized by abundant filamentous lesions. 
 
8. BIOLOGICAL SIGNIFICANCE OF DNA BINDING 
OF ALPHA-SYNUCLEIN 
 

Structurally, purified alpha-Synuclein is a 
natively unfolded protein (17, 113, 159, 178). This lack of 
folding has been shown to correlate with the specific 
combinations of low overall hydrophobicity and large net 
charge (179-181). In vitro, alpha-Synuclein readily 
assembles in to fibrils, with morphologies and staining 
characteristics similar to those of fibrils extracted from PD 
affected brain (90, 91, 119, 159, 182-188).
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Figure 3. Our model on genotoxicity of alpha-Synuclein: During stress conditions, there is increased transportation of alpha-
Synuclein into the nucleus. In the nucleus, alpha-Synuclein can directly interact with histones or inhibits histone acetylation 
affecting the chromatin organization. alpha-Synuclein can bind to DNA and alter the conformation of DNA, relax supercoiling of 
DNA. Change in chromatin organization, conformation of DNA and supercoil relaxation may lead to altered gene expression. 
alpha-Synuclein in the presence of Fe(II) can generate reactive oxygen species and induce DNA damage. Altered gene expression 
and DNA damage lead to neuronal cell death. 

 
The physiological significance of DNA induced 

alpha-Synuclein conformation and modulation of its 
assembly/ fibrillation is unclear at the present time. However, 
emerging lucid evidences for the presence of alpha-Synuclein 
in neuronal nuclei indicates that the DNA binding activity of 
alpha-Synuclein may not be a mere non-specific phenomenon 
and may have very significant role to play in neuronal cell 
death in PD through DNA instability. It will be evocative to 
speculate the potential implications of the in vitro findings on 
DNA binding of amyloid proteins to neurodegenerative 
changes associated with PD. Goers et al., (14) provided 
evidence for the co-localization of alpha-Synuclein with 
histones in the nuclei of nigral neurons from mice exposed 
to a toxic insult. The authors observed that histones 
stimulate alpha-Synuclein fibrillation in vitro (14). These 
studies further strongly suggested association of alpha-
Synuclein with chromatin. 

Cherny et al., proposed that alpha-Synuclein may 
interact with histone-free, transcriptionally active DNA 
segments and hence may lead to a decreased transcriptional 
activity of some genes responding to environmental stimuli 
(20). It is suggested that the interactions of alpha-Synuclein 
with DNA and histones may function to regulate gene 
expressions. 

 
Interestingly, a recent study involving semi-

quantitaive analysis of alpha-Synuclein in subcellular pools 
of rat brain neurons showed that there is a significant 
fraction of alpha-Synuclein in the nuclear compartment 
(16). They used immunogold electron microscopic 
technique with a C-terminal specific antibody. It was 
shown that alpha-Synuclein-positive gold particles were 
unevenly distributed in different subcellular compartnets. 
The density was relatively greater in presynaptic terminals 



Alpha-synuclein-DNA interactions 

428 

and nucleus.  In this perspective, association of alpha-
Synuclein with chromatin attains significance. alpha-
Synuclein-induced changes in DNA conformation may 
affect gene expression pattern in affected neurons. In 
addition, DNA induced folding and modulation of 
fibrillation property may have special pathophysiological 
significance and contribute enormously to the accumulation 
DNA damage in degenerative neurons and lead to cell 
death. 
 
9. ALTERNATIVE VIEW: ALPHA-SYNUCLEIN 
AND NEUROPROTECTION 
 

 Several lines of evidences suggest alpha-
Synuclein toxicity in PD, however, an alternative debate for 
the neuroprotective role of alpha-Synuclein in PD is 
emerging (189, 190). Although, alpha-Synuclein 
accumulation in the form of aggregates in dopaminergic 
neurons is a common pathological feature in PD, the 
precise mechanism of how this aggregation process is 
triggered? Or how the protein aggregates cause neuronal 
degeneration is still obscure. Furthermore, some studies 
have failed to show consistant results for neurotoxicity of 
alpha-Synuclein (191-194) and few studies also suggested 
that alpha-Synuclein may play a neuroprotective role (191, 
195). 

 
In other words, there is a school of thoughts 

which argues that alpha-Synuclein has a normal function in 
normal brain, but in response to environmental or 
endogenous stimulus it aggregates as a neuroprotective 
response or as a passive response to pathological events. 
For instance, oxidative stress caused by the herbicide 
paraquat results in alpha-Synuclein aggregation in the 
brains of experimental animals and this increased 
expression and aggregation of alpha-Synuclein was 
neuroprotective (195). Studies showed that various 
neurotoxins including MPTP and rotenone increase alpha-
Synuclein expression in brain (196, 197). These 
observations lead a group of researchers to suggest that the 
increased alpha-Synuclein expression may represent an 
adaptive homeostatic regulatory response to toxic stimuli 
(189). In support of this, overexpression of alpha-Synuclein 
in transgenic mice does not consistantly result in neuronal 
damage (192, 193), nor does it mimic MPTP induced 
neurodegeneration completely (198). 

 
Similarly, other amyloidogenic proteins involved 

in neurodegenerative pathologies, such as, amyloid beta 
peptides in AD and prion proteins in prion diseases could 
have neuroprotective properties. These observations need 
to be considered when developing therapies to PD and 
other neurodegenerative diseases. In other words, therapy 
should be targetted at the cause of the disease rather than 
the end result (protein aggregates), unless it is conclusively 
proved that dissolving/eradicating protein aggregation 
improves the disease symptoms. 

 
As discussed elsewhere in this article, it is not 

clear whether the recently discovered DNA binding 
property of alpha-Synuclein contributes to the cause of PD 
pathology or it is a passive secondary response of neurons 

affected by PD. These studies have to be addressed as toxic 
vs. protective responses in PD. 
 
10. PERSPECTIVES AND FUTURE DIRECTIONS 
 

DNA binding effect on alpha-Synuclein 
fibrillation using different DNAs such as double and single 
stranded DNA, AT and GC sequence specific DNA, of 
different sizes, genomic DNA etc, showed that only those 
DNA which induce a partial folding in alpha-Synuclein 
(GC* rich DNA) promote its aggregation, while, single-
strand circular DNA forms alpha-helix conformation in 
alpha-Synuclein and also inhibit aggregation to a 
considerable extent. 

 
We propose two dimensions to the DNA binding 

property of alpha-Synuclein. Firstly, it could imply an 
important pathological role for nuclear translocated alpha-
Synuclein, irrespective of whether alpha-Synuclein enters 
nucleus by active process or by non-specific means during 
PD pathology. Secondly, stabilization of alpha-Synuclein in 
helix-rich conformation by single-strand circular DNA that 
delays aggregation kinetics and or reduces the formation of 
toxic partially folded intermediates may be of significance 
in engineering DNA-chip based therapeutic approaches to 
PD and other amyloid disorders. 

 
Future studies should focus on establishing the 

DNA binding of alpha-Synuclein and other amyloidogenic 
proteins in vivo, in cells and also using animal models. 
Studies may also be done in post mortem human brain 
tissue. It is also essential to understand the mechanism of 
the property more thoroughly using different DNAs, which 
will help design DNA based or similar DNA mimicking 
ligands to protect from amyloid toxicity. We also propose 
that it is important to have a parallel approach to study 
neurodegenerative disorders as several features from cause 
to pathology are common to them. 
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