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1. ABSTRACT 
 
 

Photodynamic therapy (PDT) is a clinically 
approved method of tumor treatment. Its unique mechanism 
of action results from minimal invasiveness and high 
selectivity towards transformed cells. However, visible 
light used to excite most photosensitizers has rather limited 
ability to penetrate tissues resulting in insufficient 
destruction of deeply seated malignant cells. Therefore, 
novel strategies for further potentiation of the anticancer 
effectiveness of PDT have been developed. These include 
combined treatments with surgery, chemo- and 
radiotherapy, strategies targeting cytoprotective 
mechanisms induced in PDT-treated cells, as well as 
attempts aimed at enhancement of PDT-mediated antitumor 
immune response. Moreover, new photosensitizers and 
novel light sources are being developed. Impressive 
progress in nanotechnology and understanding of tumor 
cell biology rise hopes for further improvements in this 
elegant and promising method of cancer treatment.  
  

 
 
 
 
 
2. INTRODUCTION  
 

The beginnings of photodynamic therapy (PDT) 
date back to the end of the XIXth century when Oscar Raab 
observed killing of light exposed microorganisms incubated 
with acridyne dyes (1). Few years later PDT was used for 
the first time in the treatment of human cancer by von 
Tappeiner and Jesionek who cured a skin tumor using a 
combination of eosine and visible light (2). 
Hematoporphyrin derivative (HPD) isolated from porcine 
blood was the first photosensitizer (PS) approved for 
human use (3). Its further derivatization led to the 
development of Photofrin - a potent PS successfully tested 
in 1970s in the treatment of human cancers by Dr. Thomas 
Dougherty who is considered one of the pioneers of 
modern PDT. However, it is a photosensitizing 
protoporphyrin IX precursor - ALA (delta-aminolaevulinic 
acid) that is nowadays the most widely used for clinical 
PDT.  
 
PDT is a two-step procedure that consists of three 
components: a photosensitizer, light and ground state
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Table 1. Clinically approved and/or tested photosensitizers 
Chemical group Photosensitizer Wavelength (nm) References 
Approved    
Porphyrins or porphyrin precursors Photofrin  630 (140) 
 ALA1 635 (141) 
 ALA esters 635 (142) 
Chlorins Foscan  652 (143) 
 Verteporfin 690 (144) 
In clinical trials    
Chlorins HPPH2 665 (145) 
 Purlytin 660 (146) 
 Talaporfin 660 (147) 
 Fotolon 660 (148) 
Phthalocyanines Silicon phthalocyanine 675 (149) 
Bacteriochlorins TOOKAD 762 (150) 
Texaphyrin Motexafin lutetium 732 (151) 

Abbreviations: 1ALA - delta-aminolaevulinic acid, 2HPPH - 2-[1-Hexyloxyethyl]-2 Devinyl Pyropheophorbide-a 
 
oxygen. First, a photosensitizing agent is administered. After 
the time needed for the PS to accumulate in patient's tissues, 
the tumor is irradiated with light of the wavelength 
corresponding to PS absorbance band. At the presence of 
molecular oxygen this cold photochemical reaction leads to 
robust generation of singlet oxygen and, subsequently, reactive 
oxygen species (ROS) such as superoxide ion, hydroxyl 
radical or hydrogen peroxide are formed. These highly reactive 
molecules immediately react with cellular macromolecules 
leading to their oxidative damage and, eventually, to the cell 
death in the mode of necrosis, apoptosis or autophagy. 
Antitumor activity of PDT is dependent not only on its direct 
cytotoxicity but also on disruption of tumor vasculature and 
induction of acute inflammatory response that can further lead 
to the development of systemic immunity (4-5). 

 
In 1993 in Canada PDT with Photofrin was first 

clinically approved for the treatment of the superficial bladder 
cancer. Now PDT is widely used in the treatment of early 
stages of esophageal and bronchial cancers and certain 
precancerous lesions such as Barrett's esophagus as well as in 
the palliative treatment of a number of advanced tumors. The 
list of the indications for the use of PDT is still being expanded 
- the procedure is also registered in some countries for the 
treatment of skin, stomach, cervical and head and neck tumors. 
Ongoing clinical trials might lead to the approval of the use of 
PDT in such challenging malignancies as pleural 
mesothelioma or brain tumors in the nearest future. 

 
3. MAJOR ADVANTAGES AND DISADVANTAGES 
OF PDT - WHAT NEEDS IMPROVEMENT OR 
MIGHT BE IMPROVED?  
 

The dual specificity of PDT is ensured by (i) 
enhanced PS accumulation in tumors and (ii) selective 
illumination of the diseased area. PDT can be safely used 
with standard antitumor therapies such as surgery, chemo- 
and radiotherapy without diminishing their clinical 
efficacy. Moreover, PDT is also effective in the treatment 
of chemo- and radio-resistant tumors. PDT has not been 
reported to be mutagenic since none of the clinically 
approved PS accumulates to the cell nucleus. PDT of skin 
tumors results in excellent cosmetic outcomes. The 
procedure is not harmful to the connective tissue and does 
not induce scaring. Use of PDT in restoring of the 
bronchial or esophageal lumens in advanced tumors 
outweighs standard procedures such as thermoablation and 

enables retention of intact tissue anatomy and function. 
Furthermore, PDT lacks long term and generalized side effects 
common for chemo- or radiotherapy. It is also worth 
mentioning that PDT can be performed in an out-patient 
setting that reduces costs of patient care. The construction of a 
wearable low irradiance organic light-emitting diodes (LEDs) 
improved the ambulatory treatment of non-melanoma skin 
cancers. 
 

Availability of different PS and various light 
sources makes photodynamic therapy a complex and to some 
extent complicated procedure. In majority of cases it needs to 
be optimized for every patient, which might be a non-desirable 
feature for a standard therapy. As none of the clinically 
approved PS is tumor-specific, off-target photosensitivity is a 
clinical problem. For Photofrin, skin photosensitivity lasts up 
to 4-6 weeks and is associated with an increased risk of 
sunburns. The visible light used for PS excitation does not 
penetrate tissues deep enough to eliminate tumor cells in more 
deeply located parts of the tumor. This limits therapeutic 
efficacy and might be the cause of the tumor relapse. For many 
years PDT has been considered to be an expensive therapy due 
to high prices of PS and light sources. Currently, the latter is 
not a significant problem since light sources such as LEDs are 
available at reasonable prices. 
 
 There is a myriad of research directions that might 
result in improved clinical efficacy of PDT. This review 
focuses only on few of them, such as search for new 
photosensitizers, development of new light sources, targeting 
cytoprotective mechanisms induced in PDT-treated tumor 
cells, establishing more effective combined treatments utilizing 
PDT, enhancement of the PDT-induced immune response and, 
finally, new nanotechnology-based techniques. 
 
4. NEW PHOTOSENSITIZERS  
 

Today, over a dozen of photosensitizers are 
approved for human use or tested in clinical trials. PS 
belong to several structural groups such as porphyrins 
(Photofrin) or their precursors (ALA, ALA esters), chlorins 
(Foscan, Verteporfin, Purlytin, Fotolon or Talaporfin), 
bacteriochlorins (TOOKAD), and texaphyrins (LuTex) 
(Table 1). All these PS are excited with light of wavelength 
between 630 and 760 nm, but so far none is considered an 
ideal compound to be used in photodynamic therapy.  
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 The most important features of an ideal 
photosensitizer determined by optimal photophysical and 
photochemical properties are: (i) high potency, (ii) long 
absorption wavelength, (iii) good pharmacokinetics, (iv) high 
degree of tumor tissue selectivity, and (v) minimal systemic 
toxicity. The molar absorption coefficient, quantum yield of 
triplet formation and triplet state life-time are the parameters 
that account for the PS efficiency in singlet oxygen and ROS 
generation, so the higher they are, the lower PS and light doses 
are required to achieve a robust response (6). The optical 
window for light corresponds to the range between 600-850 
nm. The low energy limit is dictated by the minimal energy of 
the triplet state sufficient to produce singlet oxygen, while the 
high energy limit is restricted by the tissue penetration depth, 
since human tissues are more transparent for longer 
wavelengths. The fate of a compound in the organism strongly 
depends on its hydrophobicity. It determines not only tissue 
penetration by a PS but also its half-life and clearance and thus 
influences the undesirable systemic phototoxicity. Finally, the 
obligatory feature of an ideal PS is its selectivity towards 
cancer cells in comparison with normal tissues. It restricts the 
photo-damage to malignant cells, enables the use of lower PS 
concentration and limits off-target side effects (7). Ironically, 
the optimization of one feature usually causes the worsening of 
the other. For instance, the increase of a PS hydrophobicity can 
result in its longer half-life in plasma, slower clearance, and 
prolonged post-treatment photosensitivity, but it usually 
increases PS selectivity towards tumor cells.  
 
 The clinical success of PDT is strongly dependent 
on PS characteristics. Therefore there are extensive studies 
aimed to improve them. Modifications involve chemical 
alterations of the existing moieties, attachment of polymers and 
biomolecules, development of new formulations and carrier 
systems and search for new chemicals with photosensitizing 
properties (8). Some of these improvements are discussed 
below. 
 
 The attachment of small molecule functional groups 
to existing scaffolds is the oldest and most widely exploited 
approach of PS improvement. In an approved PS Foscan, the 
modification of chlorin scaffold with amphyphylic 
hydroxyphenyl groups, results in high singlet oxygen yield, 
relatively high hydrophobicity, but prolonged skin sensitivity 
(9). More hydrophylic metalloporphyrin modifications, like in 
TOOKAD (10), or anionic lutetium texaphyrin derivative 
Lutrin (11) are characterized by deeper tissue penetration, 
higher water solubility, reduced plasma half-life and lead to 
decreased retention in tissues and skin light hypersensitivity. 
Phthalocyanine derivatives containing alkyl chains (12), bulky 
substituents (13) or polyamines (14) are good examples of 
successful modification in order to balance their 
hydrophilic/hydrophobic characteristics. The increase of the 
amphyphylic nature of the zinc-phthalocyanines with bulky 1-
napthol-5-sulphonic acid prevents their aggregation and 
contributes to improved photodynamic properties. 
 
 The attachment of polymers, ligands and 
biomolecules is a more complex PS modification. Coupling 
chlorines with polyethylene glycol (15), beta-cyclodextrins 
(16) or with albumin (17) outstandingly improves tissue 
penetration, solubility and other properties of the PS. In 

order to increase tumor tissue selectivity, there are attempts 
to conjugate PS with ligands for receptors that are 
preferentially distributed on the surface of tumor cells, such 
as folate (18) or LDL (19), which direct them to cancer 
cells and reduce non-specific normal tissue retention and 
toxicity. Finally, the conjugates of PS with monoclonal 
antibodies targeting tumor-associated antigens (TAA) are 
being evaluated in preclinical experiments with some 
promising results (20). However, these large complexes 
have limited ability to reach solid tumors, therefore 
conjugates with antibody fragments are possibly a better 
option (21). 
 
 Another way of PS delivery which improves 
tumor tissue selectivity is the use of molecular carriers, 
such as liposomes, ethosomes and nanoparticles (22-23). 
New cationic liposome-based formulations containing 
chlorine-based Foscan demonstrate high degree of 
selectivity towards malignant gliomas (24). It is worth 
mentioning that these special carriers ameliorate not only 
selectivity but also general tissue penetration, especially as 
far as hydrophilic sensitizers such as ALA are concerned 
(22). 
 
 Recently there are attempts to apply 
semiconductor quantum dots (QD) as potential new PS. 
Theoretically they are able to generate singlet oxygen 
directly via TET (Triplet Energy Transfer) or indirectly via 
FRET (Förster Resonance Energy Transfer) by activating 
PS molecule conjugated with them (25-26). Noteworthy, 
the absorption wavelength of QD can be adjusted by simple 
change of their size, shape and composition, making them 
versatile tools for PDT. However, important issues of 
toxicity (most QD contain heavy metals) currently preclude 
their clinical use. However, recently developed heavy 
metal-free quantum dots showing bright emissions in the 
visible and near infra-red region of the spectrum can 
eliminate these problems. Fullerens are another type of 
nanoparticles considered as potential photosensitizers. Due 
to absolute water insolubility they have to be modified with 
hydrophilic groups. Their potency and the mechanisms of 
cancer cell killing are currently under investigation (27). 
 
5. NEW LIGHT SOURCES 
 

Another consideration relevant to development of 
PDT is associated with the use of new light sources and 
better modes of light delivery. Pump dye lasers, diode 
lasers, lamps with appropriate optical filters as well as 
light-emitting diodes are currently being used in PDT (28). 
Due to the development of fiber optics light can be 
successfully delivered to virtually any organ. Significant 
progress in LED technology enabled design of small 
sources suitable for ambulatory PDT. Moreover, due to the 
construction of optical fibers equipped with diffusing tips 
light can be easily delivered to the lumen of the digestive 
tract or to the urinary bladder.  
 

Recently, novel and intriguing solutions have 
been proposed to improve PDT including 
chemiluminescence PDT (CL-PDT) already tested in vitro 
(29). Chemiluminescence defines light generation in a 
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chemical reaction that might be catalyzed by various 
enzymes such as firefly luciferase - an enzyme oxidizing 
D-luciferin to oxyluciferin. With this technique light can be 
generated strictly within the tumor cells. In luciferase gene-
transfected NIH3T3 murine fibroblasts Rose Bengal 
excitation induced cytotoxic effects which were restricted 
only to the transgene-expressing, but not bystander cells. 
This technique might serve as a challenging alternative 
superior to current PDT in terms of its selectivity (29). 
Similar approach led to the development of PhoTO-Gal, a 
thiazole orange (TO)-based photosensitizer, which is 
activated by beta-galactosidase (Gal). PhoTO-Gal was 
demonstrated to kill beta-Gal-expressing HEK293 cells but 
not the cells lacking the enzyme. PDT with such novel 
photosensitizers can result not only in attenuated and 
prolonged light sensitivity but might also serve as a handy 
tool for reporter enzyme expression-specific cell killing 
(30). 

 
A novel light sources that have been recently 

developed can split light beam into two, four or even eight 
separate beams of equal power with only minor total power 
loss (31). Such devices allow several beams of light to be 
independently distributed and can be used for PDT in 
patients with either numerous small adjacent tumors or a 
single tumor of a large size.  

 
Wilson et al. reported on the development of two 

tetherless, fiber-coupled optical light sources based on 
diode lasers or LEDs for in vivo delivery of interstitial 
metronomic PDT (mPDT – a novel PDT-based technology 
discussed below) (32). The latter light-emitting device is 
ultralight and weighs only 16,5 g. The prototypes have 
been well tolerated in preliminary trials in tumor-
bearing rats and have been shown to provide stable 
levels of continuous performance for up to 5 days. 
Being tetherless (all components such as light source, 
battery, circuitry, fiber and fiber coupling are contained 
within a self-cooling package) they can be easily and 
continuously worn by animals for several days. 

 
PDT seems to be an ideal treatment modality 

to be administered and performed in an out-patient 
settings. A portable LED devices for PDT of skin 
tumors meet these needs (33). A prototype diode array, 
weighing approximately 21g is comprised of 37 diodes 
cast in an epoxy core, a diffuser, a timer and a battery 
pack serving as a power source. This device can be 
easily attached to the surface above the tumor and the 
patient may safely return home. The illumination will be 
initiated after the time needed for the PS accumulation in 
tumor. This solution spares time of the healthcare staff and 
significantly lowers costs of the therapy. A recent open 
pilot study showed that PDT utilizing a similar device 
composed of organic LEDs was associated with lower pain 
comparing with traditional PDT (34).  

 
Two-photon PDT (briefly discussed below) 

promoted the development of femtosecond lasers 
delivering pulses of light of 800 nm wavelength at 
1 kHz frequency (35). Such pulses provide the 
necessary high peak power (kW-MW) while still 

maintain low average power that prevents photothermal 
damage of healthy tissues.  

Luminescent semiconductor nanocrystals also 
known as quantum dots (QDs) demonstrate some unique 
and fascinating optical properties such as sharp and 
symmetrical emission spectra, high quantum yields, broad 
absorption spectra, good chemical- and photo-stability and 
the ability of the emitted wavelength tuning. Moreover, the 
photoluminescence of QDs is exceptionally bright and 
stable (36-37). Their challenging characteristics might be 
desirable for the use of QDs as alternate light sources in 
PDT. 

 
Recently, a novel combination of radiation- and 

photodynamic therapy in the mode of Self Lightning 
Photodynamic Therapy (SLPDT) has been developed (38). 
In this technique, nanoparticles (NP) emitting scintillation 
or persistent luminescence attached to phtotosensitizers can 
be used as in vivo PDT agents. Upon exposure to ionizing 
radiation NPs emit scintillation luminescence, which 
further activates PS. As a consequence, singlet oxygen is 
produced enhancing ionizing radiation-mediated cell 
killing. Since luminescence emitted by NPs is persistent, 
short-time exposure to X-rays can be followed by 
prolonged PS excitation. In this setting no external light 
source is required to trigger photodynamic reaction (38-39). 
 
6. TARGETING CYTOPROTECTIVE 
MECHANISMS IN PDT-TREATED CELLS  
 

Although PDT is generally considered to be a 
potent, selective, and safe anticancer therapy, it is usually 
not efficient in long-lasting tumor control. At least to some 
extent this limitation results from induction of 
cytoprotective mechanisms, which help tumor cells to 
survive PDT-triggered oxidative stress. Identification and 
targeting of these rescue reactions turned out to be an 
attractive strategy for augmentation of antitumor effects of 
PDT.  
 
6.1. ROS-scavenging enzymes 

Singlet oxygen and reactive oxygen species 
contribute directly to the cytotoxic activity of PDT. Thus, 
PDT-mediated induction of ROS-scavenging enzymes 
serves as a potent cytoprotective mechanism limiting PDT 
effectiveness and promoting tumor cells survival. In 
mammalian cells, superoxide dismutase (SOD) and catalase 
are the primary antioxidants that do not require glutathione 
for their function, while secondary antioxidants 
(glutathione peroxidases, glutathione-S-transferases, 
thioredoxin/thioredoxin reductase system, peroxiredoxins) 
rely on glutathione availability (40). 
 
 Superoxide dismutase catalyzes the reaction 
which turns superoxide anion into less toxic products: 
hydrogen peroxide and oxygen (41). SOD activity was 
shown to be induced by PDT and to protect tumor cells 
from PDT-induced cytotoxicity. Inhibition of this enzyme 
seems to be a reasonable approach for potentiating of 
antitumor PDT efficacy (42). Sodium 
diethyldithiocarbamate, a SOD inhibitor, was shown to 
augment cutaneous photosensitization (43). Moreover, 
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treatment of cancer cells with 2-metoxyestradiol, an 
endogenous estrogen metabolite and the SOD inhibitor, 
significantly augmented antitumor activity of PDT both in 
vitro and in vivo (42). Catalase, the main hydrogen 
peroxide-removing enzyme converting it into water and 
oxygen, also plays a cytoprotective role in PDT-induced 
oxidative stress. However, in the majority of published 
studies only exogenous enzyme was used thus the role of 
endogenous catalase in PDT resistance has not been 
completely determined (44). 
 
 The glutathione activity-associated antioxidant 
systems regulate cellular redox balance due to the ease of 
thiol groups oxidation and the rapidity of their 
regeneration. A number of studies have shown a protective 
role of thiol groups in PDT-treated cells (45). The repair of 
lipid peroxides (LOOHs) generated in cellular lipid bilayers 
upon oxidative injury is probably the most important role 
of the glutathione-dependent systems in protection from 
PDT-induced damage (46). Depletion of glutathione with 
buthionine sulfoximine significantly potentiates the 
antitumor effects of PDT both in vitro and in vivo (45). 
Low-dose ALA-PDT was shown to induce thioredoxin 
(TRX) expression that was associated with tumor cell death 
prevention (47). Moreover, methylene blue-mediated PDT 
altered the expression of peroxiredoxins (PRXs) (48), 
however the exact role of this enzyme family in PDT 
effectiveness remains to be elucidated. 
 
6.2. Handling of damaged proteins  

Proteins encompass up to 70% of cellular dry 
mass and, as a consequence, are the major targets for PDT-
generated reactive oxygen species (40). ROS-mediated 
protein damage leads to disruption of the proteins structure 
and loss of their biological activity. To survive, cells 
activate protective mechanisms that repair oxidatively 
damaged proteins and trigger dispose mechanisms for their 
elimination. Oxidatively-damaged proteins become 
“clients” for heat shock proteins (HSPs) – molecular 
chaperones that help in protein folding and prevent their 
aggregation. PDT has been shown to induce expression of 
various HSPs (49-51). Moreover, impairment of HSP90 
function with geldanamycin analogue 17-allylamino-17-
demethoxygeldanamycin (17-AAG) was reported to 
potentiate cytotoxic activity of PDT both in vitro and in 
vivo (52). 
 
 The majority of currently used photosensitizers 
localize to the membranes of the endoplasmic reticulum 
(ER). Thus PS excitation and robust local generation of 
ROS result in enhanced ER protein damage. Excessive 
accumulation of misfolded proteins in the ER leads to the 
development of a complex reaction commonly referred to 
as ER stress. PDT has been recently shown to induce ER 
stress due to the robust accumulation of oxidatively-
damaged ER-located protein aggregates that are detrimental 
to the cell (53). To survive, the cell must degrade them, 
mainly via the ubiquitin-proteasome system (UPS) or, as it 
has been recently shown, via autophagy. PDT induces 
proteasome activity and increases cellular accumulation of 
polyubiquitinylated proteins (53). Preincubation of cancer 
cells with proteasome inhibitors significantly improves 

cytostatic/cytotoxic activity of PDT (53). Moreover, the 
treatment combining Photofrin-PDT and proteasome 
inhibitors led to 60-100% of total cures in tumor-bearing 
mice (53). Since both PDT and proteasome inhibitors are 
registered for human treatment, the latter combination is of 
significant clinical importance and awaits further studies. 
 
 PDT-damaged proteins can be subsequently 
degraded in lysosome-like structures called 
autophagosomes in a process referred to as autophagy. 
Autophagy plays an important role in both cytoprotection 
and induction of cell death (54). It has been recently shown 
that PDT utilizing various photosensitizers that localize to 
the ER induces autophagy (55-56). It seems that autophagy 
offers protection from the phototoxic effects in low-dose 
PDT but with increased oxidative stress it serves as an 
alternate mechanism of cell death (57).  
 
6.3. Mechanisms not directly associated with ROS 
scavenging 

Some intracellular enzymes such as heme-
oxygenase-1 (HO-1) are not directly engaged in ROS 
scavenging, yet have been shown to play an important role 
in protection against PDT-induced cytotoxicity. HO-1 
catalyses breakdown of heme to biliverdin, carbon 
monoxide and iron ion (Fe2+). PDT has been shown to 
increase HO-1 expression at both mRNA and protein levels 
(58-59). Moreover, inhibition of HO-1 enzymatic activity 
with Zn (II) protoporphyrin IX sensitizes cancer cells to 
Photofrin-PDT-mediated damage and seems a good 
rationale for further potentiating of antitumor effects of 
PDT (58).  
 

The tumor cells can protect themselves against 
PDT-induced cytotoxicity by decreasing intracellular PS 
concentration. This effect can be achieved by: (i) decreased 
photosensitizer uptake via diminished expression of alpha-
2macroglobulin/LDL receptor-related proteins (60), (ii) 
increased removal of photosensitizer via multidrug–
resistance (MDR) protein (61) and (iii) enhanced 
photosensitizer metabolism, for instance, conversion of 
ALA-induced protoporphyrin IX to heme by ferrochelatase 
(62-63).  
 
7. COMBINATIONS OF PDT WITH OTHER 
TREATMENT MODALITIES 
  

In the majority of cases a single treatment 
modality is not able to cure cancer. PDT induces tumor 
cells death through activation of a variety of intracellular 
signaling pathways, eventually leading to apoptosis, 
necrosis or autophagy-associated cell death, induction of 
antitumor immune response and disruption of tumor 
vasculature. Therefore, due to the diverse antitumor effects, 
PDT is often used in combination with other established 
treatment modalities such as surgery, radiotherapy or 
chemotherapy. 
 
 Surgery is one of the standard treatments of solid 
tumors. However, even extremely precise surgery may 
leave some minute islands of tumor cells that promote 
tumor regrowth. Administration of a photosensitizer before 
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surgery and subsequent illumination of the site of the disease 
enables better identification of tumor cells. The procedure, 
commonly referred to as photodiagnosis (PD), has been 
extensively studied. For example, Zhong W. et al. evaluated 
the use of benzoporphyin-derivative monoacid ring A 
(Verteporfin) and microendoscope-derived light for successful 
fluorescence imaging of ovarian cancer cells (64). Moreover, 
PDT of the tumor bed can be performed at the time of the 
surgery. It has been shown that the combination of PDT with 
surgery results in significant reduction of metastases, promotes 
development of the antitumor immune response and decreases 
the rate of tumor relapses (65-67). 
 
 PDT has also been successfully combined with 
radiotherapy. Administration of a photosensitizer before 
radiation was shown to potentiate antitumor effect of PDT 
(68). The interplay between PDT and radiotherapy might be 
two-sided. PDT has been shown to sensitize cancer cells to 
radiotherapy (69) and, conversely, radiotherapy has improved 
anticancer efficacy of PDT (70-71). However, it has to be 
emphasized that the final result of this combination strongly 
depends on the PDT dose, fluence rate and the time between 
administration of the photosensitizer and tumor irradiation.  
 
 The antitumor effectiveness of combinations of 
PDT with standard chemotherapy has been evaluated since 
1983 when Creekmore et al. demonstrated synergistic 
interaction between PDT and actinomycin D in in vitro 
treatment of mouse lymphocytic leukemia cells (72). 
However, subsequent studies utilizing PDT in combination 
with various chemotherapeutic agents, such as 
anthracyclines, platinum compounds, antimetabolites, 
microtubule inhibitors and others showed that interactions 
observed can be synergistic, neutral or antagonistic, 
depending on the drug, time interval between PDT and 
chemotherapeutic application, as well as on the tumor type 
(73).  
 
 Another well-studied approach is combination of 
PDT with bioreductive drugs. PDT strongly potentiates anti-
tumor effectiveness of mitomycin C and nitromidazole by 
favoring the drug activation through the PDT-induced tumor 
hypoxia (74-75). The results of a clinical study evaluating the 
use of mitomycin C together with ALA-PDT in the group of 
patients with recurrent superficial bladder cancer are promising 
(76).  
 
 PDT is known to be a strong inducer of 
proangiogenic factors, such as COX-2 and VEGF, which 
impair the PDT outcome. These observations resulted in 
development of successful combinations of PDT with 
antiangiogenic agents. A number of studies showed 
synergistic antitumor interactions between PDT and COX-2 
inhibitors (77-79). Moreover, the combination of PDT with 
monoclonal antibodies targeting VEGF reduced tumor 
volume and increased animal survival (80).  
 

Several studies have confirmed the value of 
maintaining good tissue oxygenation for antitumor effects 
of PDT (81-83). Combination of PDT treatment with 
hyperbaric oxygen (84-86), perfluorochemical emulsions 
that increase tissue oxygenation (87) or administration of 

erythropoietin - a cytokine promoting erythrocyte renewal 
(88) have been proven more effective than PDT alone.  

 
 It is worth mentioning that majority of presented 
studies have been performed in vitro or in animal models. 
Therefore, further clinical trials evaluating the clinical 
potential of the combinations of PDT with other treatment 
modalities are urgently needed. 
 
8. ENHANCEMENT OF PDT-MEDIATED IMMUNE 
RESPONSE  
 

It has been documented that besides direct 
cytotoxic effects on tumor cells PDT can induce host 
antitumor immune response. The concept of the important 
role of immune response in the PDT outcome dates back to 
1996, when Korbelik et al. demonstrated substantially 
lower therapeutic effects of PDT in immunodeficient SCID 
mice relative to normal, immunocompetent mice (89). 
Subsequent follow-up studies confirmed these findings and 
revealed that intact immune system is indispensable for the 
PDT success (90-91). The particular significance of this 
phenomenon reflects the possible influence of antitumor 
immune responses not only against a primary tumor, but 
also against tumor cells disseminated in the organism or 
localized outside the treatment site. Moreover, increasing 
number of promising results from clinical trials confirm the 
important role of PDT-mediated immune response in the 
therapy outcome (92-93). 
 
 Although there are reports that direct PDT can 
impair immune cells activity and thus exert 
immunosuppressive effects (94), the vast majority of 
studies suggest significant immunostimulatory potential of 
this therapy. PDT-treated tumor cells undergo apoptotic 
and necrotic cell death, thereby they can serve as a massive 
source of tumor antigens, like damaged, misfolded or 
mislocalized tumor-derived proteins, lipids, fragments of 
damaged extracellular matrix, which can play a role of 
DAMPs (damage-associated molecular patterns), and 
contribute to immune system stimulation (95).  
 
 The development of antitumor host immune 
response by PDT is a consequence of the induction of many 
different innate and adaptive immunity mechanisms and a 
complex interplay between them. It has been demonstrated 
that almost immediately after PDT an acute local 
inflammatory response is launched, accompanied by 
cytokine release, immune cell infiltration, activation, and 
subsequently the initiation of specific, antitumor adaptive 
immunity (90-91, 96). However, in most observed cases it 
is not strong enough to completely eradicate tumor cells. 
Therefore, many different studies are aimed at further 
enhancement of the PDT-mediated immune response. The 
strategies of augmenting the anti-tumor immune response 
induced by PDT can be grouped into five main categories 
(Table 2). 
 
8.1. Immunoadjuvants 

Immunostimulators that strengthen the efficacy 
of PDT can be assigned to two different groups: toll like 
receptor (TLR) ligands and activators of the alternative 
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Table 2.Selected combinations of PDT1 and immunotherpay of cancer 
Strategy Treatment modality Results of combination treatment Ref 
PDT + 
immunoadjuvants 

killed Corynebacterium pravum delivered after 2HPD-PDT improvement of PDT  (98) 

 Schizophyllan administered before Photofrin-PDT increased cure rate (99) 
 Mycobacterium cell wall extract + various photosensitizers increased cure rate 

increased tumor infiltration with leukocytes 
(97) 

 killed Streptococcus pyogenes OK432 before HPD-PDT improvement of PDT (152) 
 Bacillus Callmette-Guerin (BCG) + various photosensitizers increased cure rate 

increase in memory T cells 
(153) 

 zymosan 
 

activation of complement cascade 
increased cure rate 
reduced number of recurrent tumor 

(102) 

 glycated chitosan from shrimp shells with Photofrin-PDT doubled long-term animal survival compared with PDT alone (100) 
 

 CpG oligodeoxynucleotide (ODN) with Radachlorin-PDT Hsp703 release 
IFN-gamma4 production by CTLs5 

suppression of tumor growth 

(154) 

 intratumoral injection of gamma-inulin after PDT with various 
photosensitizers 

reduction of tumor re-growth rate 
massive CTLs infiltration  

(101) 
 

PDT + cytokines recombinant human TNF-alpha6, Photofrin -PDT additive effects in tumor growth retardation (155) 
 GM-CSF7 gene introduced into tumor cells, Photofrin-PDT 

and Verteporfin-PDT 
increased cure rate 
higher cytotoxic activity of tumor associated macrophages 

(107) 

 recombinant G-CSF8, Photofrin-PDT attenuated tumor growth and prolonged animal survival (106) 
 low dose PDT in combination with recombinant TRAIL9 and 

FasL10  
increased apoptosis of tumor cells (109) 

 intratumoral injection of adenoviral particles containing 
murine IL-1211 gene 

increase in the number of CTLs  
suppression of tumor growth 
complete regression of 9-mm sized tumor in all animals 

(108) 

PDT + adoptive 
immunotherapy 

peritumoral or iv injection of NK12 cells expressing IL-2 gene, 
immediately after mTHPC13-PDT 

tumor growth retardation 
increase in tumor-free mice 

(113) 

 intra- and peritumoral macrophage infusion 
 

stimulated cell-mediated antitumoral activity 
increased survival rate 

(114) 

 intratumoral injection of immature dendritic cells, Photofrin-
PDT 

stimulation of CTLs and NK 

increased cure rate 
(111) 

 intratumoral injection of DC14, chlorin PS-PDT better cure rate 
regression of untreated tumors 
induction of IFN-gamma - producing CTLs 

(112) 

PDT + 
introduction of 
foreign antigens 

tumor cells transduced with EGFP15, Verteporfin-PDT generation of anti-EGFP antibodies 
complete tumor eradication 
resistance to rechallenge 

(115) 

 tumor cells stably expressing beta-galactosidase, Verteporfin-
PDT 

generation of specific CTLs 

complete tumor eradication 
regression of untreated contralateral tumor 

(156) 

PDT + anticancer 
therapeutics 

DMXAA16, Photofrin-PDT induction of TNF production in tumor tissue 
reduction in tumor volume 
retardation of tumor regrowth 

(117) 

 Imiquimod, ALA17-PDT increased number of responses (116) 
 low-dose cyclophosphamide, Verteporfin-PDT depletion of Tregs18 

decreased TGFbeta19 secretion 
increased cure number  
resistance to tumor rechallenge 

(118) 

Abbreviations: 1PDT – photodynamic therapy, 2HPD-hematoporphyrin derivative,  3Hsp-heat shock protein, 4IFN-gamma-
interferon gamma,  5CTL – cytotoxic T cell , 6TNF-tumor necrosis factor, 7GM-CSF-granulocyte macrophage colony stimulating 
factor, 8G-CSF-granulocyte colony stimulating factor, 9TRAIL-TNF-related apoptosis-inducing ligand ,10FasL – Fas ligand, 11IL-
interleukin, 12NK-natural killer cell,  13mTHPC-m-tetrahydroxyphenylchlorin,  14DC-dendritic cell,  15EGFP-enhanced green 
fluorescent protein, 16DMXAA-5,6-dimethylxanthenone-4-acetic acid, 17ALA-delta-aminolaevulinic acid, 18Treg-regulatory T 
cell, 19TGF-beta-transforming growth factor beta 
 
pathway of the complement cascade. The former activate 
antigen presenting cells like macrophages and dendritic 
cells by binding their pattern recognition receptors, mostly 
TLRs. Many different known sources of TLR ligands have 
been combined with PDT: killed bacterial cell walls (97-
98), schizophyllan (99), shrimp chitosan (100) and others 
(Table 2). The complement system activators shown to 
promote tumor specific cytotoxic T-cells proliferation in 
response to PDT are zymosan and gamma-inulin (101-102). 
In most cases the intratumoral administration of 
immunoadjuvants prior to or immediately after PDT 
augments inflammatory reaction and triggers the 
immunostimulatory program which results in the specific 

antitumor memory T-cell generation, better overall PDT 
cure rate and prolonged animal survival.  
 
8.2. Cytokines 

It is well documented that PDT induces local and 
systemic cytokine secretion (103-105). However, there are 
experimental examples indicating further stimulation of the 
immune system by the administration of various cytokines 
in combination with PDT. Recombinant cytokines, 
cytokine genes introduced into tumor cells, or cytokine 
genes encapsulated in adenoviral particles were delivered 
intratumorally or intravenously prior to or immediately post 
PDT. The mechanisms of immune response stimulation 
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reflect the activity of the cytokine and involves stimulation 
of granulopoesis (106-107), immune cell mobilization and 
activation (108), as well as increased apoptosis of tumor 
cells (109). The combination treatment results in attenuated 
tumor growth, prolonged animal survival and in some cases 
complete tumor regression (Table 2). 
 
8.3. Adoptive immunotherapy 

Adoptive transfer of normal and genetically-
modified immune cells has been shown to be effective in 
some cases of cancer immunotherapy. Apart from the 
obvious effectiveness of lymphocytes isolated from PDT-
cured rats against the same tumor cells growing in 
syngeneic animals (110), there are also examples of 
efficient improvement of PDT outcome with intratumoral 
injection of immature dendritic cells (111-112), modified 
human natural killer (NK) cells expressing IL-2 (113), or 
activated macrophages (114). Interestingly, immune cells 
delivered to PDT-treated tumor site have been shown to 
retain their viability and functionality, and improved PDT 
cure rate in several models utilizing different 
photosensitizers. 
 
8.4. Introduction of foreign antigens  

Tumors stably transfected with foreign genes like 
beta-galactosidase or green fluorescent protein (GFP), 
derived from distantly related organisms, are very easily 
cured with PDT. Moreover, cured animals are extremely 
resistant to rechallenge with the same, foreign gene-
modified tumor cells, suggesting the development of strong 
antitumor immune response. These results unequivocally 
reveal that introduction of remote antigens to tumor cells 
combined with PDT elicits specific cytotoxic T-cell 
mediated immune response and generates memory T-cells 
(115).  
 
8.5. Anticancer therapeutics  

Most of the aforementioned combination 
treatment modalities of PDT remain challenging regarding 
their clinical application perspective. The ideal cancer 
treatment should effectively destroy primary tumor, induce 
specific anti-tumor immune response to eradicate 
metastases and prevent tumor recurrence, and also should 
be feasible to be applied in patients. Regarding the latter 
condition, the use of anticancer drugs that potentiate 
antitumor immunity together with PDT appears promising 
and worth exploring in future studies. So far there are 
single reports on efficient synergistic effects of PDT 
utilizing various photosensitizers combined with antitumor 
drugs influencing immune system, including 
immunostimulatory agent imiquimod (116), TNF-alpha-
inducing drug DMXAA (117), and regulatory T cell-
depleting cyclophosphamide (118). It is noteworthy that 
antitumor agent dose, treatment schedule and overall 
combined therapy scheme are the critical parameters 
determining the treatment success rate and therefore should 
be optimised.  
 
 An important issue relevant to development of 
PDT-mediated anti-tumor immunity is associated with the 
PDT regimen. The recent data from both animal studies and 
clinical trials published by Gollnick et al. suggest that PDT 

regimen that is the most effective for direct tumor cell 
killing differs from PDT regimen that induces the most 
potent immune response (92, 119). Moreover, some 
promising results have been obtained from the studies on 
the use of tumor cells treated in vitro with PDT as anti-
tumor vaccines (120-121), however the detailed discussion 
of these points is beyond the scope of this review. 
 
9. OTHER NEW DIRECTIONS 
 
9.1. Photochemical internalization 

Specific drug delivery and its selectivity are 
among the most important issues for the safety and efficacy 
of virtually any anticancer therapy. Many macromolecular 
therapeutic agents are unable to directly penetrate cell 
membrane and thus mainly enter the cell through 
endocytosis. Berg and co-workers proposed a technology 
designed to deliver the active therapeutic content of 
endocytic vesicles into the cytosol by induction of a 
photodynamic damage in a process named photochemical 
internalization (PCI) (122). In this process, light-activated 
PS generates highly reactive singlet oxygen that damages 
lipid bilayer, what results in rapture of the vesicle 
membranes and leads to the release of its contents into the 
cytoplasm. Since singlet oxygen formation is restricted to 
the PS localization and the molecule has a very short half-
life, therapeutic molecules localized in the vesicle matrix 
are not harmed by this procedure (123). PCI might not only 
enhance anticancer efficacy of therapeutic macromolecules 
but also decrease the development of drug-related side 
effects to the illuminated tissues. Moreover, the PCI 
strategy might serve as a mechanism of delivery of 
plasmids or adenoviruses for the purpose of gene therapy 
(124-125). The most desirable photosensitizers to be used 
in the PCI are amphyphylic disulphonated compounds that 
localize to the vesicle membranes or tetrasulphonated ones 
that localize to the matrix of the endocytic vesicles (126). 
Successful delivery of divert therapeutic agents such as 
bleomycin or immunotoxins (EGF–saporin and cetuximab–
saporin) by means of PCI has already been reported (127-
130).  
 
9.2. Metronomic PDT 

As far as chemotherapy is concerned, the term 
‘metronomic’ describes continuous treatment with low 
doses of anticancer drugs. By analogy, metronomic PDT 
(mPDT) is an approach to constantly deliver both PS and 
light at low doses (131). The idea of mPDT arose from the 
observations that conventional PDT of brain tumors applied 
as a single, high-dose treatment induces surrounding tissue 
necrosis and life-threatening brain edema (132). In 
experimental tumor models ALA-mPDT has been shown to 
induce tumor cell apoptosis rather than necrosis (131). In 
patients, successful delivery of PS and light for the purpose 
of mPDT seems to be a significant technical challenge. In 
animals, prolonged PS delivery can be achieved by adding 
of ALA to the drinking water. This strategy has been 
proved effective in the treatment of astrocytomas in rats 
and papilomas in rabbits (131). Light sources used in 
mPDT have to be designed in a way guaranteeing 
appropriate light delivery in a minimally invasive manner 
for an extended period of time without compromising
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Table 3. Examples of nanoparticles (NPs) use as photosensitizer carriers in PDT 
Nanoparticles NP size [nm] Photosensitizer Bio-degradability Ref 
PLGA1 n.a.2 ZnPc3 + (157) 
Gold NPs 2-4 Phthalocyanine - (158) 

PLGA 660 BChl-a4 + (159) 

ORMOSIL5 30 HPPH6  - (160) 
Polyacrylamide NPs 30 MB7 - (161) 
SMNPs8 20-30 PHPP9 - (162) 
SNPs10 110 Hypocrellin A  - (163) 

Abbreviations: 1PLGA-poly(lactic-co-glycolic acid, 2n.a. – non assessed,  3ZnPc-zinc(II) phthalocyanine, 4BChl-a, 
bacteriochlorophyll-a; 5ORMOSIL- organically modified silica, 6HPPH-2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a; 
7MB- methylene blue, 8SMNPs- silica-based magnetic nanoparticles,  9PHPP- 2,7,12,18-Tetramethyl-3,8-di-(1-propoxyethyl)-
13,17-bis-(3-hydroxypropyl)porphyrin, 10SNPs- silica nanoparticles 
 
patient’s movement. To date, two such tools have been 
proposed. The first one is based on a diode laser and has 
been tested in tumor-bearing rabbits while the second one 
is based on high luminescence LEDs and has been used in 
the treatment of rat tumors (133). 
 
9.3. Nanoparticle-based PDT 

Nanoparticles (NP) are multifunctional molecules 
with size varying between 1 and 1000 nm. They have already 
been widely used in various research areas and, as expected, 
might bring challenging new solutions to PDT. NPs can be 
characterized by divert features valuable for their biological 
applications: (i) NPs can be used to deliver hydrophobic drugs 
into the bloodstream (134); (ii) the molecules are easily 
biodegradable; (iii) their small size allows deeper tissue 
penetration and, finally, (iv) their functional groups can easily 
be modified. Numerous materials (such as inorganic oxides, 
metal, and organic compounds) has been used to obtain NPs 
with most desired properties (135). For the purpose of PDT, 
there are three main directions of the NPs use: (i) as singlet 
oxygen generating agents (136), (ii) as luminescent particles 
(38), and (iii) as PS carriers (137) (Table 3).  
 
9.4. Two photon PDT  
 

Visible light currently used for PDT varies in 
wavelength from 600 to 760 nm. For this spectrum, light 
penetration into the tissues is limited only to a few millimeters 
and puts in question the efficacy of the treatment of large 
tumors. Light of longer wavelength has better tissue-
penetrating properties but its energy is not sufficient for 
photosensitizer excitation. Two-photon absorption (TPA) is a 
phenomenon of simultaneous absorption by a molecule of two 
photons that altogether provide appropriate energy for its 
excitation. For TPA near-infrared light can be used, bringing 
the potential of deeper light penetration into the tissues 
reaching even 2 cm in a xenograft tumor model in mice (138). 
Moreover, if the laser beam is highly focused, the site of 
reaction is better specified and surrounding tissue damage is 
diminished (139). Hence, development of proper light sources 
as well as photosensitizers with well-described and optimized 
TPA properties is urgently needed.  
 
10. CONCLUSIONS 
 

PDT is considered to be a selective and potent 
anticancer therapy. However, its therapeutic potential might 

still be enhanced by the development of novel combined 
treatments and by further optimization of the PDT setting. It is 
worth mentioning that PDT can be safely used together with 
other treatment modalities such as surgery, chemo- or 
radiotherapy without compromising their efficacy. The PDT-
mediated singlet oxygen - a highly reactive molecule that, to 
our knowledge, is not naturally eliminated in mammalian cells, 
gives an attractive and challenging opportunity for further 
potentiation of anticancer treatment efficacy. Finally, the 
majority of currently used antitumor treatment methods result 
in immunosuppression that might worsen their outcome. PDT 
serves as a therapeutic regimen that not only induces acute 
inflammatory reaction but also has been shown to promote 
systemic immunity that is crucial for fighting metastases and 
establishing long-term tumor regrowth control. 
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