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1. ABSTRACT 
 

Histone deacetylases inhibitors (HDACi) have 
recently emerged as potent antitumor treatment modality. 
They are currently tested in many phase I, II and III clinical 
trials as single agents as wells as in combination schemes. 
They have demonstrated promising antitumor activity and 
favorable clinical outcome. Histone deacetylases (HDACs) 
are involved in the process of epigenetic regulation of gene 
expression. Epigenetic changes are believed to be crucial 
for the onset and progression of cancer and have recently 
gained remarkable attention. Since epigenetic regulation of 

 
 

 
 
 
 
 
 
gene expression is a reversible process, targeting histone 
deacetylases provides a good rationale for anticancer 
therapy. The acetylation status of histones regulates the 
organization of chromatin and the access of transcription 
factors. Moreover, functions of many non-histone proteins are 
controlled by acetylation. The broad and complicated 
influences of HDACi on various molecular processes may 
account for the observed pleiotropic effects. In this review we 
summarize recent advances in the understanding of biology of 
HDACs and mechanism of action of their inhibitors. 
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2. INTRODUCTION 
 
Epigenetic regulation of gene expression is a tightly 

controlled reversible process that does not affect the 
nuclear DNA sequence. Epigenetic changes such as histone 
modifications and DNA methylation are believed to be 
crucial for the onset and progression of cancer and have 
recently gained remarkable attention (1). In mammalian 
cells DNA methylation has been almost exclusively 
observed at the cytosine residues within CpG–enriched 
regions, widely referred to as CpG islands. The localization 
of CpG islands is frequently limited to promoter regions. In 
normal cells methylation or lack of methylation of 
promoter CpG islands highly correlates with, respectively, 
transcriptional silencing or activation of the associated 
genes. CpG dinucleotides in coding regions are in most 
instances hypermethylated (2-3), a phenomenon which 
ensures monoallelic expression (genomic imprinting), X-
chromosome inactivation and chromosomal stability. 
Neoplastic cells have been reported to express two patterns 
of aberrant methylation - global hypomethylation linked to 
chromosomal instability and loss of imprinting and 
selective hypermethylation of CpG islands in promoter 
regions including tumor suppressor genes (4-5). Another 
important mechanism regulating the gene expression relies 
on “histone code” generated by various post-translational 
histone modifications (6). 

 
Eukaryotic chromatin exists in two different forms – 

open, easily accessible for transcriptional machinery, 
lightly packed euchromatin and tightly compacted 
heterochromatin, which generally harbors transcriptionally 
inactive genes. Remodeling of chromatin (changes in 
chromatin organization) derives from modifications of 
structure of nucleosomes, basic units of DNA organization 
consisting of a segment of DNA wound around an octamer 
of histone proteins. Histones undergo various N-terminal 
tails modifications, such as acetylation, deacetylation, 
methylation, phosphorylation, ubiquitination, poly-ADP 
ribosylation, sumoylation, glycosylation, deimination 
(modification of arginine into citrulline) and carbonylation. 
One of the most widely studied modifications of histones is 
their acetylation. In the simplest view, this highly reversible 
process of addition of an acetyl moiety to the epsilon-
amino group of lysine residues on histone proteins, results 
in neutralization of their positive charge, impairs their 
interaction with negatively charged DNA and therefore 
increases the accessibility of regulatory proteins to DNA 
(7). However, it became apparent that acetylated lysine 
residues are also recognized by specific protein domains, 
such as bromodomain, involved in protein-protein 
interactions and assembly of multi-component complexes 
essential for transcriptional activation. Bromodomains are 
generally found in over one hundred chromatin associated 
proteins including histone acetyltransferases. 

 
3. HISTONE ACETYLTRANSFERASES 
 

The process of histone acetylation is regulated by 
opposing activities of histone acetyltransferases (HATs) 
and histone deacetylases (HDACs). HDACs catalyze the 
removal of acetyl groups that leads to the compacting of the 

chromatin and transcriptional repression of the affected 
genes (7-8). The first HATs and HDACs have been 
identified in the mid-1990s (9). Since then several enzymes 
have been reported to have HAT activity. Four major 
families of HATs have been studied extensively, namely: 
cyclic adenosine monophosphate (cAMP) response 
element-binding protein (CREB)-binding protein 
(CBP)/p300 family, general control of amino acid synthesis 
protein 5 (Gcn5)-related N-acetyl transferases (GNAT) 
family, MYST family and Rtt109 family (10). The role of 
highly homologous p300 and CBP in cancer is still under 
debate. Some studies indicate that they behave as tumor 
suppressors, other suggest a role of tumor promoters (10). 
The validation of HATs as potential antitumor drug targets 
still remains a challenge, since their biological functions 
and interactions are yet to be fully investigated. 
Theoretically, the modulation of HATs activity may be 
useful and effective as anticancer treatment. Indeed, some 
small-molecule HATs inhibitors have been described (10). 
The majority of them has been isolated from natural 
sources, namely curcumin, garcinol, anacardic acid and 
several polyisoprenylated benzophenone derivatives 
(PBDs) containing garcinol-like structural features (11). 
One of the most promising HATs inhibitors is curcumin, 
already tested in many clinical trials. It has been reported to 
have anti-inflammatory effects and thus has been tested in 
several pathologies, namely rheumatoid arthritis, psoriasis, 
Alzheimer’s disease, some mental disorders. Due to 
antitumor effects curcumin has been also tested as single-
agent or in combination with chemotherapy in several 
clinical trials in patients with multiple myeloma, colorectal 
cancer, pancreatic cancer, osteosarcoma (12). The majority 
of currently described HATs inhibitors suffers from scarce 
potency, poor cell-permeability, low specificity and 
unsatisfactory pharmacokinetics. So far they have been 
mainly used to unravel the functions of HATs in several 
assay systems. Drug delivery strategies and modifications 
will hopefully help in the future to create druglike HATs 
inhibitors. 
 
4. HISTONE DEACETYLASES 
 

In humans eighteen different HDACs have been 
identified so far and subdivided into four classes based on 
their structural homologies to yeast HDACs, activity, 
cofactor dependency and subcellular localization (8) 
(Figure 1). Class I, II and IV are referred to as “classical” 
HDACs and are reported to require Zn2+ for deacetylase 
activity and to be inhibited by zinc-chelating compounds 
(13). Class III HDACs belong to a silent information 
regulator 2 (Sir2)-related protein family (sirtuins). They are 
reported to be NAD+-dependent and their enzymatic 
activity can be inhibited by nicotinamide (14). 

 
Class I (HDAC1-3, 8) are generally localized in the 

nucleus (apart from HDAC3, which is found both in the 
nucleus and cytoplasm) and associate with multiprotein 
complexes including corepressors and coactivators (15). 

 
Class IIa (4, 5, 7, 9) can shuttle between the nucleus 

and the cytoplasm due to interaction with 14-3-3 proteins in 
response to various stimuli (13), while class IIb (6, 10) are 
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Figure 1. Histone deacetylases – targets for histone deacetylases inhibitors. 
 

cytoplasmic proteins. Binding of class IIa HDACs with 14-
3-3 proteins stimulates their nuclear export, accumulation 
in cytoplasm and subsequent derepression of target genes 
(16). Interestingly, class IIa HDACs have been shown to 
repress numerous transcription regulators due to the 
presence of specialized domain which binds to an array of 
transcription factors which in a consequence dictate gene 
targeting specificity (reviewed by Martin et al. (17)). Class 
IIa HDACs have been reported to interact among others 
with myocyte enhancer factor-2 (MEF2) (transcription 
factor involved in the regulation of cellular differentiation 
and stress response) and have been demonstrated to act 
as potent inhibitors of MEF2-dependent transcription 
(18). Interestingly, HDAC6 localizes actively in 
cytoplasm owing to the presence of a strong nuclear export 
signal (NES) that prevents the accumulation of the protein 
in the nucleus (19). HDAC6 is a unique enzyme that is 
proposed to play a critical role in mediating and 
coordinating various cellular events (reviewed by Boyault 
et al. (20)). HDAC6 contains two deacetylase domains 
which have been reported to deacetylase alpha-tubulin and 
heat shock protein 90 (HSP-90) (for the consequences of 
this process see below). Moreover, HDAC6 has one 
domain which binds specifically to mono- and poly-
ubiquitin chains. It seems though that HDAC6 with its 
partner proteins play a critical role in determining the 
fate of ubiquitinated proteins in cells (21). It has been 
hypothesized that high-affinity binding of ubiquitinated 
proteins by HDAC6 delays their recognition and 
processing by proteasome that finally leads to 
accumulation of ubiquitinated, mainly misfolded proteins 
and formation of aggresomes (20). HDAC6 has been 
shown to be essential for transport of ubiquitinated proteins 
along microtubules and their accumulation in aggresomes, 

a process which ultimately induces lysosomal degradation 
and autophagic clearance (22). 

 
Class IV is represented by only one enzyme - 

HDAC11, which shares some structural similarity with 
both class I and II HDACs, however the binding target 
substrates for this HDAC have not been identified so far. 

 
Class III HDACs (sirtuins, SIRT1-7) regulate gene 

expression in response to changes in cellular redox balance 
and are reffered to as critical regulators of energy-
dependent transcription (23). The role of sirtuins is to 
prevent the accumulation of mutations, promote replicative 
senescence under stressful conditions and to ensure that 
DNA damage is not propagated (24). Thus, sirtuins are 
described to be cancer-protective, although some studies 
also point out their role in tumor progression. The best 
described sirtuin is sirtuin 1 (SIRT1), although 7 sirtuins 
have already been discovered (25). This group has recently 
emerged as a potential new target for anticancer therapy, 
however still there is limited clinical experience with 
sirtuins modulators (reviewed by Liu et al. (26) and 
Saunders et al. (24)). It seems that sirtuins activators, such 
as resveratrol are promising anticancer therapeutics (24). 
Resveratrol is undergoing several phase I/II clinical trials as 
single agent in patients with colorectal cancer. It is also 
tested in combination with bortezomib in phase II trial in 
patients with multiple myeloma (MM). 

 
5. HISTONE DEACETYLASES AND CANCER 
 

The disrupted balance between histone acetylation and 
deacetylation has been frequently associated with 
tumorigenesis. Aberrant recruitment of HDACs has been 
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observed in both hematological malignancies and solid 
tumors (27). Altered expression of individual HDACs in 
neoplastic cells has been shown to depend on tumor type 
and tissue of its origin (28). Class I HDACs have been 
demonstrated to be overexpressed in primary colon, 
breast, cervix, prostate, gastric, and lung carcinomas 
(29-32). Some studies demonstrate that high expression 
of individual HDACs correlates with advanced stage of 
disease, increased rate of proliferation, poor prognosis, 
nodal metastases and diminished patient survival. 
However, some reports suggest that overexpression of 
HDAC1 in hormone-sensitive breast cancer is associated 
with improved patient survival (31). Relatively little is 
known about the expression of class II HDACs in 
tumors. In some cancer types overexpression of class II 
HDACs and correlation with advanced stage of the 
disease have been observed, while in others decreased 
expression seemed to correspond with advanced disease 
stage and inferior survival rate (33). In many human 
prostate cancer cell lines levels of SIRT1 have been 
shown to be significantly increased. The SIRT1 inhibition 
by nicotinamide as well as by RNA interference resulted in 
decreased proliferation of prostate cancer cells.  

 
Although the results from correlative studies seem 

contradictory, generally the inhibition or knockdown of 
individual HDACs in various tumor cells lines inhibits 
tumor cell growth and impairs tumor cell survival (34-35).  

 
6. HISTONE DEACETYLASES INHIBITORS 
 

Since epigenetic regulation of gene expression is a 
reversible process, targeting histone deacetylases provides 
a good rationale for anticancer therapy. Inhibition of the 
HDAC activity results in the transcriptional activation of 
the corresponding genes including tumor suppressor genes, 
often silenced in cancer. However, as assessed by gene 
expression microarrays, HDAC inhibition results in 
transcriptional repression of approximately the same or 
even greater number of genes (36-40). Even if some 
mechanisms are still to be elucidated, it seems that 
inhibition of histone deacetylases activity plays an 
important role in blocking tumor progression. Recently, a 
large number of various HDACi has been developed, many 
of which have entered phase I, II and III clinical trials. 
Vorinostat (SAHA – suberoylanilide hydroxamic acid) is 
undergoing phase III clinical trials as an single-agent 
treatment in patients with advanced malignant pleural 
mesothelioma lung cancer and phase III/IV in patients with 
non-small cell lung cancer (NSCLC). Moreover, it is tested 
in combination with proteasome inhibitor – bortezomib in 
patients with multiple myeloma. Tacedinaline is 
undergoing phase III clinical trials in combination with 
gemcitabine as a second-line treatment in patients with 
advanced non-small cell lung cancer. 

 
Encouraging results from clinical trials using newly 

developed epigenetic treatment in hematological 
malignancies, such as myelodysplastic syndrome (MDS), 
chronic myeloid leukemia (CML), acute myeloid leukemia 
(AML) (41-44) have led to investigation of epigenetic 
therapy in solid tumors. So far, only vorinostat has been 

approved in 2006 by the U.S. Food and Drug 
Administration (FDA) for treatment of advanced or 
refractory primary cutaneous T-cell lymphoma (CTCL). 
Vorinostat has been shown to act synergistically with 
various chemotherapeutics in phase I, II and III clinical 
trials (45). 

 
Several classes of HDACi have been characterized 

based on distinct structure, origin and chemical properties. 
HDACi interfere with catalytic domain of HDACs with 
varying efficiency and among these agents both pan- 
(promiscuous) and selective inhibitors are described. The 
chemical structure of HDACi typically consists of three 
parts: a zinc-binding-group (ZBG), a hydrophobic group 
(CAP) for protein recognition and interaction and a linker 
connecting both of them (46). ZBG is analogous to the 
acetyl residue of acetylated histone lysine.  

 
The group of short chain fatty acid include butyric 

acid (BuA), sodium butyrate (NaBu), phenylbutyrate, 
valproic acid (VPA) and a prodrug AN-9. Apart from AN-9 
they inhibit HDAC activity at relatively high 
concentrations (mmol dose ranges).  

 
The largest group, hydroxamate-based HDACi, inhibit 

zinc-dependent class I and II HDACs. Trichostatin A 
(TsA), vorinostat, panobinostat (LBH589), belinostat 
(PXD101) and droxinostat (4-(4-chloro-2-methylphenoxy)-
N-hydroxy-butanamide) all mimic the lysine substrate and 
chelate essential zinc ion in the enzymatic centre of class I 
and II HDACs. In this group SK-7041 and SK-7068 have 
been shown to selectively inhibit only HDAC1 and 2, 
whereas tubacin is a specific inhibitor of HDAC6 (47). 
Tubacin specifically inhibits deacetylation of alpha-tubulin 
and subsequently impairs its function. Tubacin has also 
been reported to induce marked accumulation of 
ubiquitinated proteins and apoptosis of multiple myeloma 
cells (48). In vitro studies have shown that TsA induces 
strong acetylation of histones in nanomolar concentrations 
(49-50), but it has never entered clinical trials due to severe 
side effects and high toxicity. Hydroxamate-based HDACi 
have limited ability to inhibit HDACs specifically, so non-
hydroxamate, isoform-selective inhibitors are currently 
under development (51).  

 
The third class, benzamides, has been reported to 

inhibit HDAC activity by chelating zinc ion at micromolar 
concentrations. Entinostat (MS-275, SNDX-275), 
tacedinaline (CI-994) and mocetinostat (MGCD-0103), all 
are in clinical trials. Mocetinostat is an isoform-specific 
inhibitor which targets class I HDACs (52).  

 
The fourth group, cyclic peptides, include depsipetide 

(romidepsin, FK228, FR901228), trapoxin A, CHAPs, 
apicidin. Depsipetide is activated in cells due to reduction 
of the disulfide bond to thiol that enters the active site of 
HDAC and chelates zinc ion (53). They are all potent 
irreversible HDAC inhibitors active in nanomolar 
concentrations.  

 
The fifth group, epoxides includes depudecin which 

irreversibly inhibits HDACs at micromolar concentrations. 
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Depudecin has been also shown to inhibit growth of 
vascular endothelial cells and process of angiogenesis.  

 
7. ACETYLATION OF NON-HISTONE PROTEINS 
 

Post-translational acetylation of lysine residues of 
histones was first discovered in the early 1960s. Originally 
it was regarded as a powerful tool of gene expression 
regulation. 20 years later acetylysine residues were also 
found in non-histone proteins leading to the notion that N-
acetylation process controls many basic cellular processes. 
Nowadays it is clear that functions of many non-histone 
proteins are controlled by acetylation (Table 1, reviewed by 
Glozak et al. (54)).The process of acetylation has been even 
proposed to rival that of phosphorylation. There is a 
growing body of evidence that acetylation status of non-
histone proteins regulates their functions and influences 
their stability (54). The mechanism of this phenomenon has 
been suggested to depend on lysine residues that are targets 
for both acetylation and ubiquitination. Acetylation of 
proteins may protect them from ubiquitination and 
subsequent degradation, while deacetylation in many cases 
precedes ubiquitination. 

 
8. MECHANISMS OF ACTION OF HDACi 
 
8.1. Cytotoxicity 
8.1.1. Apoptosis 
8.1.1.1. HDACi activate both intrinsic and extrinsic 
apoptotic pathway 

In vitro studies have demonstrated that HDACi induce 
tumor cell death that biochemically and morphologically 
resembles apoptosis. This process can be mediated by 
regulating both histone function and subsequently gene 
transcription and/or hyperacetylation of non-histone targets 
of HDACs. Apoptosis, depending on the stimulus, can 
proceed via two pathways which are molecularly linked 
and converge at the level of the effector proteolytic 
enzymes called caspases. It has been established that 
exposure of cancer cells to HDACi leads to the activation 
of both intrinsic and extrinsic programmed cell death 
pathways (68-70). The extrinsic pathway is initiated by 
ligand-dependent activation of the transmembrane death 
receptors from TNFR family. Activation of death receptor 
signaling, via recruitment of adaptor proteins, leads to 
activation of caspase 8 or caspase 10 and initiation of cell 
death cascade. HDACi have been demonstrated to induce 
expression of genes encoding both death receptors 
(TRAILR1 (DR4), TRAILR2 (DR5), FAS) and their 
cognate ligands (TRAIL - tumor necrosis factor-related 
apoptosis-inducing ligand), FASL (71). HDACi have been 
reported to stimulate extrinsic apoptotic pathway both in 
vitro and in vivo. In in vitro studies inhibition of death 
receptors and/or their ligands with siRNA and neutralizing 
antibodies have been shown to protect tumor cells from 
HDACi-mediated apoptosis (72-75). siRNA targeting 
TRAIL and FAS has been reported to protect leukemic 
cells from valproic acid-induced apoptoisis in a murine 
APL (acute promyelocytic leukemia) model (73). 
Interestingly, in this study HDACi have been shown to 
induce apoptosis selectively in leukemic cells, but not in 
normal hematopoietic progenitors. Moreover, HDACi also 

downregulate various inhibitors of death receptor pathway 
including c-FLIP (a protease-deficient caspase homolog 
widely reported as inhibitor of a procaspase 8 activation) 
(71, 76). A recent study identified a small-molecule - 
droxinostat, already known to sensitize cancer cells to 
death receptor stimuli by decreasing the expression of 
FLIP, to be a selective inhibitor of HDAC3, HDAC6, and 
HDAC8. Inhibition of these HDACs was functionally 
important for the ability of droxinostat to sensitize cells to 
death ligands (77). 

 
The intrinsic apoptotic pathway, dependent on 

mitochondria, is usually activated in response to stress 
stimuli such as DNA damage, oxidative stress, 
chemotherapeutic drugs, disruption of growth factor 
signaling. Disruption of mitochondrial transmembrane 
potential leads to release of cytochrome c, subsequent 
activation of caspase 9, formation of apoptosome and 
activation of downstream effector caspases 3, 6 and 7. 
Proapoptotic and antiapoptotic members of the Bcl-2 
family play a crucial role in modulation of apoptotic 
process. Even if some mechanisms of proapoptotic activity 
of HDACi are still to be elucidated, there is a body of 
evidence that HDACi alter the balance between the pro- 
and antiapoptotic proteins and thus activate the intrinsic 
apoptosis pathway. HDACi upregulate proapoptotic 
proteins of Bcl-2 family, including Bak, Apaf-1 and BH3-
only proteins (Bid, Bim, Bmf, Noxa) at transcriptional 
and/or translational level (76, 78-79). Moreover, inhibitors 
of apoptosis of IAP family (survivin, IAP, XIAP) and anti-
apoptotic proteins of Bcl-2 family, such as Bcl-2, Bcl-xL, 
Mcl-1 have been shown to be downregulated upon 
inhibition of HDAC enzymes with a number of various 
HDACi (78, 80-81). It has been also established that 
vorinostat is involved in post-translational modification and 
cleavage of pro-apoptotic proteins, such as Bid and 
subsequent initiation of intrinsic apoptotic pathway in acute 
T-cell leukemia cell line (82). Depsipeptide has been 
reported to induce apoptosis by activating caspase-3 and 
decrease in the protein level of surviving (83); panobinostat 
by degradation of Aurora A and B kinases (84-86). 
Entinostat induces apoptosis in erbB2-overexpressing 
breast cells by reduction of the levels of growth factor 
receptors erbB2 and erbB3, as well as significant decrease 
in downstream signaling (87). Overexpression of 
prosurvival Bcl-2 family proteins protects tumor cells form 
HDACi-induced apoptosis both in vitro and in vivo (88-89). 
Further studies have shown that knockdown of Bad, Bim, 
Noxa and Bmf with siRNA substantially impairs HDACi-
induced apoptosis (79, 90-91). 

 
8.1.1.2. HDACi regulate the activity of tumor 
suppressors p53 and p73, important inducers of 
apoptosis 
 

Recently, it has been shown that depending on 
the trigger p53 undergoes site-specific acetylation and 
subsequent activation (92-93). Different acetylation 
patterns influence DNA-binding ability of p53, spectrum of 
its targets and thus cellular fate. For instance, acetylation of 
p53 at K320 activates promoters of genes with high-affinity 
p53 binding sites (e.g. p21), while acetylation at K373
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Table 1. Non-histone substrates for acetylation activity 
Function Protein Role Acetylation-induced functional changes 
Transcriptional factors 
 p53 Tumor suppressor protein 

 
Induces apoptosis and growth arrest by holding the cell cycle at 
the G1/S regulation point on DNA damage recognition 
 
Activates DNA repair 

Acetylation by p300/CBP protects the protein from 
ubiquitination and proteasome-dependent degradation 
(55), it guarantees protein stability and transcriptional 
activation of its target genes (56) (e.g. p21 – cell cycle 
inhibitor) 

 c-Myc Proto-oncogene upregulated in many cancer types 
 
Stimulates cell proliferation, differentiation and self-renewal, 
blocks apoptosis 

Acetylation leads to increased stability but not 
necessarily activity (ubiquitination of c-Myc is also 
required for transcriptional activation of its target 
genes (57)) 

 GATA family Transcriptional factors that play important role in 
hematopoiesis, erythroid development and differentiation and 
T-cells development 

Acetylation activates protein and increases its DNA 
binding capability (58-59)  

 E2F family Regulators of cell cycle and apoptosis, family consists of three 
activators and six suppressors, tumor suppressor rb binds to the 
E2F1 and prevents activation of its target genes involved in 
DNA replication, cell proliferation, chromosomal replication  

Acetylation increases DNA binding affinity, stabilizes 
E2F1, increases its half-life by preventing 
ubiquitination and degradation (60) 

Acetylation of E2F1 also leads to its recruitment to the 
promoter of proapoptotic p73 (61) 

 Runx 31 Tumor suppressor often functionally inactive in tumor cells, in 
a subset of tumors it has been reported to have an oncogenic 
function  

Hyperacetylation inhibits ubiquitin-mediated 
degradation of Runx3 (62) 

 YY-12 Ubiquitously distributed transcription factor involved in 
repressing and activating gene promoters 
 
It has been hypothesized that YY-1 has an ability to direct 
HDACs3 and HATs4 to a promoter in order to activate or 
repress the promoter (54) 

YY-1 is regulated by acetylation and deacetylation 

It contains two domains – repression domain 
(acetylated and deacetylated) and DNA-binding 
domain (acetylated which greatly decreases its DNA-
binding activity) 

 FOXO5 family Regulators of cell-cycle, DNA repair and apoptosis genes in 
response to DNA damage and oxidative stress, claimed to be 
tumor suppressor 

Acetylation exerts inhibitory effects on transactivation 
activity (63) 
SIRT16 deacetylates and deactivates FOXO 

 NF-kappaB7 Regulator of genes responsible for cell proliferation and 
survival constitutevely active in many cancer cells 

Acetylation and deacetylation dynamically regulate 
NF-kappaB in a complicated and controversial manner 
that has to be elucidated (14) 

 STAT-3 Member of STAT8 family 
 
Downstream effector of cytokine signal transduction pathways 
 
When phosphorylated dimerizes and activates target genes 

Acetylation enhances its DNA binding and 
transactivation (64) 
 
Deacetylation inhibits transcription of STAT3 target 
genes such as cyclin D and antiapoptotic gene bcl-xL 

 MEF2 family9 Regulators of cell differentiation 
Induce stress response in some tissues  

Deacetylation induces its functional inhibition (18) 
 

DNA repair enzymes 
 Ku70 DNA repairing enzyme 

 
Inhibits apoptosis by binding directly to Bax 

Acetylation disrupts Ku70-Bax interaction and allow 
Bax to translocate to mitochondria and induce 
apoptosis (65) 

Structural protein 
 alpha-tubulin Cytoskeletal protein 

 
Influences tumor cells motility 

Hyperacetylation causes its functional disruption (47) 
 
HDAC6 and SIRT2 deacetylate tubulin and increase 
cell motility 

Chaperones 
 HSP9010 Chaperone protein protecting client proteins from proteasome-

dependent degradation 
 
Critical for maturation of various proteins 

Acetylation decrease its binding to VEGFR11-1 and 2 
and enhance their degradation in the proteasome 
 
Acetylation induces degradation of HSP90 client 
proteins: HER2/neu12, ERBB113, c-Raf, BCR-ABL 
(66) and FLT314  
 
 

Cell adhesion/transcription regulator 
 beta-catenin Component of Wnt signaling pathway 

 
When activated translocates to the nucleus  
 
Might function as an oncogene 

Deacetylation promotes beta-catenin nuclear 
accumulation 

Inactivation of HDAC6 inhibits beta-catenin nuclear 
accumulation and subsequent c-myc induction (67) 

Abbreviations: 1Runx 3 – Runt-related transcription factor 3, YY-1 - Yin Yang-1, 3HDACs - histone deacetylases, 4HATs - histone acetyltransferases, 5FOXO - 
Forkhead box proteins, 6SIRT1 – sirtuin 1, 7NF-kappaB - nuclear factor kappa-light-chain-enhancer of activated B cells, 8STAT - signal transducers and activator of 
transcription, 9MEF2 - myocyte enhancer factor-2, 10Hsp90 - heat shock protein 90, 11VEGFR - vascular endothelial growth factor, 12HER2/neu - human epidermal 
growth factor receptor 2, 13ERBB1 - epidermal growth factor receptor1, 14FLT3 - FMS-related tyrosine kinase 3 
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activates promoters of genes with low-affinity p53 binding 
sites (e.g. Bax) (94). Acetylation increases also stability of 
p53 and protects it from ubiquitination and subsequent 
degradation by proteasomes in vitro. However, some 
studies of knock-in mice with lysines replaced by arginines 
indicate that acetylation of p53 may not be required for its 
stability in vivo, although it influences p53 activation upon 
DNA damage (95). Interestingly, it has been reported that 
HDACi specifically induce degradation of mutant p53, a 
process preceded by induction of p53-dependent 
transcription (96). E2F and p73 have been also implicated 
in HDACi-mediated apoptosis. Doxorubicin-triggered 
acetylation of E2F1 has been demonstrated to trans-activate 
its target gene – p73 – a p53-related protein known to 
induce apoptosis (61). However, the exact role of p73 
remains to be determined as many studies suggest that p73 
may not be a tumor suppressor but rather an oncoprotein. 

 
8.1.1.3. HDACi target DNA-repairing enzymes involved 
in induction of apoptosis 

Both classical and class III HDACs have been 
reported to deacetylate and increase DNA binding of Ku70. 
Ku is a multi-functional heterodimer of two proteins – 
Ku70 and Ku80. It binds to DNA double-strand breaks 
(DSBS) and is required for the non-homologous end-
joining (NHEJ) DNA repair pathway. Upon DNA damage 
Ku70 levels have been reported to increase (54). In an 
unclear mechanism HDACi have been reported to decrease 
Ku70 and Ku80 in melanoma cells and thus increase their 
sensitivity to radiation-induced DNA damage. Ku70 also 
plays an important role in apoptosis regulation. It binds and 
sequesters in the cytoplasm the proapoptotic protein Bax. 
HDACi-mediated acetylation of Ku70 releases Bax, 
allowing it to translocate to the mitochondrial outer 
membrane and initiate apoptosis, a phenomenon described 
in several cell lines (65). 

 
8.1.1.4. HDACi modulate the activity of chaperone 
protein HSP90 

 The activity of HSP90, a molecular chaperone, is 
regulated by acetylation status (54). HSP90 binds a diverse 
array of proteins, enables their maturation, proper folding 
and prevents their ubiquitination and subsequent 
proteasomal degradation. Client proteins of HSP90 include 
key oncogenic (Her2/neu, ERBB1, ERBB2, c-Raf, BCR-
ABL, FLT3) and antiapoptotic proteins. Acetylation of 
HSP90 impairs its ability to form complexes with client 
proteins, ultimately leading to their proteasomal 
degradation. HDAC6 has been demonstrated to mediate 
HSP90 deacetylation and HDAC6-inhibitors have been 
reported to induce HSP90 acetylation and subsequent 
degradation of its client proteins (97-99). 

 
8.1.1.5. HDACi influence redox state of the cancer cells 
and activate ROS-mediated apoptosis 

Accumulation of reactive oxygen species (ROS) 
during oxidative stress is implicated in cellular damage and 
mediation of programmed cell death. ROS have been 
widely reported to oxidatively damage nucleic acids, 
proteins and lipids. ROS have been reported to activate and 
induce transcription of Bim, a proapoptotic protein of BH3-
only Bcl-2 family. Accumulation of ROS in HDACi-treated 

transformed cells has been reported in various studies (78, 
100). The generation of ROS is believed to be an important 
and early event in HDACi-induced cell death that precedes 
the loss of mitochondrial outer membrane potential (82, 
101). LAQ-824 has been shown to trigger ROS generation 
as early as 30 minutes after drug treatment in human 
leukemia cells (102). Treatment of leukemia cells with 
entinostat or vorinostat enhances ROS generation and 
downregulates expression of Mn-superoxide dismutase 
(103). Pretreatment of cells with ROS scavengers such as 
N-acetylcysteine protects cells form HDACi-triggered 
apoptosis Moreover, HDACi-triggered ROS accumulation 
is believed to appear selectively in transformed but not in 
normal cells. The mechanism of this phenomenon remains 
unclear, however it has been hypothesized that selective 
induction on the transcriptional level of the thioredoxin, an 
endogenous ROS scavenger, helps normal cells to cope 
with HDACi-trigerred oxidative stress (100). On the 
contrary, vorinostat-treated transformed cells have been 
shown to upregulate the transcription of negative regulator of 
thioredoxin – TBP2 (thioredoxin binding protein 2) (78, 104). 
It has been also demonstrated that vorinostat downregulates 
thioredoxin transcription in human bladder carcinoma (104), 
while depsipeptide in human lung cancer cells downregulates 
thioredoxin reductase (TrxR), an enzyme known to reduce 
thioredoxin (105). Interestingly, thioredoxin has been 
identified to be an acetylated protein in HeLa cells and mouse 
liver mitochondria, however it has not been established how 
the acetylation influences Trx functions and whether it is 
hyperacethylated in response to HDACi treatment (106). 
Interestingly, hyperacetylation of peroxiredoxins (Prx) I and II 
increases their ability to reduce H2O2, the phenomenon that 
probably contributes to resistance of HDACi-treated cells to 
ROS-mediated damage (107).  

 
8.1.2. Autophagy 

HDACi induce autophagy-associated cell death. 
Autophagy is a catabolic, tightly regulated process 
involving sequestration of cellular proteins and organelles 
in autophagosomes followed by fusions with lysosomes 
and subsequent degradation via acidic lysosomal 
hydrolases. A variety of ATG (autophagy-related) proteins 
is implicated in autophagosome formation. Recent studies 
indicate that mTOR regulates autophagy by inhibiting 
activation of ATG5 and ATG7 among others. In a study by 
Hrzenjak et al. vorinostat decreased mTOR expression and 
induced cytotoxicity via autophagic mechanisms (108). It 
seems that HDAC1 as well as HDAC6 activity plays an 
important role in autophagy process. HDAC1 inhibition 
with a specific inhibitor or siRNA has been reported to 
induce autophagic death. Vorinostat and butyrate have been 
reported to induce autophagic cell death in HeLa cells 
deficient in Apaf-1 protein or with overexpression of Bcl-
xL (109-110). The relative contribution of apoptosis and 
autophagy in HDACi-mediated cytotoxicity still has to be 
elucidated. Moreover, it has recently been argued that 
autophagy might actually be a cytoprotective mechanism 
that under metabolism stress promotes cell survival (111). 

 
8.2. Cell cycle arrest 

A cell-division cycle, vital and tightly regulated 
process, consists of four distinct phases that leads to cell 
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duplication. Cells with deregulated cell cycle 
components divide actively and may potentially lead to 
tumor formation. In various studies HDACi have been 
reported to induce cellular differentiation and cell cycle 
arrest at G1/S and G2/M checkpoints based on cell type, 
dose and type of HDACi . Hence, treatment with 
HDACi decreases the proportion of cells in S phase and 
increases the proportion of cells in the G(0)-G(1) and/or 
G(2)-M phases of the cell cycle (84-87, 112-113), and 
subsequently results in profound cell growth arrest (70, 
83-84, 112, 114-116). G1/S arrest is mediated by 
complexes of cyclins and cyclin-dependent kinases 
(CDKs) that phosphorylate and inactivate tumor 
suppressor retinoblastoma protein (Rb). Once 
phosphorylated Rb releases transcription factors of E2F 
family which stimulates the progression along the cell 
cycle. Two families of cell cycle inhibitors at G1/S 
checkpoint have been described - the cip/kip family 
(p21, p27 and p57) and INK4a/ARF family (p16). Due 
to inhibition of cyclin/CDK complexes retinoblastoma 
protein (Rb) is kept in a state of low phosphorylation, 
tightly bound to the transcription factor E2F. It has been 
established that various HDACi induce p21 in a p53-
independent manner on both transcriptional and 
translational level (117-118). It seems that G1 arrest 
may also result from HDACi-mediated downregulation 
of cyclin proteins, mainly cyclin D and A (119). The 
mechanism of a much rarer HDACi-mediated G2/M 
arrest is poorly understood. HDACi have been reported 
to downregulate cyclin B1, a protein expressed 
predominantly during G2/M phase of cell cycle (120). 
 
8.3. Angiogenesis, metastasis and invasion 
8.3.1. HDACi downregulate HIF-1alpha  activity and 
target growth factors responsible for angiogenesis 

Hypoxia-inducible factor 1 (HIF-1) is a 
heterodimer consisting of alpha and beta subunits. The 
post-translational modification of HIF-1alpha by prolyl 
hydroxylases (PHDs) in normoxia leads to a series of 
modifications, which result in its polyubiquitination and 
proteasomal degradation. The ubiquitination is a 
consequence of interaction between HIF-1alpha subunit 
and pVHL (von Hippel-Lindau protein), which binds to 
HIF-1alpha only when a conserved proline is 
hydroxylated (121). In hypoxia the process of 
hydroxylation of HIF-1alpha by PHDs is inhibited and 
the molecule is stabilized and activated. The stabilized 
form of HIF-1alpha is translocated to the nucleus, where 
it dimerizes with HIF-1beta, binds to p300/CBP and 
nuclear receptor coactivator 1 (NCOA1) and finally 
activates target gene transcription (e.g. vegf ) (122). 
VEGF is described as one of the most important 
proangiogenic factors that inhibits endothelial cell 
apoptosis by increasing the expression of Bcl-2 (123). 
Four isoforms of this molecule bind to three VEGF 
receptors: VEGFR-1, VEGFR-2 and VEGFR-3 . The 
principal form of VEGF is VEGF-A which binds to 
VEGFR-2. Both overexpression of HIF-1alpha and high 
transcription rate of VEGF mediated by HIF-1alpha have 
been observed in various tumors (124-125), which makes 
HIF-1alpha an attractive target for antitumor therapies.  

 

Histone deacetylase inhibitors downregulate HIF-
1alpha expression in a complex mechanism both directly 
and indirectly. It has been established that class I and II 
HDACs play crucial role in HIF-1alpha regulation. An 
increased level of HDAC1 has been shown to be 
commensurate with the reduction of expression of p53 and 
pVHL. As mentioned above pVHL participates in HIF-
1alpha ubiquitination and proteasomal degradation, while 
p53 provokes HIF-1alpha probably by competing for 
shared coactivator p300 (126). Reduced expression of p53 
an pVHL leads to suppression of factor inhibiting HIF-
1alpha (FIH) (127), which can be fully inversed by TsA 
both in vitro and in vivo (128). Some reports suggest an 
exceptional role of class II HDACs in the process of 
angiogenesis. They have been noted to have a direct 
impact on HIF-1alpha stability. In a 
coimmunoprecipitation assay those isoenzymes were 
identified to associate with HIF-1alpha protein (129). 
What's more, cells with siRNA-silenced HDAC4 and 
HDAC6 show a reduced HIF-1alpha expression. 
HDAC7 has been shown to bind selectively to HIF-
1alpha and under hypoxia cotranslocate to the nucleus, 
where it takes part in HIF-1alpha-p300 binding (130). It 
has been demonstrated that HDACi even in small doses 
have a potential to block the activity of HIF-1alpha 
CAD (C-terminal transactivation domain of HIF-
1alpha), induce hyperacetylation of p300 and repress the 
formation HIF-1alpha-p300 complex in vivo and thus 
inhibit HIF-1alpha transcriptional reactivity (131). 
There is also a hypothesis that HDAC1 and HDAC3 
have a potential to directly interact with ODDD (oxygen 
dependent degradation region) of HIF-1alpha (132), which 
promotes the molecule binding to pVHL ubiquitin E3 
complex. 

 
HDACi are also believed to be effective VEGF 

signaling inhibitors. In a study conducted by Deroanne et 
al. TsA and vorinostat have been shown to inhibit VEGF, 
VEGFR1 and VEGFR2, as well as upregulate the 
expression of VEGF competitor protein semaphorin III at 
both protein and mRNA level. Both TsA and vorinostat 
have a potential to prevent human umbilical cord 
endothelial cells (HUVEC) stimulated by VEGF from 
invading a type I collagen gel and forming tubular 
structures (133). Moreover, vorinostat and TsA inhibit the 
formation of capillary-like network in embryonic bodies 
with high specificity without affecting the growth and 
differentiation of other cells. Depsipeptide has been 
demonstrated to suppress more efficiently the expansion of 
large solid tumors, whose growth depends on the 
vasculature network development, than small solid tumors 
depending mainly on little capillaries. It has been though 
hypotesized that this effect is linked to the inhibition of 
angiogenesis. Further studies have shown that depsipeptide 
reduce VEGF mRNA expression without affecting hif-
1alpha gene (134).The mechanism, in which this agent 
inhibits VEGF gene expression, is probably linked to 
histone acetylation of VEGF promoter regions. 
Panobinostat, which efficiently inhibit angiogenesis in vitro 
and in vivo in the presence of high concentrations of 
VEGF-A and bFGF (135), has been described to modulate 
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VEGF-A signaling pathway by preventing AKT 
phosphorylation in a dose-dependent manner. 

 
8.3.2. HDACi downregulate matrix metalloproteinases 
MMP-2 and MMP-9 

Matrix metalloproteinases are a group of zinc-
binding endopeptidases secreted as zymogenes that 
desintegrate extracellular matrix components. They 
participate in the process of metastasis by promoting cell 
invasion. Multiple studies have revealed a special 
importance of MMP-2 (type IV collagenase, gelatinase B) 
and MMP-9 (type IV collagenase, gelatinase A) in this 
process (136). Antimetastatic effect of HDACi-based 
therapies is associated with inhibition of matrix 
metalloproteinases. In an in vitro study conducted by Kim 
et al. (137) apicidin has been reported to inhibit MMP-2 
and MMP-9 (both zymogen and protein), to suppress the 
formation of new blood vessels in CAM (chicken 
chorioallontoic membrane) assay and significantly 
attenuate the vasculature of v-ras-transformed murine 
fibroblast NIH3T3 cells and human melanoma A2058. The 
function of MMP in tumor cells can be also inhibited by the 
activity of RECK - a membrane glycoprotein negatively 
regulating MMP activity, widely expressed in normal 
untransformed human cells and often undetectable in many 
tumor lines (138-139). A study performed by Liu et al. 
shows that TsA has a potential to upregulate RECK 
expression by its transcriptional activation in lung cancer 
cells CL-1 cells in vitro, which subsequently caused a 
decrease in MMP-2 level in gelatin zymography assay 
(140). 

 
8.3.3. HDACi up-regulate the expression of angiostatic 
protein ADAMTS1 

ADAMTS1 is an extracellular metalloproteinase 
found mostly in cartilage, which in contrast to other known 
metalloproteinases is reported to be a potent inhibitor of 
angiogenesis (141). The findings of Chou and Chen show 
that HDACi such as TsA, vorinostat and specific HDAC6 
inhibitor - tubacin are able to upregulate the expression of 
ADAMTS1 in human lung carcinoma A549 cells (142). An 
increased level of ADAMTS triggers the release of 
angioinhibitory proteins - trombospondin 1 and 2.  

 
8.3.4. HDACi downregulate the expression of 
chemokine (C-X-C motif) receptor 4 (CXCR4) 

CXCR4, a CXC chemokine family receptor, 
plays an important role in the homing of bone marrow 
progenitor and circulating endothelial cells to active sites of 
angiogenesis (143) . During testing its angiostatic activity 
on HUVEC cells, panobinostat has been reported to down-
regulate the expression of CXCR4 both at mRNA and 
protein level (135). 

 
8.3.5. HDACi downregulate the expression of 
endothelial nitric oxide synthase (eNOS) affecting 
endothelial cells vasorelaxation 

eNOS generates nitric oxide which plays a key 
role in the regulation of vascular tone and modulates 
angiogenesis in response to tissue ischemia (144). TsA, 
BuA and entinostat have been shown to downregulate 
eNOS protein and mRNA expression in a time and dose-

depending manner in HUVEC cells (145). Surprisingly, the 
downregulation of eNOS mRNA by TsA correlated with 
pronounced activation of eNOS promoter region. 

 
8.4. Immunomodulatory effects of HDACi 

The antineoplastic effect of HDACi-based regimens 
has been reported to be linked with their immunomodulatory 
function. HDACi have been demonstrated to induce antitumor 
immunity either directly by changing malignant cells into more 
attractive targets or indirectly by modifying immune effector 
cells activity and cytokine production. The influence of 
HDACi on immune system has a complex character and 
engages many different pathways. HDACi have been 
demonstrated to up-regulate the expression of various proteins 
involved in major histocompatibility complex (MHC) class I 
antigen presentation. The antigen presentation in MHC class I 
context involves the translocation of proteasome-degraded 
peptides into the lumen of ER, a process accomplished by TAP 
proteins (TAP-1 and TAP-2). A decrease of MHC class I is a 
common strategy employed by malignant cells to escape the 
immune surveillance. Moreover, deficiency in TAP-1 resulting 
from mutations within tap-1 gene, decrease in TAP-1 mRNA 
stability or in tap-1 promoter activity are considered to 
correlate with tumor progression and metastasis (146-147). A 
study conducted by Setiadi et al. has shown that treatment of 
TAP-deficient metastatic carcinoma cells with TsA increases 
levels of TAP-1 mRNA and protein due to enhanced 
recruitment of RNA polymerase II to the tap-1 promoter. 
Increased tap-1 promoter activity correlated with higher (about 
10 fold) MHC class I expression on tumor cells that made 
malignant cells more vulnerable to CTLs-dependent lysis 
(147). HDACi also have a potential to enhance MHC class II 
and costimulatory molecules (CD40 (148), CD80 and CD86 
(149)) level on tumor cells . A study by Magner et al. shows 
that TsA treatment leads to enhanced transcription and 
significant increase in MHC class II protein expression on 
tumor cell surface. Furthermore, up-regulation of MHC class II 
molecules was observed also in some tumor lines unresponsive 
to INF-gamma. Some authors suggest that HDACi convert 
neoplastic cells into effective antigen presenting cells (APC), 
which together with crosspresentation of tumor antigens by 
host APC could establish antitumor immunity. HDACi-treated 
tumor cells have been shown to be an effective vaccine 
strategy both in prevention and treatment model (150). 
Vaccination with TsA-treated melanoma cells elicited 
mobilization of cytotoxic and IFN-gamma secreting 
splenocytes, CD4+ T cells, CD8+ T cells and NK cells, which 
were shown to play a key role in a vaccination effectiveness. 
Depletion of these cells prior to vaccination completely 
abrogated its antitumor effect. HDACi have also been noted 
for their impact on sensitizing malignant cells into NK-induced 
cytotoxity by enhancing the expression of MHC class I chain-
related molecules MICA and MICB on the surface of tumor 
cells (151). Those two molecules are ligands for natural killer 
cell protein group 2D (NKG2D), the activating 
immunoreceptor expressed on the surface of NK cells, gamma 
delta and CD8+ T cells. In the study by Schmudde et al. 
HDACi have been shown to sensitize tumor cells to the 
cytotoxic effect of IL-2-activated peripheral blood 
mononuclear cells (PBMCs), mainly NK cells. In the study 
performed on HeLa and HepG2 tumor cell lines, NaBu 
upregulated the expression of the MICA and MICB molecules 
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at both mRNA and protein level that directly increased 
susceptibility of tumor cells to NK-dependent lysis. HDACi 
treatment promoted increased expression of heat shock protein 
70 (HSP70), Sp1 transcription factor and subsequent elevated 
expression of MICA and MICB proteins, which directly leads 
to increased susceptibility of tumor cells to NK-dependent 
lysis (152). Although NKG2D ligands trigger the activation of 
cytolytic NK cells and act as co-stimulatory signals for CD8+ 
T lymphocytes, it has been demonstrated that prolonged 
exposure to NKG2D ligands may make effector cells 
functionally anergic (153). This effect can be reversed by 
various cytokines such as IL-15, IL-12, IL-2 and INF-alpha, 
which provides a rationale for combinated HDACi-cytokines 
regimens (154-155). The exact role of HDACi in 
immunomodulation requires further studies in preclinical and 
clinical settings. 

 
9. HDACi IN COMBINATION SCHEMES 

 
It seems that despite their efficacy as single 

agents HDACi will find most clinical use in 
combination with other chemotherapeutics and ionizing 
radiation (IR) (156). A rationale for combining HDACi 
with chemotherapeutics and IR is HDACi-mediated 
hyperacetylation of core histones and reversal of 
chromatin compaction which may increase accessibility 
of DNA damaging agents. What's more, HDAC1 has 
been shown to interact both in vitro and in vivo with 
ataxia teleangiectasia mutated kinase (ATM) recruited 
and activated by DNA doublestrand breaks (157). 
HDACi treatment has been reported to induce 
phosphorylation-dependent activation of ATM (158), 
which might subsequently phosphorylate its targets 
including p53. The effect of sensitization might be 
further enhanced by the ability of HDACi to induce 
ROS and block DNA repair pathways by down-
regulating the activity of repairing proteins such as 
Ku70 and Ku80 (159). Finally, HDACi are known to 
modulate apoptosis threshold in cancer, so that they can 
potentiate the effects of chemo- and radiotherapy.  

 
9.1. Combinations with chemotherapy 

Many preclinical and clinical trials (reviewed 
by Batty el al. (160) and Ma et al. (27)) combining 
HDACi with chemotherapeutic agents have been 
performed. Some of them suggest additive or even 
synergistic antitumor effects of such combinations. TsA 
has been demonstrated to act synergistically with 
paclitaxel both in vitro and in xenograft murine model 
(161). Vorinostat has been shown to synergize in vitro 
with SN38 TopoI inhibitor (162), potentiate the 
cytotoxic effect of gemcitabine (163) and sensitize 
cancer cells to cisplatin (164). The efficacy of 
combinations of vorinostat with paclitaxel or with 
carboplatin has been assessed in phase I and II clinical 
trials (165-166). The sequence of drug administration in 
such schemes has been shown to be of an utmost 
importance. HDACi administration before 
chemotherapy sensitizes tumor cells to genotoxic agents, 
as it has been demonstrated in an in vitro assay by Kim 
et al. where TsA and vorinostat administered before VP-
16, ellipticine, doxorubicin and cisplatin increased the 

sensitivity more than 10 fold, whereas the inverse order 
of drugs was without result(167). Combinations of 
HDACi and DNA methylation inhibitors such as 5-aza-
2'deoxycytidine (168) and hydralazin (169) have been 
tested in phase I/II trials. Although response rates were 
not definitively superior, a relatively rapid response time was 
suggested to be a surrogate for synergy (160). Moreover, 
synergistic effects with ABL kinase inhibitor imatinib (170), 
activators of FAS and TRAIL pathways, remarkable 
sensitization to trastuzumab, taxol, gemcitabine, epothilone 
B (97) and additive effects in combination with retinoic 
acid (171) have been reported in in vitro studies. An 
interesting example of synergy is the cooperation between 
HDACi and a HSP90 inhibitor 17-allyloamino-demethoxy 
geldanamycin (17-AAG), which triggers client proteins 
degradation and proteasome inhibitor bortezomib (172-
173). Independent in vitro studies by Yu et al. (172) and 
Pei et al. (174) have shown that preincubation of malignant 
cells with HDACi before treatment with bortezomib results 
in a mitochondrial dysfunction, caspase activation, and 
apoptosis, reflected by caspase 9, 8, and 3 activation and 
poly(adenosine diphosphate–ribose) polymerase (PARP) 
degradation. The mechanisms underlying this synergy 
remain to be fully elucidated, but they probably results 
from supression of NF-kappaB activity, which leads to 
massive accumulation of ROS and apoptosis induced by c-
Jun NH2-terminal kinase activation, p53 induction, and 
caspase-dependent cleavage of p21CIP1, p27KIP1, Bcl-2 and 
Mcl-1, X-linked inhibitor of apoptosis, and cyclin D1 
downregulation (174).Moreover, the combination of 
tubacin, selective HDAC6 inhibitor, and bortezomib in 
an in vitro trial conducted by Hideshima et al. resulted 
in an accumulation of polyubiquitinylated proteins, 
activation of stress response and subsequent induction 
of apoptosis. 

 
9.2. Combinations with irradiation 

HDAC inhibitors have been reported to improve the 
therapeutic effects of irradiation, acting both as 
radiation sensitizers and radioprotectors from the side 
effects of gamma-radiation. Many HDACi have been 
found to enhance the effect of irradiation, including: 
NaBu (175-176), TsA (177), VPA (178), Vorinostat 
(179), entinostat, depsipeptide and hydroxamic acid 
analogues such as M344 (180). HDACi concomitantly 
suppress cutaneous radiation syndrome (CRS), one of 
major obstacles in radiotherapy of tumors. They have 
been observed to protect from fibrosis and secondary 
tumor formation and to reduce skin damage. This 
protecting activity is most probably a consequence of 
HDACi-mediated decrease in the expression of the 
inflammatory cytokines such as TNF and transfroming 
growth factors TGF-beta1 and TGF-beta2 (181). 

 
10. RESISTANCE TO HDACi 
 

Despite its success, HDACi-based therapy, as well as 
any new antitumor modality, meets with development of 
resistance. It seems that long-time exposure to HDACi 
leads to a selection of more aggressive phenotypes. Such a 
phenomenon have been reported by Fiskus et al. (182), who 
described a case of HL-60 cells resistant to NaBu, 
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vorinostat, LAQ824 and panobinostat that lacked 
expression of HDAC6. Another reason for HDACi 
resistance might be overexpression of antiapoptotic 
proteins Bcl-2 and Bcl-xl or deletion of proapoptotic 
Bim and Bid (88, 183). Overexpression of 
peroxiredoxins which correlates with reduction in ROS 
generation may also protect cells from HDACi activity 
(184). Resistance to some HDACi (depsipeptidine and 
apicidin) can be related to HDACi-induced increased 
acetylation in promoter region of gene encoding 
multidrug-associated protein (MRP1), which leads to 
overexpression of P-glycoprotein (Pgp) and efflux of 
HDACi (185-186). However, resistance to vorinostat is 
not related to MPR-1 expression (187) and correlates 
with activation of STAT-1,-3 and -5 (188). Therefore, 
given a variety of mechanisms engaged, resistance to 
HDACi needs further investigation. 

 
11. CONCLUSIONS 
 

HDACi have emerged as potent antitumor agents 
in preclinical models. So far, only vorinostat has been 
approved by the FDA for the treatment of cutaneous T-cell 
lymphoma. The potential use of HDACi is exciting, 
however they should be introduced into clinical use with 
great caution. Since many histone and non-histone proteins 
have been identified as targets for both acetyaltion and 
deacetylation, HDACi exert extremely pleiotropic effects. 
Elucidation of mechanisms of their action is critical for 
designing the most effective combinations for planning 
therapeutic schemes. Moreover, it can help to predict 
potential side –effects of those promising new drugs. 
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