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1. ABSTRACT 
 

RAGE is pattern recognizing receptors for 
diverse endogenous ligands. RAGE activation by RAGE 
ligands is known to be associated with reactive oxygen 
species generation, activation of NF kappa B, as well as 
recruitment of proinflammatory cells. Activated endothelial 
cells, vascular smooth muscle cells in atherosclerotic 
plaques and activated inflammatory cells all have increased 
expression of RAGE, which with its interaction with 
RAGE ligands increases the secretion of proinflammatory 
cytokines and cell adhesion molecules. Furthermore, 
RAGE may have a significant role in leukocyte recruitment 
into the intima of the atherosclerosis. Initial insults 
resulting in endothelial dysfunction will result in leukocyte 
infiltration, oxidative stress and vascular inflammation that 
is amplified by RAGE activation. RAGE and its interaction 
with RAGE ligands may be important for initializing and 
maintaining the pathological processes that result in various 
entities of cardiovascular disease. Soluble RAGE 
competitively inhibits the binding of RAGE ligands to 
RAGE and attenuates the development of atherosclerosis in 
vivo. Thus RAGE may be a promising target for treatment 
of cardiovascular disease in the future.  

 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
 With aging, changes in dietary patterns and 
increasing sedentary lifestyles, cardiovascular diseases 
resulting from atherosclerosis have become the most 
important cause of mortality and morbidity in the general 
population (1). Although atherosclerosis develops from 
multiple risk factors such as hypertension, dyslipidemia, 
diabetes, aging and smoking, the common pathway for its 
development is endothelial dysfunction and vascular 
inflammation (2,3). Multiple risk factors including 
hypertension, diabetes, smoking, and dyslipidemia act in 
concert to increase oxidative stress and inflammation in 
vascular walls (1-3). Recent studies have demonstrated that 
receptor for advanced glycation endproducts (RAGE) and 
its ligands may play an important role in mediating 
vascular inflammation and the subsequent development of 
atherosclerosis (4-6). RAGE is a pattern recognition 
receptor that interacts with multiple ligands and elicits 
innate immune responses from leukocytes (1,2). Unlike 
Toll like receptors (TLRs) that primarily recognize ligands 
originated from exogenous pathogens, RAGE interacts with 
endogenous ligands, and has been strongly implicated in 
the pathogenesis of multiple diseases triggered by chronic
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Figure 1. Binding of RAGE ligand with RAGE results in 
activation of various signal cascades such as MAPK 
activation, increase in reactive oxygen species generation, 
increased activation of the PI3K-Akt pathway and 
increased activation of NFκB. The activation of NFκB may 
increase the expression of TNFα, Interleukin 6 and various 
cell adhesion molecules, which may act in concert to 
increase tissue inflammation. 
 
inflammation (2, 3). Endogenous ligands for RAGE, such 
as high mobility group box 1 (HMGB1), s100/calgranulin, 
amyloid beta peptide and advanced glycation endproducts 
(AGEs) are significantly increased during tissue injury and 
cell necrosis (4-7) and are strongly influenced by 
environmental factors and aging (8-12). RAGE ligands 
such as AGE, HMGB1, S100/calgranulin that are involved 
in the pathogenesis of diabetic complications, amyloidosis, 
immune/inflammatory disorders and tumor biology interact 
with RAGE to manifest their biological activity. In this 
article, we will review the evidence of RAGE in 
inflammation, role of RAGE in the pathogenesis of 
cardiovascular disease and the possibility of the therapeutic 
role of soluble RAGE in cardiovascular disease.    
 
3. RAGE SIGNALING IN INFLAMMATION  
 
 AGEs are products of non enzymatic glycation 
and oxidation of proteins and lipids, that result in formation 
of majors AGEs products such as N-carboxymethyl-lysine 
(CML), pentosidine and methylglyoxal derivatives (6). The 
deposition of AGEs on cells and its interaction with RAGE 
can adversely affect normal cellular physiology. RAGE is a 

type 1 membrane protein of the immunoglobulin 
superfamily and is a pattern recognizing receptors for 
diverse endogenous ligands. It is expressed abundantly in 
normal lung tissues, macrophages, T cells, podocytes, 
Müller cells, glial cells, vascular smooth muscle cells and 
endothelial cells (13). In pathologic states, the expression 
of RAGE in the vascular smooth muscle cells and the 
endothelial cells are highly upregulated (14-16). RAGE 
activation is known to be associated with reactive oxygen 
species (ROS) generation, activation of NF kappa B, as 
well as recruitment of proinflammatory cells (4,17-19) 
(Figure 1). Also, RAGE activation is involved in activation 
of myriads of diverse signaling pathways such as ERK 1/2, 
MAPK, SAPK/JNK, rho GTPase, PI3K and the JAK/STAT 
pathway (18-26). Studies have shown a direct role for 
RAGE in inflammatory cell adhesion and recruitment with 
RAGE being demonstrated to be acounter-receptor for 
leukocyte integrins, thereby being directly involved in the 
recruitment of inflammatory cells in vitro and in vivo (4,27). 
In a study performed in a mouse thioglycollate-induced 
acute peritonitis model, recruitment of both neutrophils and 
macrophage were significantly impaired in RAGE 
knockout mice compared to the wild type mice, with the 
recruitment of leukocytes being mediated through the 
interaction of RAGE with beta 2-integrin Mac-1 (4).  
 
 A unique feature of RAGE is its interaction with 
multiple ligands and the colocalization of ligand-RAGE 
complexes in sites of ligand accumulation (28,29) (Figure 
1). The major ligands for RAGE that have so far been 
elucidated are AGEs, high mobility group box 1 (HMGB1) 
and S100/calgranulins (6,30). 
 
 AGEs are known to arise both endogenously 
using endogenous substrates and by exogenous absorption 
from food (31). Endogenous AGEs are generated by non 
enzymatic reaction between reducing sugars and amino 
acid groups residing on proteins, lipids and nucleic acids. 
Although the reaction is driven largely by hyperglycemia, 
increase in oxidative stress with resulting oxidation of 
sugars will result in increased formation of highly reactive 
mono or dicarbony groups that bind to amino acids and 
form AGEs (32,33). Activated leukocytes will form AGEs 
independent of hyperglycemia by producing enzymes such 
as NADPH oxidase and myeloperoxidase, generating 
oxidation of amino acids and AGEs (32,34). Increased 
activation of the aldose-reductase mediated polyol 
pathways, by generating reactive intermediates such as 
glyoxal, methyglyoxal or 3-deoxyglucosone, is associated 
with increased AGE formation (32,35). Endogenously 
generated AGEs engage with RAGE to upregulate 
proinflammatory signals via its activation of NF kappa B in 
endothelial cells, vascular smooth muscle cells and 
monocytes, which may mediate the pathogenesis of 
inflammation that are crucial to the development of 
vascular disease (18,36). Indeed, accumulation of AGEs is 
increased in diabetes, hyperglycemia, aging, atherosclerotic 
vascular disease, renal failure and Alzheimer disease 
(18,37-40).  
 

Exogenous food borne AGEs, such as 
premelanoidins and melanodins, are derived by Maillard 
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reaction during heating and processing of food with 5-30% 
of AGEs consumed being absorbed into the circulation 
(31,41). In contrast to endogenous AGEs, exogenous AGEs 
have been suggested to have an antioxidant and antifibrotic 
effect in vitro (31,42). In a study by Ruhs et al, the 
expression of mice cardiac fibroblasts treated with bread 
crust extracts was associated with significant reduction in 
the expression of smooth muscle cell α-actin and 
tropomyosin-I, suggesting an antifibrotic effect of 
exogenous AGE in vitro (31). However, in a study by 
Vlassara et al, diabetic subjects administered with high 
AGE diet were associated with increased expression of 
mononuclear cell TNF-alpha/beta, serum vascular cell 
adhesion molecule and plasma C reactive protein (43). Also, 
in a study by Uribarri J et al, a single oral AGE challenge 
was associated with lower flow mediated dilation (44). 
Therefore, clinical studies clearly demonstrate that 
exogenous AGEs may have deleterious effect on vascular 
inflammation and endothelial dysfunction.  
 
 HMGB1 is a non histone, chromosomal protein 
that are released extracellularly during cell necrosis and by 
activated macrophage and monocytes (40). HMGB1, 
through its receptor RAGE, may activate vascular 
endothelial cells, vascular smooth muscle cells and 
macrophage/monocytes to upregulate proinflammatory 
cytokines and cell adhesion molecules. In vivo, prolonged 
elevation of HMGB1 is associated with increased lethality 
from sepsis in experimental sepsis (45,46), and 
intratracheal administration of HMGB1 is associated with 
increased neutrophil infiltration and acute lung injury in 
animal models (45,47). Taken together, HMGB1 and its 
interaction with RAGE play an important role for 
mediating inflammation response.         
     
 S100/calgranulins are a family of more than 15 
myeloid related, calcium binding polypeptides that are 
found extracellularly at sites of inflammation. Among the 
S100 family of proteins, S100A12 and S100B are shown to 
activate proinflammatory reactions in endothelial cells, 
monocytes and vascular smooth muscle cells through their 
interaction with RAGE (16,18,21).    
 
4. ROLE OF RAGE IN ATHEROSCLEROSIS 
 
 Atherosclerosis is a chronic inflammatory 
disease due to multiple interaction between macrophage, T 
cell lymphocytes, vascular smooth muscle cells and 
endothelial cells (2,48). The initiation of atheroma in the 
large to medium arteries is triggered by the infiltration of 
oxidized LDL cholesterol in the intimal wall. The oxidized 
LDLs increases endothelial dysfunction, which may be 
potentiated by other risk that increase oxidative stress, such 
as hypertension, smoking and diabetes (2,49,50). The 
activated endothelium increases the expression of cell 
adhesion molecules that increase the uptake of monocytes 
into the media. The monocytes are subsequently 
differentiated into macrophages which take up modified 
LDLs, resulting in the transformation into foam cells (2,51). 
Also, the activated macrophages secret free radicals and 
cytokines, amplifying the inflammatory cascades. The 
further increase in inflammation results in formation of 

enough foam cells to progress fatty streaks into lipid core, 
with infiltration of macrophage, T cells and mast cells in 
the cap and shoulders of the atheroma (2,52). Cytokines 
secreted from the proinflammatory cells in the shoulder 
region increases the formation of matrix metalloproteinase 
and cysteine protease, which predisposes to increased risk 
of plaque rupture and acute coronary syndrome (2,53,54).        
 
 Recent studies have shed light on the potential 
role of RAGE in the pathogenesis of atherosclerosis. 
Activated endothelial cells, vascular smooth muscle cells in 
atherosclerotic plaques and activated inflammatory cells all 
have increased expression of RAGE, which with its 
interaction with RAGE ligands, increase the secretion of 
proinflammatory cytokines and cell adhesion molecules. 
Furthermore, RAGE may have a significant role in 
leukocyte recruitment into the intima of the atherosclerosis 
(27). The fact that RAGE acts to both recruit and activate 
macrophage suggests an important role for RAGE in the 
initiation and maintenance of inflammation in 
atherosclerosis (55).           
 
 Apo E knockout mice are models of 
hypercholesterolemia induced atherosclerosis that is widely 
used to study atherosclerosis in vivo. In aortas of Apo E 
knockout mice, there is a time dependent increase of RAGE 
expression, with a 6 fold increase at 24 weeks compared to 
baseline of 6 weeks of age (56). Apo E knockout mice were 
associated with accelerated atherosclerosis and increased 
expression of VCAM-1, MCP-1, CD-40, IL-10, MAP 
kinase, and MMP-2 (56). In ApoE, RAGE double knockout 
mice model (RAGE -/-, Apo E -/-), the expression of the 
above mentioned proinflammatory mediators were 
significantly attenuated, suggesting the importance of 
RAGE signaling in propagation of vascular inflammation 
in atherosclerosis (56). From the above mentioned study, 
the expression of RAGE ligands such as S100B and 
HMGB1 were also attenuated in the aorta of Apo E, RAGE 
double knock out mice, suggesting that RAGE acts as a 
positive regulator of its own ligand for receptor activation 
(56,57).  
 
 Diabetes is a major risk factor of atherosclerosis 
due to its role in acceleration of atherosclerosis and 
vascular inflammation (57,58). One of the mechanisms for 
the increased risk of atherosclerosis in diabetes may be the 
increased accumulation of AGEs in the vascular wall 
(57,59). The accumulation of AGEs and its interaction of 
RAGE may play a significant role in the acceleration of 
atherosclerosis in diabetes. Diabetic Apo E knockout mice 
are associated with increased plaque accumulation 
compared to non diabetic Apo E knockout mice (57). 
However, diabetic RAGE, Apo E double knockout mice 
(RAGE -/-, Apo E -/-) have significantly reduced plaque 
areas, findings that suggest that RAGE plays an important 
role for progression of atherosclerosis in diabetes (57). In 
hyperglycemia, recent study demonstrated that increased 
expression of RAGE and of its proinflammatory 
endogenous ligands (S100A8, S100A12, HMGB1) are a 
consequence of hyperglycemia-induced ROS (60).  Thus, 
in diabetes, increased oxidative stress and AGE 



Role of RAGE in the pathogenesis of cardiovascular disease 
 

489 

accumulation may act in concert to increase vascular 
inflammation through the activation of RAGE.  
 
5. RAGE AND REPERFUSION INJURY IN 
MYOCARDIAL INFARCTION  
 
 Despite the marked improvement in the 
prognosis of acute myocardial infarction via reperfusion 
with mechanical or thrombolytic therapy, reperfusion itself 
results in myocardial damage via reperfusion injury (61-64). 
Among the various mechanisms that have been reported to 
explain this phenomenon, increased oxidative stress and 
inflammation have been reported to be significant 
contributors to reperfusion injury (62). 
Ischemia/reperfusion injuries in rats and mice have 
demonstrated increased expression of RAGE in the 
endothelium and macrophage, which is attenuated in 
RAGE -/- mice (63-65). Also, reperfusion injury was 
associated with increase in markers of apotosis, which was 
associated with significant attenuation of phosphorylation 
of STAT 3, a transcription factor that has been reported to 
confer protective effect from ischemia/reperfusion injury 
(65,66). Conversly, in RAGE -/- mice, the phosphorylation 
of STAT3 was increased with significant decrease in 
markers of apotosis (65).  
 
 Increased oxidiative stress is one of the major 
mechanisms for ischemia/reperfusion injury. Studies have 
shown that increase in inducible nitric oxide is associated 
with magnification of oxidative stress due to increase in 
peroxynitrite that may contribute to increased myocardial 
injury (63,67). In murine models of ischemia/reperfusion 
injury, the expression of iNOS has been demonstrated to be 
increased, whereas I/R injury in RAGE knockout mice 
model shows a significant decrease in iNOS expression 
(63,64).  
 
 The recruitment of leukocytes may increase 
myocardial damage by increasing oxidiative stress, release 
of cytokines as well as direct capillary plugging (62). 
Because RAGE functions as a leukocyte adhesion molecule 
for mediating innate immune response, it may play a 
significant role in attenuating leukocyte recruitment and 
inflammation in the myocardium after I/R injury (27,55). 
Taken together, RAGE may play a significant role in 
mediating reperfusion injury in myocardial infarction 
through its activation of inflammation, increase of 
oxidative stress and leukocyte recruitement.    
 
6. RAGE AND HYPERTENSION 
 
 The pathophysiology of hypertension can be 
characterized by the increase in central aortic stiffness, 
which results in predominant elevation of systolic blood 
pressure, and increase in peripheral vascular resistance of 
the resistance arteriole, resulting in elevation of diastolic 
blood pressure (68). The increase in central aortic stiffness 
is usually associated with aging but may also be accelerated 
with diabetes (59). Previous experiments have shown that 
in experimental diabetes, AGEs is known to accumulate in 
aortic tissues and decrease collagen solubility through 
AGEs induced collagen cross link formation (69). In 

addition to the direct effect of AGEs on aortic compliance, 
AGEs may theoretically interact with RAGE to increase 
central aortic stiffness. The activation of RAGE through 
AGE stimulation induces activation of p21ras, extracellular 
signal related kinase (ERK), p44/p42 mitogen activated 
protein kinase, c-Jun N-terminal kinase/stress activated 
kinase (JNK/SAPK), Janus kinase/signal transducer and 
activator of transcription (JAK/STAT), all mitogenic 
stimuli that induces vascular smooth muscle cell 
proliferation (18-26). Also RAGE induced increase in 
expression of cytokines, cell adhesion molecules and MMP 
activation may result in vascular inflammation, fibrosis and 
elastinolysis that is characteristic of the pathophysiology of 
central arterial stiffness (56). Therefore, it is highly 
probable that AGE accumulation associated with aging, 
oxidative stress and diabetes may, through its RAGE 
independent and dependent effect, accelerate central aortic 
stiffness and play an important role for the development of 
systolic hypertension.        
    
 In the microcirculation, the healthy endothelium 
is essential for maintaining adequate nitric oxide secretion 
for vasodilation. In hypertension, endothelial dysfunction is 
characterized by increased breakdown of NO breakdown, 
due mainly to increased oxidative stress production. RAGE 
activation is characterized by increased production of ROS, 
which may contribute to increased NO breakdown and 
eNOS uncoupling (70,71). Studies have shown that 
coronary arterioles isolated from diabetic mice with leptin 
resistance demonstrate impaired relaxatory response to 
acetylcholine and show partial improvement of the 
acetycholine response after treatment with soluble RAGE 
(71,72). Also, the improvement of vascular tones by 
coincubation with NO donor sodium nitroprusside was 
blocked by administration of RAGE ligand S100B (71,72). 
The results from the above mentioned study demonstrate 
that RAGE may play a role in modulating vascular 
reactivity in the microcirculation, which may have 
pathophysiologic implications in hypertension.    
 
7. RAGE AND AORTIC DISEASE  
 

Abdominal aortic aneurysms are typically 
characterized by progressive expansion in the diameter of 
the infrarenal abdominal aorta that are associated with high 
mortality when ruptured. Although the pathogenesis of 
abdominal aortic aortic aneurysms are not well known, 
increased vascular inflammation, oxidative stress and 
activation of MMP-9 activity may play a significant role. A 
recent study demonstrated that human S100A12 mediates 
the increase in interleukin-6 production, activation of 
transforming growth factor beta pathways and enhanced 
oxidative stress in primary aortic smooth muscle cell 
cultures from resected thoracic aortic aneurysms in 
S100A12 transgenic mice. They also examined S100A12 
expression in aortic tissue from patients with thoracic aortic 
aneurysm and found increased S100A12 expression in 
vascular smooth muscle cells (73). Also, it has been shown 
in vivo that RAGE knockout in mouse model of abdominal 
aortic aneurysm is associated with significant reduction of 
both the incidence and diameter of the abdominal aortic 
aneurysm with significant reduction of the MMP-9 activity,
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Figure 2. Cross linkage of collagens by advanced glycation 
endproducts will result in increased stiffening of the 
arteries and is a key pathogenic process in arteriosclerosis. 

 
the activity of which was expressed abundantly in the 
aneurysmal wall of control (74). The increased expression 
of RAGE in aortic aneurysms, with subsequent increase in 
the RAGE ligand-RAGE interaction, may induce MMP-9 
in the leukocytes, which is important for the elastin and 
collagen degradation that is characteristic of abdominal 
aortic aneurysms (74). Also, administration of soluble 
RAGE, a decoy receptor for RAGE ligands that attenuate 
the effects of RAGE activation, in the abdominal aortic 
aneurysm models demonstrated a significant inhibition of 
abdominal aortic aneurysm formation, suggesting that 
RAGE may potentially be a therapeutic target for inhibiting 
the progression of abdominal aortic aneurysms. 

 
Both RAGE-AGEs interaction or direct collagen 

crosslink of AGEs (Figure 2) can cause aberrant thickening 
of the aortic media, disarray of elastic fibers and increased 
collagen deposition leading to a progressive dilatation of 
the aorta. In a study performed on the possible prevention 
of collagen crosslink of AGE by aminoguanidine, there was 
a significant reduction of diabetes-induced myocardial 
stiffness by the decreased formation of myocardial collagen 
AGEs (75). The development of thiazolium derivatives that 

catalytically break down existing glucose-derived 
crosslinks between proteins enables a more direct 
assessment of the contribution of protein crosslinking to the 
magnitude of age- or disease-associated changes in arterial 
and ventricular stiffness (76). The crosslink breaker, 3-
phenacyl-4,5-dimethylthiazolium chloride (ALT-711), have 
been demonstrated to improves arterial and ventricular 
function in older rhesus monkeys (77) and vascular 
compliance in humans (78). In experimental diabetes, ALT-
711 reverses large artery stiffness (79), whereas the 
crosslink breaker, N-phenacylthiazolium bromide, prevents 
vascular AGE accumulation (80).  
 
8. THE POTENTIAL CLINICAL APPLICATIONS OF 
SOLUBLE RAGE IN CARDIOVASCULAR DISEASE 
 
8.1. Structure of sRAGE 

RAGE is part of the immunoglobulin superfamily 
and consists of three immunoglobulin-like regions, one 
“V”-domain followed by two “C”-domains that constitute 
the extracellular domain (17). RAGE also contains a single 

transmembrane domain and a 43–amino acid cytosolic tail. 
Studies have shown that the V-domain is critical for ligand 
receptor binding whereas the cytosolic tail is essential for 
RAGE-mediated intracellular signaling. The truncated form 
of RAGE lacking the cytosolic tail, though competent to 
bind ligands, acts as a dominant negative (DN-RAGE) 
receptor due to the suppression of the RAGE-mediated 
intracellular signaling (81,82) (Figure 3).  

 
Soluble RAGE is a circulating form of RAGE 

that consists of V and C domains without the cytosolic and 
transmembrane domain. It is formed by either alternative 
splicing, forming the esRAGE, or by proteolytic cleavage 
of the transmembrane domain by metalloprotease such as 
ADAM10 (83). Soluble RAGE may function as a decoy 
receptor by binding to RAGE ligands and inhibiting RAGE 
ligand-RAGE interaction. Recent studies have focused on 
the potential role of sRAGE as a therapeutic decoy receptor 
protein that may attenuate vascular inflammation and 
atherosclerosis (58,84).  
 
8.2. SRAGE as a biomarker of cardiovascular disease 

There is a growing body of evidence that RAGE 
may play a central role in the pathogenesis of diabetic 
vascular complications (84,85). Moreover, RAGE 
expression in the vasculature is enhanced in diabetes with 
increased amount of sRAGE being generated from the 
cleavage of increased RAGE on endothelial cell surface 
(86,87). 

 
Recently, there have been several studies 

regarding the potential role of sRAGE or esRAGE as 
biomarkers of RAGE ligand-RAGE activation. The reports 
from various studies have shown contradictory results of 
sRAGE being a biomarker of both increased tissue RAGE 
activation (88-90) and an endogenous protective factor 
(91,92). Falcone C et al. demonstrated significantly lower 
level of sRAGE in non-diabetic coronary artery disease 
patients (92) and Katakami N et al. demonstrated that 
circulating esRAGE level was significantly lower in type 1 
diabetic patients with an inverse association with the 
severity of diabetic vascular complications (intima-media 
thickness, IMT) (93). The results demonstrating inverse 
correlation between indices of cardiovascular disease and 
sRAGE suggest that sRAGE may act as an endogenous 
protective decoy receptor to modulate RAGE activation in 
the vascular wall. Contrary to the above findings, 
Nakamura K et al. reported in a Japanese population that 
serum sRAGE levels increased in type 2 diabetic patients 
compared with non-diabetic control (94) and demonstrated 
a positive correlation of sRAGE with indices of 
inflammation (95). This and other contrasting reports 
suggest that sRAGE may be a marker of increased RAGE 
activation that becomes shedded into the circulation at an 
increased concentration during tissue RAGE activation. 
Since serum levels of sRAGE and esRAGE in humans are 
1000–5000 times lower, respectively, than needed for the 
binding of AGEs, it may well be that sRAGE detected in 
the circulation may not be of sufficient amount to exert a 
biological effect as a protective decoy receptor (58,84,96-
98). More evidence and data is required to determine the 
exact biological role of circulating sRAGE at this time.
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Figure 3. Soluble RAGE may act as a decoy receptor by competitively inhibiting the binding of RAGE ligands to RAGE. The 
subsequent inhibition of RAGE ligand RAGE interaction may attenuate tissue inflammation that is associated with RAGE 
activation. 

 
8.3. Therapeutic role of sRAGE  

Several studies have shown that sRAGE is a 
pharmaceutically relevant therapeutic molecule with 
beneficial effects in vivo for animal models of cancer (99), 
chronic autoimmune inflammatory diseases (100) and 
diabetes (101,102).  In mouse models for diabetes and 
atherosclerosis, depletion of RAGE gene (ager) results in 
significant attenuation of atherosclerosis with reduction in 
inflammatory indicies (1,12). In addition to membrane-
bound RAGE, ager also produces a minor product that 
lacks the membrane anchor and the cytosolic signaling 
domain. This product is secreted into extracellular milieu as 
a soluble protein (sRAGE) (1,12). Unlike RAGE that 
transmits signals to activate various cellular programs and 
causes inflammation, sRAGE functions as a natural decoy 
that binds RAGE ligands and prevents RAGE signaling. 
Studies performed in animal models of atherosclerosis 
demonstrated that administration of sRAGE significantly 
reduces vascular inflammation and attenuates the 
development of atherosclerosis, suggesting a therapeutic 
potential of sRAGE for atherosclerotic cardiovascular 
disease (58, 84,101).  

 
Diabetes is a major risk factor of atherosclerosis 

with cardiovascular disease being the most common cause 

of mortality in patients with diabetes. The elevated level of 
AGEs and its role in mediating oxidative stress and 
vascular inflammation may play a significant role for the 
pathogenesis of diabetes induced atherosclerosis (44,103). 
In streptozocin induced diabetic apo E knockout mice 
model, administration of sRAGE suppressed both the 
development of atherosclerosis and the progression of 
atherosclerosis (58,84). In streptozocin induced diabetic 
apo E knockout mice model of atherosclerosis, the 
intraperitoneal administeration of murine sRAGE at 
100ug/day for 6 weeks resulted in significant suppression 
of both the lesion area and lesion complexity. The 
immunohistochemical staining revealed that treatment with 
sRAGE was associated with significant decrease in the 
number of macrophage and smooth muscle cells. The 
quantitative immunohistochemical staining revealed 
significant decrease in the expression of mediators of 
inflammation such as JE-MCP-1, VCAM-1, COX-2 (84). 
In the clinical setting, type 2 diabetes is a more common 
form of diabetes and is a major underlying disease for 
cardiovascular disease. In type 2 diabetes model of leptin 
resistant, apo E knockout mice (apo E -/- db/db), there is an 
accelerated generation of atherosclerosis that is associated 
with increased expression of VCAM-1, tissue factor and 
MMP-9 activity in the aorta compared to non diabetic mice 
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(101). The administration of sRAGE in the apoE -/- db/db 
mice was associated with significant attenuation of 
atherosclerosis and inhibition of the expression of VCAM-
1, tissue factor and MMP-9 activity. Also, the 
administration of sRAGE in non diabetic apoE -/- m/db 
mice resulted in significant attenuation of atherosclerosis as 
well (101). The results from these findings show that 
soluble RAGE, by competitively inhibiting the binding of 
RAGE ligands with RAGE, attenuates vascular inflammation 
and progression of atherosclerosis that are mediated by RAGE 
activation. The RAGE mediated vascular inflammation may be 
important for the pathogenesis of atherosclerosis in non 
diabetic conditions as well.  

 
Neointimal formation and restenosis is one of the 

major limitations of percutaneous vascular intervention, 
which is more exaggerated in diabetes (104). The 
pathogenesis of neointimal formation is characterized by 
platelet adhesion and inflammatory cell recruitement at the 
site of injury, followed by exaggerated proliferation of 
VSMC in response to various growth factors and cytokines 
that are secreted by the activated platelets and leukocytes 
(104,105). The intraperitoneal administration of 0.5mg/day 
murine sRAGE in carotid artery balloon injury models of 
both type II diabetes rat model (Zucker obese rats) and non 
diabetic rats (Zucker lean rats) resulted in a significant 
attenuation of neointimal hyperplasia in both types of 
animal models. The results from this study suggest the 
importance of RAGE in mediating vascular inflammation 
during the formation of neointimal hyperplasia and the 
possibility for the therapeutic application of sRAGE for 
attenuating neointimal hyperplasia after percutaneous 
vascular intervention.  

 
Although the results from the small animal 

studies seem promising, there are numerous hurdles to 
overcome before the clinical application of sRAGE for 
treatment of cardiovascular disease can become a reality. 
The doses used in these animal studies were extremely high 
doses for extended periods that do not seem to be 
applicable in large animals and human studies (84). Part of 
that may be due to the fact that recombinant sRAGE used 
in these studies were constructed and produced in non 
mammalian baculovirus systems which may increase the 
risk for endotoxin contaminations, and may lack complete 
biological functions due to the lack of eukaryotic post-
translational modification systems that may limit protein 
modification and stability (106). The development of 
methodologies for large scale production and purification 
of recombinant sRAGE in mammalian cell systems is 
needed before sRAGE can be applicable in clinical trials.  
 
9. CONCLUSION  
 

In conclusion, initial insults resulting in 
endothelial dysfunction will result in leukocyte infiltration, 
oxidative stress and vascular inflammation that is amplified 
by RAGE activation. RAGE and its interaction with RAGE 
ligands may be important for initializing and maintaining 
the pathological processes that result in atherosclerosis and 
cardiovascular disease. Blocking RAGE ligand-RAGE 
interaction by administration of sRAGE results in 

significant attenuation of atherosclerosis and neointimal 
hyperplasia in small animal models. Thus, RAGE is a 
promising new target for the development of novel  
treatments of cardiovascular disease.  
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