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1. ABSTRACT 
 

Cancer cell metastasis involves a series of 
changes in cell behaviour, driven by oncogenic 
transformation, that leads to local tissue invasion, migration 
through extracellular matrix, entry into the vascular or 
lymphatic system and colonisation of distant sites. It is well 
established that the Rho family GTPases Rho, Rac and 
Cdc42 orchestrate many of the processes required during 
metastasis. The Rho family GTPases regulate cellular 
behaviour through their interaction with downstream 
effector proteins. The p-21 activated kinases (PAKs), 
effector proteins for Rac and Cdc42, are known to be 
important regulators of cell migration and invasion. There 
are six mammalian PAKs which can be divided into two 
groups: group I PAKs (PAK1-3) and group II PAKs 
(PAK4-6). Although the two PAK groups are 
architecturally similar there are differences in their mode of 
regulation suggesting their cellular functions are likely to 
be different. This review will focus on the latest evidence 
relating to the role of PAK family kinases in the cell 
signalling pathways that drive cancer cell migration and 
invasion.  
 
 

 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
2.1. Cancer cell invasion 

A localised primary tumour can often be treated 
with radical surgery or radiotherapy, but once it has spread 
to other sites in the body it is almost impossible to 
eradicate. This facet of cancer progression highlights the 
need to improve knowledge regarding the mechanisms 
underlying metastasis with a view to identifying new 
therapeutic targets and prognostic tools.  Cancer cell 
metastasis involves a series of changes in cell behaviour, 
driven by oncogenic transformation, that leads to local 
tissue invasion, migration through tissue, entry into the 
vascular or lymphatic system and colonisation of distant 
sites (Figure 1). Invasion of the surrounding stromal tissue 
requires the co-ordinated regulation of both actin 
cytoskeletal rearrangement and cell substratum adhesion 
turnover (1). To successfully migrate through the stromal 
microenvironment, cells must be able to extend processes 
(lamellipodia/filopodia/invadopodia), anchor those nascent 
protrusions to the underlying matrix (cell adhesions), 
generate the force required for forward movement and 
ultimately dissolve adhesions at the rear of the cell. It is 
well established that the Rho family GTPases Rho, Rac and 
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Figure 1. Progression of metastatic cancer. Schematic representation of epithelial carcinoma as a multistage process beginning 
with oncogenic transformation of cells, aberrant growth and proliferation to form a primary tumour. Tumour cells eventually 
acquire a migratory phenotype and invade their surrounding extracellular matrix (ECM) in a process possibly involving interplay 
with non-tumour cells such as fibroblasts. Cells metastasise, entering blood or lymphatic vessels by intravasation. At some point, 
metastatic cancer cells will attach and extravasate, establishing a secondary site. Non-tumour fibroblast and endothelial cells are 
shaded brown, and cancerous cells are depicted with red nuclei and highlighted blue. 

 
Cdc42 orchestrate these processes (1). Rho, Rac and Cdc42 
are the most studied Rho family GTPases, these proteins 
act as molecular switches existing in two conformational 
states, GDP and GTP bound. It is only in the activated GTP 
bound state that they interact with downstream effector 
molecules to elicit their cellular response. The intrinsic 
exchange of GDP for GTP within the Rho family is 
relatively slow and is accelerated by their association with 
guanine nucleotide exchanges factors (GEFs). Of the many 
effector proteins that bind to active Rac and Cdc42, the p-
21 activated kinases (PAKs) are amongst the best 
characterised. This review will focus on the role of PAK 
family proteins in mediating cytoskeletal signalling events 
that contribute to cancer cell invasion, but will not detail 
PAK associated neuronal biology (recently reviewed (2)). 
We will address current knowledge of upstream regulation, 
evidence for involvement in tumour progression, 
contribution to cytoskeletal signalling pathways and 
relevance to cancer cell invasion. 

2.2. PAK family kinases  
p21-activated kinase 1 (PAK1) was the first PAK 

family member to be identified (3) as a serine threonine 
protein kinase activated by the small GTPases Cdc42 and 
Rac, followed by the closely related protein kinases, PAK2 
and PAK3 (4).  More recently three more family members 
were discovered (PAK4-6) and the six proteins are now 
divided into two groups (Figure 2) based upon sequence 
and structural homology (5). PAKs are highly conserved in 
evolution and have many known substrates whose 
phosphorylation affects numerous cellular processes, 
including cytoskeletal organisation, cell cycle progression, 
and cell survival (6, 7)as well as significant non-kinase 
related effects (7, 8) 
 
2.2.1. Domain structure  

Group I PAKs possess a distinctive N – terminal 
region that encompasses a p-21 GTPase binding domain 
(GBD), an overlapping autoinhibitory domain (AID) (9) 
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Figure 2. Domain structure of p21-activated kinases. All Pak family members share a common domain structure: an N-Terminal 
p21/GTPase binding domain (GBD) and a C-Terminal serine/threonine kinase domain. The GBD of Group I PAKs consists of a 
Cdc42/Rac interactive binding region (CRIB) and overlaps with an autoinhibitory domain (AID). PAK5 is the only member of 
the Group II PAKs that appear to contain an AID. All PAK proteins harbor variable numbers of core PxxP motifs, putative 
ligands for SH3 domains, although specific interacting partners are mostly unidentified. The N-Terminus of the Group I PAKs 
bind directly to the SH3 domains of Nck1/2 via a consensus binding motif (PxxPxRxxS) indicated in orange. The Group I PAKs 
also harbor a Pix binding site (indicated in red). Neither motif is present in any of the Group II PAKs. In addition PAK4 contains 
a unique GEF-H1 and Gab-1 interaction domain (GID) adjacent to the kinase domain. The kinase domain also contains a beta-5 
integrin binding region. Percentage identity (similarity in parentheses) based on alignments using sequence alignment software 
(www.ebi.org/tools) for the full length, N-terminal and kinase domain sequences are indicated on the right. 

 
and a C-terminal kinase domain (Figure 2). PAK3 has two 
alternatively spliced exons in the GBD/AID region that 
yield four splice variants, three of which have constitutive 
kinase activity (10). These splice variants have not been 
identified in PAK1/2.  For group I PAKs the AID of one 
protein interacts with the kinase domain of a second, 
forming an autoinhibited dimer, and is important in the 
regulation of basal kinase activity (5, 9, 11). Active Cdc42 
and Rac bind to the GBD (6, 8) releasing autoinhibition and 
enhancing kinase activity. Early reports suggest that 
binding of Cdc42 to Group II PAKs does not enhance 
kinase activity (12-14) and it is not clear whether these 
family members exist in an auto-inhibited state, are 
monomeric, dimeric or reside as part of a larger complex of 
proteins in vivo. However, an inhibitory region has 
recently been reported in PAK5  (at a region not 
conserved in the other group II PAKs) and this study 
indicated that GTP-Cdc42 was able to stimulate the 
autophosphorylation of purified PAK5 (15). Moreover, 
recombinant PAK4 proteins lacking either the N-terminal 
GBD (16, 17) or the ability to interact with Cdc42 (18) 
appear to have elevated kinase activity suggesting the GBD 
may interfere with kinase function. An alternative view is 
that interaction with active Cdc42 may influence group II 
PAK localisation. In support of this proposal, expression of 
constitutively active Cdc42 mediates PAK4 localisation to 
the Golgi (18). PAK4 uniquely contains an integrin binding 
site within the kinase domain (19), whilst both PAK5 and 
PAK6 possess a NLS (nuclear localisation signal) located 
in a region N-terminal to the GBD (20). PAK5 also 
possesses mitochondrial targeting signals whilst PAK6 
uniquely contains a FXXMF motif which binds directly 
with the androgen receptor (AR) ligand-binding domain 
(LBD) (21).  

2.2.2. Expression and localisation  
PAK1 is expressed in muscle, spleen and basal 

expression has been reported in several tissues, including 
the mammary gland (3). All three group I PAKs are highly 
expressed in the brain, and PAK1 and PAK2 are both 
highly expressed in most cells of hematopoietic origin 
(Table 1). PAK1 is associated with cortical actin structures 
in PDGF-stimulated fibroblasts, whereas PAK2 localizes to 
the endoplasmic reticulum (ER) in COS-7 and 293T cells 
(22, 23).  PAK1 localises to the leading edge of motile 
neutrophils (24), to pinocytic/phagocytic vesicles (22, 24) 
and to the mitotic spindle and centrosomes (25-28), as well 
as to the nucleus and nuclear membrane (29-31). PAK1 has 
also been localised to cell: substratum adhesions (32). 
PAK2 is uniquely cleaved by caspases and the catalytic 
fragment thus generated translocates to the nucleus or to 
the endoplasmic reticulum, where it is essential for the 
induction of growth arrest (23). In neuronal cells PAK3 is 
found in lamellipodia and membrane ruffles (33).  

 
Amongst Group II PAKs, PAK4 is expressed in a wide 
range of tissue types (12) and is considered to be 
ubiquitously expressed. PAK5 is predominantly expressed 
in the brain (13) but has also been detected in the adrenal 
gland, ovary and pancreas(8).  PAK6 is expressed in the 
prostate, testis, breast, kidney, placenta and brain (7, 34, 
35). Within individual cells, PAK4 has been localised to a 
number of different subcellular compartments. PAK4 is 
predominantly found in the perinuclear region, but is re-
localised to Golgi when co-expressed with active Cdc42 
(12) and can also be found at the cell periphery downstream 
of growth factor and integrin mediated signalling (17, 19, 
36). This variation in localisation suggests that PAK4 may 
shuttle between cytoplasmic compartments depending on
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Table 1. Normal tissue distribution and alterations in expression of PAK during cancer 
Pak isoform Normal tissue expression Alteration Cancer  Ref 
PAK1 Widespread inc.  Brain, muscle, spleen  Increased pak1 phosphorylation 

 
Glioblastoma 
 

(132) 

  Protein overexpression Liver (133) 
   Kidney (134) 
   Colon (135) 
  Amplification of genetic locus Ovarian (147) 
   Bladder (148) 
PAK2 Ubiquitous Increased pak2 phosphorylation Ovarian (136) 
PAK3 Brain, spleen, testis Potential cancer ‘driver’ mutations identified   (50) 
PAK4 Ubiquitous Protein overexpression 

 
Lung, ovarian, prostate, cns, 
leukaemia, renal, melanoma, breast 

(18) 
 

  Amplification of genetic locus Pancreas (99) 
   Oral squamous cell carcinoma  (101) 
  Somatic mutation Colon (102) 
PAK5 Brain, ovary, pancreas, testis Protein overexpression Colon (106) 
  Likely cancer ‘driver’ mutations identified  (50) 
PAK6 Brain,  breast,  kidney, prostate,  

placenta, testis 
Protein overexpression Prostate 

 
(35) 

 
the nature of the physiological input.  Recent studies have 
confirmed that  PAK5 shuttles between the mitochondria 
and the nucleus (20) whereas PAK6 was reported to be 
predominantly localised in the mitochondria of Chinese-
hamster ovary cells but is present in both the cytoplasm (9) 
and nucleus of prostate cells (14). 

2.2.3. Mouse knockout studies 
Deletion of the PAK1 gene in mice has no 

adverse effects on viability or fertility but there are subtle 
defects in neuronal function, defects in mast-cell 
degranulation and macrophage function. Genetic deletion 
of PAK2  results in embryonic lethality at day E8 due to 
multiple developmental abnormalities (8) whilst deletion of 
the PAK3 gene is implicated in mental retardation; PAK3 
knockout mice are viable but display cognitive impairment 
(37). Genetic deletion of PAK4 in mice is embryonically 
lethal.  PAK4-deficient embryos exhibit extensive and 
dramatic defects of heart and neuronal development and 
spinal cord motor neurons fail to differentiate and 
efficiently migrate into position (38). No abnormalities 
were detected in either PAK5 or PAK6 knockout mice, and 
PAK5/PAK6-double-knockout mice are viable and fertile 
(39). However these double-knockout mice do exhibit 
defects in learning and memory functions (39). 
 
3. GROUP I PAKS  
 
3.1 Group I PAKs and cancer  

PAK1 kinase activity is required for the Ras-
induced transformation (40) and PAK1 overexpression has 
been reported  in colon, ovarian, bladder transitional cell 
carcinoma, T-cell lymphoma, and glioblastomas (41, 42) 
(Table 2). Indeed, glioblastoma patient survival time is 
significantly correlated with the presence of phosphorylated 
(active) PAK1 in the cytoplasm (43). More specifically, 
PAK1 expression is widely upregulated in human breast 
tumours and correlates with breast cancer invasiveness as 
well as tumour cyclin D1 expression (44). Furthermore, 
PAK1 activity has been linked to estrogen (tamoxifen) 
resistance in estrogen receptor-positive breast cancers (31, 
45). These effects appear to involve the phosphorylation of 
the estrogen receptor on Ser 305 by PAK1, and correlate 
with PAK1 nuclear translocation. Moreover, inducible

 
expression of a constitutively active form of PAK1 rapidly 
induces breast cancer cell proliferation and aggressive cell 
phenotypes, which included anchorage-independent growth 
and mitotic defects (46). PAK1 has also been shown to 
have a central role in the Schwann-cell tumours of 
neurofibromatosis type 1 (NF1), which is caused by the 
loss of a Ras GAP protein, through a Ras-dependent 
pathway (47). Both PAK1 and PAK2 have been associated 
with neurofibromatosis type 2 (NF2), as PAKs 
phosphorylate the NF2 tumour-suppressor gene product, 
Merlin, on serine 518 and block its activity (48, 49). Very 
little is known about PAK3 function outside of neuronal 
cells (reviewed in(2)) however a recent screen of somatic 
mutations in human cancer identified PAK3 mutations as a 
possible driver of cancer progression (50).  
 
3.2. Group I PAKs - Upstream regulators 

Several growth factors including epidermal 
growth factor, heregulin, platelet-derived growth factor, 
and hepatocyte growth factor activate PAK1 (51-53) 
(Figure 3). PAK1 receptor recruitment can be mediated 
through binding to Grb2 (54) and localisation of PAK1 at 
the membrane is a critical step during PAK activation.  
However regulation of PAK1 activity is a complex process 
involving protein-protein interactions, phosphorylation/ 
dephosphorylation and sphingolipid binding (55, 56). The 
binding of Rac/Cdc42 to the PAK1 regulatory domain 
induces the phosphorylation of important sites throughout 
the protein, both by PAK1 itself (56) and/or by exogenous 
kinases such as JAK2, PDK1 and PKA (57-59). Indeed, 
phosphorylation of PAK1 serine 144 in the kinase 
autoinhibitory domain contributes significantly to kinase 
domain activation (56). PAK2 is also activated by binding 
to Rac/Cdc42 and is likely that the same mechanism that 
regulates PAK1 also regulates PAK2 catalytic activity. 
Like PAK1, Rac/Cdc42 interaction stimulates PAK2 
autophosphorylation (Thr 402 in the activation loop (60)), a 
requirement for kinase activity (61).  

 
The adapter protein Nck (62) and PIX (PAK-

interacting exchange factor (63)) are key regulators of the 
group I PAKs, binding directly to PAK1-3 near the N-
terminal GBD domain. Nck1/2 (referred to hereafter 
collectively as Nck) are small adapter proteins primarily 
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Figure 3. Models depicting activation of Group I PAKs. Group I PAKs, exemplified by PAK1, exist as autoinhibited 
homodimers, in which the kinase domain of one PAK molecule is inhibited by interactions from the GBD/AID domain of a 
second PAK molecule. Upon binding to Nck bound to activated transmembrane receptor (A), sphingolipids (C) or Rho family 
GTPases Cdc42 or Rac (A and D) autoinhibitory interactions are relieved enabling the kinase domain to undergo conformational 
change and autophosphorylation to become active. PAK1, 2 and 3 are also activated by phosphorylation by additional kinases, 
for example PDK1 (B), which inhibit AID-kinase and PIX interaction. Note that, despite their depiction, these mechanisms may 
not be mutually exclusive.      

 
recruited via an SH2 domain to the cytoplasmic tail of 
activated tyrosine phosphorylated cell surface receptors 
and/or sites of cell: substratum adhesion. Initially it was 
thought that Nck recruitment alone was sufficient to induce 
PAK kinase activity (64), though it later emerged that 
activation of PAK by membrane clustered Nck is 
dependent on Rho family GTPases (65). Thus Nck serves 
to recruit PAK to areas of the cell where active Rac/Cdc42 
are likely to be localised. Nck is also able to recruit a 
PAK1:PIX complex to sites of cell adhesion (66). PIX is a 
GEF for Rac/Cdc42 (67) which can complex with paxillin 
(a major component of cell: substratum adhesions) and the 
interaction between PIX and PAK1 is thought to mediate 
adhesion dynamics by localising both active Rac/Cdc42 
and PAK1 at sites of cell adhesion (68)(Figure 3). 
Autophosphorylation of PAK1, an early event in PAK1 
activation, drives the dissociation of PIX and Nck (69) 
suggesting that there is a complex feedback mechanism; 
moreover the interaction between Nck and PAK can also be 
disrupted by phosphorylation of PAK on serine 21 by 

kinases such as Akt (70) . In neuronal cells, PAK2 interacts 
with beta-PIX (71) leading to the formation of a PAK2- 
beta-PIX-Erk1/2 complex, which is essential for neurite 
outgrowth (72). Intriguingly, in this instance PAK2 
inhibition blocks Rac activation, suggesting that PAK2 may 
also function upstream of Rac by regulating beta-PIX 
activity (73).  
 

PAK2 is unique among the PAK isoforms 
because it can also be activated through proteolytic 
cleavage by caspases or caspase-like proteases to release an 
amino (N)-terminal fragment (PAK2p27) and a pro-
apoptotic catalytic fragment (PAK2p34). Activation of full 
length PAK2 stimulates cell survival, whereas proteolytic 
activation of PAK2p34 is involved in programmed cell 
death. PAK2p34 exerts its pro-apoptotic effects via the 
activation of Jun N-terminal kinase (JNK) (74, 75). 

 
Much less is known about the inactivation of 

PAKs; however the protein phosphatases POPX1 and 
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POPX2 can bind to the PIX/PAK complex and contribute 
to the deactivation of PAK. In addition to 
dephosphorylation, group I PAKs are also subject to 
inhibition by interaction with various proteins, including 
hPIP1, CRIPak, Nischarin, p110C, and Merlin (8), as well 
as down regulation by ubiquitin-mediated proteosomal 
degradation following binding to the small GTPase Chp 
(Cdc42 homologous protein) (2). 

 
3.3. Group I PAKs signalling to the cytoskeleton  

Although the substrate preferences among group 
I PAKs have never been directly or systematically 
compared, PAK1, PAK2 and PAK3 share 92-95% identity 
within their kinase domains (Figure 2), suggesting that they 
may phosphorylate common substrates (8). Indeed, PAK1 
and PAK2 have been reported to have many identical 
substrate in vitro (76). It is therefore likely that isoform-
specific functions of the group 1 PAKs are mediated by 
their participation in distinct molecular complexes and their 
localization to distinct subcellular structures. To date, 
more than 30 direct substrates of group I PAKs have 
been identified, proteins involved in the regulation of 
cytoskeletal dynamics, cell motility, cell death and 
survival signalling pathways (6). This review will focus 
on those interactions most closely related to cell 
migration and invasion (Table 1).  
 

It has been known for some time that changing 
the activity level of PAK1 in cells leads to membrane 
ruffling as a result of actin cytoskeletal rearrangement 
(77) and that inhibition of PAK activity can block cell 
migration (78). We are now beginning to understand 
how PAKs orchestrate these effects on the actin 
cytoskeleton and cell migration.   

 
Both PAK1 and PAK2 are thought to 

modulate the activity of myosin II (an actin interacting 
motor protein that can drive cell contractility) during 
cell migration. Myosin II is activated by myosin light 
chain kinase (MLCK) phosphorylation. Whilst PAK1 
phosphorylates MLCK leading to a reduction in its 
catalytic activity (79) PAK2 can directly phosphorylate 
myosin II regulatory light chain inducing an activation 
of myosin II and increased cell contractility (80). PAK1 
is also known to form a complex with, and 
phosphorylate, LIM-kinase (LIMK). LIMK is involved 
in reorganization of actin cytoskeleton through 
inactivating phosphorylation of ADF/ cofilin family 
proteins (81).  ADF/cofilins are actin binding proteins 
that can promote actin polymerization by severing actin 
filaments to increase the concentration of free barbed 
ends (reviewed by(82). LIMK1 inactivates ADF/cofilin 
by phosphorylating cofilin at Ser3, inhibiting its ability 
to bind to F-actin (81). PAK1 regulation of actin 
dynamics at the leading edge of motile cells may also be 
mediated by phosphorylation of filamin A, a large actin 
binding protein which activates PAK1 and is required for 
PAK1 induced membrane ruffling (83). Evidence has now 
emerged that PAK1 may also regulate cross talk between 
Rac/Cdc42 signalling pathways and RhoA. GEF-H1 
(guanine-nucleotide-exchange factor H1) is an exchange 
factor for RhoA whose activity is regulated through a cycle 

of microtubule binding and release. PAK1 phosphorylation 
of GEF-H1 induces microtubule binding resulting in 
suppression of RhoA activation (84). 

 
PAK1 also binds to and phosphorylates p41-

Arc, a subunit of the Arp2/3 complex. Arp2/3 drives the 
de novo nucleation of actin filaments during cell 
migration. Phosphorylation of p41-Arc by PAK1 
promotes the formation of the Arp2/3 complex and 
PAK1 mediated phosphorylation of p41-Arc is required 
for breast cancer cell migration (85). These studies are 
the first to identify kinase regulation of Arp2/3 function 
and may place PAK activity at the centre of actin 
cytoskeletal dynamics.  

 
 In addition to actin cytoskeletal regulation 

PAK1 has also been implicated in the regulation of cell 
adhesion through its interaction with the PIX: paxillin 
complex (66). PAK1 activation has been shown to 
promote the interaction between PIX and Rac1 (86) at 
sites of nascent cell adhesion and a PAK/PIX/GIT 
complex has been implicated in adhesion regulation 
during migration (87). It should be noted however, that 
PAK1 kinase activity is not always required for 
cytoskeletal remodelling. Overexpression of PAK1 kinase 
dead mutants have been shown to induce the formation of 
lamellipodia, cell spreading and increased cell substratum 
adhesions (88, 89). 
 
3.4. Group I PAKs and cancer cell invasion 

Group 1 PAKs have been implicated in cell 
migration through their ability to phosphorylate multiple 
cytoskeletal regulators. In fibroblasts, PAK1 regulates 
lamellipodial extension and directionality (90, 91) and the 
formation and disassembly of focal adhesions (32, 87). In 
contrast, in endothelial cells both kinase-dead and 
constitutively active PAK1 inhibited migration (78), 
indicating that the role of PAKs in cell migration is likely 
to be cell-type specific. In prostate cancer cells, 
knockdown of PAK1 inhibits hepatocyte growth factor 
(HGF) induced loss of cell-cell junctions and subsequent 
migration whilst knockdown of PAK2 increases 
lamellipodium extension but does not affect migration 
speed (92). However, expression of either kinase-dead or 
constitutively active PAK1 has been shown to increase 
migration towards HGF in Boyden chambers (93). siRNA-
mediated knockdown of PAK1 in breast epithelial cells 
leads to decreased myosin light chain phosphorylation and 
smaller focal adhesions whilst dominant negative PAK1 
blocks the invasiveness of breast tumour cells (88) . In 
contrast, knockdown of PAK2 has the opposite effects (94). 
Interestingly, PAK1 has also been shown to co-ordinate 
extracellular matrix proteolysis in a three-dimensional (3D) 
breast cancer model (95). Moreover, a recent study reported 
that PAK1 and PAK2 are involved in promoting cell 
migration and invasion in ovarian cancer cells (96). Cancer 
cell dissemination may require a loss of cell: cell contact 
and PAK1 kinase mutants can induce a loss of cell-cell 
junctions (93). Moreover, active Rac acts via PAK1 to 
induce disassembly of E-cadherin-based adhesions (97).  A 
process that may depend on an interaction between PAK1 
and E-cadherin associated protein beta-catenin (98).  
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Table 2. PAK kinase substrates implicated in (metastatic) cell migration 
Substrate Cellular function PAK Ref 
Caldesmon Inhibitor of  myosin ATPase activity  PAK1 & 3 (137) 
CPI17 Inhibitor of myosin phosphatase PAK1 (138) 
Desmin Intermediate filament protein PAK1 (139) 
Filamin A Actin cross linking and adhesion protein PAK1 (83) 
GIT1 GTPase regulation Arf GAP PAK1 (140) 
GEF-H1 Rho GTPase regulation, RhoA GEF PAK1 & 4 (84, 119) 
LIMK1 Actin cytoskeleton dynamics; cofilin kinase PAK1, 2 & 4 (113, 125) 
MLCK Regulation of myosin activity and actin cytoskeleton dynamics PAK1 & 2 (79, 80) 
Merlin ERM binding protein PAK2 (49) 
p41-ARC Subunit of Arp2/3 complex, actin nucleation PAK1 (85) 
Paxillin Focal adhesion scaffold PAK4 (36) 
PDZ-RhoGEF Rho GTPase regulation, RhoA GEF PAK4 (141) 
αPIX  Rho GTPase regulation, Rac GEF PAK1 & 2 (56) 
�PIX  Rho GTPase regulation, Rac GEF PAK1 & 2 (72, 86) 
Raf-1 MEK kinase PAK1 & 3 (142, 143) 
Rho-GDI Inhibitor of Rho GTPase activity PAK1 (144) 
R-MLC Regulatory chain of myosin motor  PAK2 (145) 
SSH-1 Actin cytoskeleton dynamics; cofilin phosphatase PAK4 (126) 
Vimentin Intermediate filament protein PAK1 (146) 

 
4. GROUP II PAKS 
 
4.1. Group II PAKs and cancer 

PAK4 has been found to be overexpressed or 
genetically amplified in numerous cancer cell lines and 
tumours including those derived from breast, lung and 
prostate (18) as well as pancreas (99, 100) squamous cell 
carcinoma (101) and colon cancer (102) (Table 2). 
Overexpression of PAK4 in a range of cell lines has 
revealed several phenotypes suggestive of a role in cancer. 
Overexpression of constitutively active PAK4 confers 
anchorage independent growth to cultured fibroblasts in 
soft agar assays independently of  Ras transformation (18, 
103) and kinase inactive PAK4 can inhibit either Dbl (103) 
or Ras (18) mediated oncogenic transformation of 
fibroblasts. Further, expression of kinase-dead PAK4 
inhibits anchorage independent growth of a human colon 
cancer cell line (18). In addition to the role PAK4 plays in 
oncogenic transformation, overexpressed PAK4 is 
associated with protection from apoptosis (104).  Finally, 
overexpression of both wild-type and constitutively active 
PAK4 in a nude mice model leads to an increased incidence 
of tumours, strongly implicating PAK4 as a driving force in 
cancer (105).  

 
Little is known about PAK5 function outside of 

neuronal cells but PAK5 overexpression was recently 
detected in numerous colorectal carcinoma cell lines where 
increased expression correlated with cancer progression 
and invasive potential (106). Furthermore, PAK5 somatic 
mutations were also identified in the same cancer genetic 
screen as PAK3 (50).  
 

PAK6 was identified in a screen to identify 
proteins that interact with the Androgen Receptor (AR) 
which mediates the development and differentiation of 
androgen-sensitive tissues and it is also important in the 
manifestation of prostate cancer (107). PAK6 binds to the 
ligand binding domain (LBD) of the AR (also to the 
estrogen receptor) and leads to the suppression of AR 
signalling (107). The aptitude of PAK6 to bind to steroid 
hormone receptors suggests that it may contribute to the 
hormonal independence that is characteristic of many 
aggressive tumours (76, 107). In support of this hypothesis, 

 
increased PAK6 expression has been detected in both 
prostate cancer cells and breast tumours (7, 35).  Moreover, 
a recent study demonstrated that reduced PAK6 expression, 
combined with irradiation, decreased prostate cancer cell 
viability (108). In contrast, the PAK6 gene is 
hypermethylated in some prostate cancer cells; 
hypermethylated genes are often linked with tumour 
growth inhibition (109).  
 
4.2. Group II PAKs - Upstream regulators 

PAK4 kinase activity is specifically stimulated in 
response to hepatocyte growth factor (HGF) in a 
phosphatidylinositol 3-kinase (PI3K) dependent manner 
(17). HGF is a multifunctional cytokine and signals via it’s 
oncogenic receptor c-Met/HGF receptor. HGF signalling 
plays a critical role in chemotaxis, cell growth, 
morphogenesis and metastatic migration and invasion 
(recently reviewed (110, 111). PAK4 recruitment to 
activated c-Met /HGFR is mediated by the large adaptor 
protein Gab-1. PAK4 binds directly to Gab-1 via a GEF-H1 
interaction domain (GID) adjacent to the kinase 
domain(112) (Figure 4). PAK4: Gab-1 interaction is 
required for HGF-dependent scattering of MDCK cells and 
PAK4 and Gab-1 act synergistically to enhance cell 
scattering in 2D and invasion into matrigel (112).  Unlike 
the Group I PAKs, PAK4 does not contain a prototypical 
Nck SH3 binding site, and reportedly does not bind Nck 
(113). In mice, PAK4 interacts with Grb2 downstream of 
KGFR (114), suggesting Grb2 and Gab-1 rather than Nck 
may regulate PAK4 recruitment to transmembrane 
receptors. PAK4 has also been implicated in signal 
transduction downstream of a number of transmembrane 
receptors, for example in C2C12 muscle precursor cells, 
PAK4 is activated downstream of BMP2, which induces 
cell migration (115).  

 
Upstream regulators of PAK5/PAK6 have not be 

clearly identified however kinase activity is elevated by co-
expression with the active form of MKK 6 (MAPK kinase 
6)(116). At least for PAK6, MKK6 stimulates activity by 
interacting with serine – 165 (a p38 MAP kinase site) and 
tyrosine 566 located in the activation loop within the PAK6 
kinase domain (116). Although the activity of group I 
PAKs can be regulated by the binding of Rac/Cdc42, it has 
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Figure 4. Activation of PAK4 in response to hepatocyte growth factor (HGF) signaling. HGF-induced activation of c-
MET/HGFR results in activation of the intracellular portion of c-Met that consists of a kinase domain and tyrosine residues. Once 
phosphorylated, these tyrosines serve as docking sites for the recruitment of a number of adaptor/scaffold proteins (not shown for 
clarity), including Gab-1. Subsequently, Gab1 itself becomes phosphorylated recruiting a host of signalling molecules, including 
PAK4, which in turn is activated possible from an inactive inhibited state. HGF signalling involves activation of both Rho family 
GTPases including Cdc42 and PI3K. PAK4 activation in response to HGF is PI3K-dependent; though the mechanism remains 
illusive as does the role of Cdc42. Active PAK4 regulates the activity of cofilin via LIMK1, promoting cytoskeletal 
rearrangements and cell migration.  

 
not yet been resolved whether Cdc42 is also an upstream 
regulator of Group II PAK activity even though these 
family members bind specifically to Cdc42 (see section 
1.2.1).  
 
4.3. Group II signalling to the cytoskeleton 

To date, no kinase independent functions of 
PAK4 have been identified, thus the primary mechanism by 
which PAK4 regulates the activity of downstream effectors 
is via phosphorylation. PAK4 phosphorylates two RhoA 
GEFs, PDZ RhoGEF and GEF-H1, the adhesion associated 
protein paxillin, LIMK1 and slingshot homologue (SSH-1) 
both regulators of actin dynamics mediated through cofilin 
(117). Many of these substrates, at least in vitro, are shared 
with PAK1 (Table 2). GEF-H1, a RhoA exchange factor, is 
a key orchestrator of cell migration, mediating localised 
regulation of RhoA activity at the cell leading edge during 
migration; depletion of GEF-H1 leads to decreased cell 
migration due to the loss of the Rho exchange activity of 
GEF-H1 (118). GEF-H1 binds directly to PAK4 via a GEF-
H1 interaction domain (GID) and PAK4 phosphorylates 
GEF-H1 on serine 885 (119), which inactivates RhoA 
exchange activity (120). The PAK4-GEF-H1 complex 
subsequently interacts with microtubules (MT) and the 

release of this MT bound GEF-H1 into the cytoplasm 
results in a dissolution of stress fibres and the formation of 
actin-rich lamellipodia in murine NIH3T3 fibroblast cells 
(119). In DU145 prostate carcinoma cells, co-expression of 
active PAK4 and GEF-H1 significantly reduces GEF-H1-
mediated increases in active GTP-bound RhoA. 
Conversely, knockdown of PAK4 by RNAi increases the 
level of active RhoA, suggesting that PAK4 regulates 
RhoA via regulation of GEFH1 activity (36). The loss of 
GEF-H1 is also associated with decreased rates of focal 
adhesion turnover (118). Interestingly, reduction of PAK4 
expression in DU145 prostate cancer cells not only triggers 
the formation of prominent actin stress fibres but also leads 
to an increase in the size and number of focal adhesions 
that exhibit reduced turnover rates (36). Paxillin is a central 
scaffold protein of focal-adhesion complexes, coordinating 
both complex assembly and disassembly (121). It has 
recently been reported that paxillin is serine phosphorylated 
on serine 272 which leads to increased turnover of cell 
adhesions (87). Initially PAK1 was identified as the kinase 
but subsequent reports have disputed this finding (122). 
The kinase domain of PAK4 binds paxillin and 
phosphorylates paxillin on serine 272 in vitro, suggesting a 
mechanism by which PAK4 regulates focal adhesion 
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turnover and therefore cell migration (36).  In a separate 
study PAK4 has also been shown to interact directly with 
alpha-v beta-5 Integrins (19). A beta-5 Integrin Binding 
Domain (IBD) within the C-terminus of the PAK4 kinase 
domain binds directly to a SERS motif in the cytoplasmic 
tail of β5 and phosphorylates both serine residues of this 
motif in vitro (123). Overexpression of either full length 
PAK4 or the kinase domain alone in MCF-7 breast cancer 
cells is sufficient to induce haptotactic cell migration 
towards the alpha-v beta-5 ligand vitronectin (19, 123). 
Although initially reported to be a kinase-independent 
process, in vitro binding of PAK4 to beta-5 integrin and 
concomitant haptotactic migration appears to require PAK4 
kinase activity (19, 123). Interestingly, the IBD is well 
conserved amongst other PAK family members and 
mutation of several key residues within the IBD abolishes 
both kinase activity and beta-5 interaction(123). The SERS 
sequence motif is only partially conserved between integrin 
isoforms, so it will be interesting to see if PAK4 can bind 
other integrins (for example beta-6, which is highly 
upregulated during cancer progression), likewise it will be 
interesting to see if other PAK family members can interact 
with any of the integrin cytoplasmic tails .  

 
In some cells PAK4 acts predominantly via 

LIMK1 and cofilin downstream of HGF rather than via 
GEF-H1 and paxillin (36, 124). Like PAK 1/2, PAK4 
influences actin polymerisation by activating LIMK1 via 
phosphorylation of the LIMK1 active site threonine 508 
(125) and (113) leading to serine 3 phosphorylation of 
cofilin as described above. PAK4 further regulates cofilin 
activity by phosphorylating and inactivating the cofilin 
phosphatase slingshot homologue 1 (SSH-1L) (126). SSH-
1L both dephosphorylates and inactivates LIMK1 through 
dephosphorylation of Thr508 and dephosphorylates and 
activates ADF/cofilin on Ser3, resulting in a net increase in 
ADF/cofilin activity and actin filament turnover. PAK4 
also has recently been shown to bind to GDCR6L, the 
product of a gene deleted in the rare genetic disorder 
Digeorge syndrome. DGCR6L colocalises with PAK4 in 
human gastric cancer cells and enhances the 
phosphorylation level of both LIMK1 and cofilin (127). 
Both LIMK1 and SSH have been implicated in co-
ordinated chemotactic cell migration (Nishita et al., 2005) 
and deregulation of the PAK4-LIMK1 pathway by co-
overexpression of PAK4 and LIMK1 or knockdown of 
PAK4 in PC3 cells leads to increased chemotaxis towards 
HGF and decreased cell motility, respectively (124).  

 
PAK5 is a key component in the signaling 

pathway by which Rho GTPases regulate cytoskeletal 
changes required for promoting neurite outgrowth (128),  
PAK5 is yet to be extensively studied, however it is known 
that PAK5 triggers neurite outgrowth in a mouse 
neuroblastoma cell line via down regulation of RhoA 
activity (128). Still less is known about signalling between 
PAK6 and the actin cytoskeleton. PAK6 interacts with IQ-
domain GTPase-activating protein 1 (IQGAP1) (129). 
IQGAP1 overexpression has been observed in a number of 
tumours (129), although the precise role of IQGAP in 
cancer progression remains unresolved and is the focus of 
much current research.   

4.4. Group II PAKs and cancer cell invasion 
Several reports implicate PAK4 in regulation of 

cancer cell migration and metastasis. PAK4-null fibroblasts 
migrate slower than wild-type fibroblasts in response to an 
electric field (galvanotatic migration) (130), and 
knockdown of PAK4 by RNAi reduces both the mean 
speed of migration of prostate carcinoma cell migration 
(124) the ability of pancreatic ductal adenocarcinoma cells 
to invade matrigel (100) and inhibits HGF-induced cell 
scattering responses (36, 112) . Reciprocally, 
overexpression of PAK4 enhances the migration speed of 
fibroblasts during galvanotaxis (130) and promotes the 
invasiveness of pancreatic cancer cells (100). 

 
Very little is known about how PAK5 might 

contribute to tumour progression but colorectal carcinoma 
cells overexpressing PAK5 exhibited decreased cell 
adhesion concomitant with increased cell motility on 
collagen I substratum whilst siRNA knockdown of PAK5 
expression in the same cells lead to enhanced cell adhesion 
and reduced cell migration. This study at least  implies that 
PAK5 may play a role in colorectal carcinoma cell 
migration (106). The role of PAK6 in cancer cell invasion 
has not been extensively studied however it has been 
recently reported that a loss of PAK6 expression 
significantly reduces the invasive ability of prostate cancer 
cells (131).  
 
5. PERSPECTIVE  
 

PAKs are pluripotent kinases involved in many 
cellular functions including cell motility, regulation of 
neuronal outgrowth, hormone signalling, gene transcription 
and cell survival. Their role in these processes makes this 
family of kinases attractive therapeutic targets. Since the 
discovery of p-21 activated kinases in the early 1990s we have 
learnt much about the regulation and activity of Group I PAKs. 
Much less is known about group II PAKs, particularly PAK5 
and PAK6. It is currently the case that much of our knowledge 
of their biology (as reviewed here) is derived from one or two 
publications. The future challenge is to validate these data and 
further elucidate their biological function in vivo.  

 
Many cell types express multiple PAK family 

members and it will be important to understand how PAK 
activity is coordinated at the subcellular level to mediate the 
cytoskeletal events that orchestrate cell migration and invasion. 
Indeed, many of the original PAK1 studies were conducted 
before Group II PAKs were even discovered and recent work 
suggests that PAK1 and PAK4, at least in vitro, share many 
common substrates. There is also evidence to suggest that 
different PAK family members can play antagonistic roles in 
the same cell (94) . Moreover, substrate specificity in vivo 
remains to be elucidated. Evidence from knockout mice studies 
points to both unique and overlapping functions and it is likely 
that spatial and temporal regulation of activity is required to 
elicit specific cellular responses.  It is also likely that the 
activity of individual family members may differ between 
cells types.  

 
Overexpression and amplification of PAK family 

members is reported in many tumour types and it is 
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important to note that PAKs originally thought to be 
neuronally restricted in expression (PAK3 and PAK5) are 
both implicated in tumour progression. It will be interesting 
to establish whether these family members also play a role 
in cancer cell migration and invasion.  
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