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1. ABSTRACT 
 
 In the brain, specific signalling pathways 
localized in highly organized regions called niches, allow 
the persistence of a pool of stem and progenitor cells that 
generate new neurons and glial cells in adulthood. Much 
less is known on the spinal cord central canal niche where a 
sustained adult neurogenesis is not observed.  Here we 
review our current knowledge of this caudal niche in 
normal and pathological situations. Far from being a simple 
layer of homogenous cells, this region is composed of 
several cell types localized at specific locations, expressing 
characteristic markers and with different morphologies and 
functions. We further report on a screen of online gene-
expression databases to better define this spinal cord niche. 
Several genes were found to be preferentially expressed 
within or around the central canal region (Bmp6, CXCR4, 
Gdf10, Fzd3, Mdk, Nrtn, Rbp1, Shh, Sox4, Wnt7a) some of 
which by specific cellular subtypes. In depth 
characterization of the spinal cord niche constitutes a 
framework to make the most out of this endogenous cell 
pool in spinal cord disorders. 

2. INTRODUCTION 
 
 It is now well established that in mammals the 
central and peripheral nervous systems maintain a pool of 
multipotent precursor cells, which are dispersed throughout 
the parenchyma or are located in specific regions called 
niches. Niches are highly organized structures allowing the 
maintenance of specific signalling pathways and cellular 
interactions. These architectures provide clues to maintain 
precursor cells in an undifferentiated state and to tightly 
regulate their balance between self-renewal and production 
of more differentiated cells, which then migrate along 
precise pathways. Based on their extended or limited 
capacity for long-term self-renewal, adult precursor cells 
are classified as neural stem or progenitor cells 
respectively. In the brain, the hippocampus, the recently 
discovered sub-callosal zone and the subcortical white 
matter contain neural progenitors whereas bona fide stem 
cells, capable of sustained proliferation, are preferentially 
found in the SVZ (1). Stem and progenitor cells have also 
been identified in the peripheral nervous system, namely in 
the carotid body, the enteric nervous system and the adult 
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dorsal root ganglia (2-4). Owing to the discovery of specific 
markers, the development of specific techniques such as non 
adherent cultures (neurospheres) and the identification of 
growth factors, these cells have been studied extensively over 
the last two decades. In particular, there has been a growing 
interest for studying these cells in pathological situations in 
order to control their number and fate. This could lead to 
innovating strategies to amplify and manipulate the 
regenerative capacity of the adult nervous system. 
 
 Whereas much attention has been given to stem 
and progenitor cells in the brain of mammals, much less is 
known about these cells in the spinal cord. Definite in vitro 
evidence for the presence of these cells was reported in the 
late nineties (5-7). Compared to the tremendous 
regenerative capacity of the spinal cord in lower 
vertebrates, mammals show little capacity to alleviate 
spinal cord damages, being of traumatic or degenerative 
origin. Therefore there is a need to compare at different 
levels (molecular, cellular, tissular) stem/progenitor cells in 
regenerative and non-regenerative species so as to provide 
a detailed knowledge of common and distinctive features. 
This may ultimately provide significant clues to develop 
rational strategies to repair the spinal cord following injury 
and degenerative diseases such as amyotrophic lateral 
sclerosis (ALS).  
 
 Here we review our current knowledge on the 
ependymal region of the adult spinal cord in mammals. We 
show that far from being a simple layer of ependymocytes, 
this region is composed of several cell types with specific 
markers, morphologies, locations and functions. In 
addition, probably owing to the maintenance of high levels 
of developmental signalling pathways, this region harbours 
a pool of stem and progenitor cells, which are readily 
activated and recruited in several types of spinal cord 
damage. This niche is organized along a very long tube 
(40-50 cm in humans) and probably undergoes mechanical 
forces due to extensive vertebra column bending. The 
common and distinctive cellular and molecular features of 
this caudal CNS niche compared to those in the brain are a 
source for a better understanding of the adult precursor cell 
diversity. Finally we describe how online gene expression 
databases such as Gensat (8) can help to define the cellular 
composition of the ependymal region and to identify 
canonical signalling pathways and genes which may have 
important roles for controlling the spinal cord 
stem/progenitor cell fate in normal and pathological 
situations. 
 
3. CELLULAR COMPOSITION OF THE 
EPENDYMAL REGION IN MAMMALS 
 
 The spinal cord is divided into 6 regions 
(cervical, thoracic, lumbar, sacra, conus medullaris, 
terminal filum). A central canal is observed in all regions, 
but this has been reported to be collapsed or obstructed 
notably in the caudal regions (9, 10). Bjugn et al, suggested 
that a closed canal could be due to fixation problems (11). 
The canal is filled with cerebrospinal fluid (CSF) but can 
also contain a small fibre called Reissner’s fibre (diameter 
0,4-1 µm) running along the entire spinal cord length (12). 

This fibre is seen in several mammalian species including 
rodents, cat, bovine and primates (13-16). It is composed of 
a bundle of straight, parallel, longitudinally arranged 
filaments of 50-100 Å in diameter (17). It appears to have a 
role in controlling CSF flow through the canal (18). The 
presence of amorphous proteinous material in the canal has 
also been described (16) but this could be of artefactual 
origin (12). The ependyma region is surrounded by the 
lamina X region according to Rexed divisions and by 
longitudinally arranged myelinated and unmyelinated 
axons (19, 20). Numerous blood vessels are in close 
proximity of the ependymal cells (9, 21). In the lumbar and 
sacral regions, a ventral bundle of fibres (mostly 
unmyelinated) that represents visceral autonomic afferents 
is observed. These fibres appear to interact with the 
ependymal cells (9, 20, 21). In the rat, a dense network of 
oxytocin-fibres apposed to the ependyma has been 
observed along the entire spinal cord (22). 
 
 The ependymal region is composed of several 
cell types, which are located either in direct contact with 
the lumen or in a subependymal position evoking a pseudo-
stratified epithelium (Figure 1). However a distinct 
subependymal layer as observed in the brain is not present. 
Markers for the different cell types observed around the 
canal are indicated in Table 1. 
 
3.1. Ependymocytes-Tanycytes 
 Ependymocytes are the main cell type found 
around the central canal. These cells have a cuboidal 
morphology, abut the lumen and contain few 1-4 cilia 
(mostly 2) (17, 23) compared to multiciliated ventricle 
ependymal cells. Primate spinal cord ependymocytes may 
be more ciliated (24). They appear to be frequently inter-
connected by zonula occludens-like and gap junctions in 
the apical part and by zonula adherens further down, but 
their presence may not be revealed in all preparations and 
species (9, 12, 19, 24). A second frequently cell type 
observed is tanycyte (also referred to as radial 
ependymocytes) (19) which is mostly observed in the 
lateral sides of the central canal region. These ependymal 
cells, originally observed by Lenhossek and Ramon y Cajal 
at the turn of the 20th century, are characterized by a long 
basal process terminating on blood vessels (25). They are in 
contact with the lumen but their soma can be either 
subependymally or ependymally (23, 26). As in the brain, 
spinal cord tanycytes abut the basal lamina of blood 
vessels. Microvilli and cytoplasmic protusions evaginate 
from their apical side into the lumen and they frequently 
have a single cilia (23, 26). They are rich in intermediate 
filament (9). Their double contacts with the CSF and 
vessels make them ideal cells to transport substances 
between these two compartments, and they may function in 
regulating the composition of the CSF. They may also have 
a clearing function as they can uptake a number of 
substances. As in the brain, they bridge the CSF to the 
capillaries thereby providing a potential link between the 
CSF, blood and the neuroendocrine system. Indeed, 
ependymocytes and tanycytes show strong 
immunoreactivity for VIP (vasoactive intestinal 
polypeptide) (27, 28), a hypotensive and vasodilatory 
peptide found in the CSF (29, 30). VIP+ ependymal cell 
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Figure 1. Schematic drawing of the adult mouse ependymal region. Adapted with permission from Sabourin et al (32) and 
Hamilton et al (21). 
 
basal processes terminate on capillaries (28) suggesting a 
control of vascular tone of spinal cord vessels by these 
cells. The capacity of these cells to monitor and modify 
their environment is also illustrated by the presence of 
several receptors for cytokines/chemokines (endothelin 
receptor, PDGF receptor, CXCR4) (23, 31, 32) (Figure 2) 
and neurotransmitters (33, 34) together with the expression 
of cytokines/chemokines/neurotransmitters (CTGF, SDF1, 
Glutamate) (35-37). 
 
 The dorsal and ventral parts of the central canal 
display a divergent organisation with a higher density of 
cells with a radial morphology and lying ependymally and 

subependymally (21, 23, 32). A third cell type is observed 
in these regions which has very long processes and 
expresses GFAP or Nestin intermediate filaments. These 
cells were described as persistent ependymoglial cells in 
the newborn mouse spinal cord by Ramon Y Cajal. In the 
dorsal part, these GFAP+ cells have very long basal 
processes extending along the dorsal midline up to the 
dorsal column white matter or pial surface (21, 32, 38). A 
small number of dorsal subependymal GFAP+ cells send a 
process between ependymal cells to reach the lumen 
(Figure 1). These dorsal GFAP+ cells do not appear to 
proliferate even in young animals (2 months) where 
proliferation within the central canal region is however still
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Table 1. Markers for the different cell types within the mammal ependymal region 
Cell 
type 

Markers Species Comment References 

Ependymocytes 
 Cadherin 13 m  stronger in young animals 32 
 Cadherin 13 m  stronger in young animals 32 
 GFAP h, occasionally in 

mouse 
increase after SCI 21, 33, 53 

 Nestin  m, h few dorsal or ventral cells, stronger in young animals and after SCI 21, 53, 90, 91 
 PSA-NCAM  m, r  32, 41, 47 
 S100b  m, r   21, 41, 91 
 Vimentin m, r, s stronger in young animals 21, 32, 38, 69, 130, 

131 
 VIP  r   28 
 Signalling and Receptors    
 BMP4  m weak but increase after SCI  88 
 CD15  m, h dorsal cells  32, 53 
 CD44  m  32 
 CD133  m, r  32, 91 
 CTGF  r  35 
 CXCL12/SDF1  m  36 
 DAN  m   32 
 Endothelin Receptor B  m, r  31, 32 
 GPR17 (P2Y receptor) m   33 
 Musashi  m   23 
 Notch1  m, r weak but increase after SCI  72, 88 
 Numb  m  weak but increase after SCI  88 
 Jagged  m   32 
 mGluR1 r   34 
 PDGFRa  m  23 
 SHH m weak but increased after SCI 88 
 Transcription factors    
 FoxJ1 m  23 
 HES1 m  32 
 Msx1/2 m weak but increase after SCI 88 
 Nkx6.1  h, m weak 32, 53, 64 
 Olig2  h, m very weak Hugnot, unpublished 
 Pax6  r  72 
 Sox2  h, m, r  23, 32, 53, 91 
 Sox3  m   23 
 Sox4  m few cells in young animal 32 
 Sox9 m  23, 32 
 Zeb1 m weak 32 
     
 Enzymes    
 prostaglandin F synthase II  r  132 
Radial ependymal cells or tanycytes 
 CTGF r  35 
 Endothelin Receptor B r  31 
 mGluR1 r  34 
 Nestin m  23 
 Prostaglandin F synthase II  r  132 
 VIP r  28 
Radial dorsal cells or dorsal tanycytes 
 BLBP  m subpopulation 32 
 CD15  m subpopulation 32 
 GFAP  m, r, s  21, 32, 38 
 Nestin  m   21, 23 
 Sox2  m  21, 32 
 Vimentin m  21 
 VIP r  28 
 Zeb1 m strong 32 
Cerebral-fluid contacting neurons 
 Aromatic-L-amino acid 

decarboxylase  
r  133 

 Dcx  m, r  32, 36, 41 
 GABA  r  20 
 GABAa R r  41 
 GABAb R  r  49 
 Gap43 r  20 
 Glutamic acid 

decarboxylase  
r  20, 48 

 HuC/D  r young animals 41 
 Map2  r  20 
 Methionine-enkephalin- r few cells 45 
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Arg6-Gly7-Leu8  
 Nkx6.1  m  32 
 P2X2  r  20 
 PKD2L1  m  51 
 PSA-NCAM  r, m  20, 41 
 Synaptotagmin  r  20 
 Synaptophysin  r  20 
 VIP  c  43 
Supraependymal cells 
 b-III tubulin  r  52 
 Map2  r  52 
 PSA-NCAM  r  52 
 VIP  c  43 
Unidentified ependymal cells 
 Sox4 m young animals 32 
 RhoB  r  134 
Unidentified subependymal cells 
 NeuN  m, r different from cerebral-fluid contacting neurons 21, 41 
 Olig2  m  21 
 PSA-NCAM  h ventral cluster 53 
 c-ret r  135 

c: cat; h: human; m: mouse; r: rat; s: sheep 
 
present (21). In the ventral part these cells are less frequent 
and have a shorter basal process. Sub-ependymal GFAP+ 
cells sending a process toward the lumen can occasionally 
be observed laterally (32). Considering their radial 
morphology and their contact with the lumen and the pial 
surface, these cells can be considered as a subtype of 
tanycytes (dorsal tanycytes). Like in the brain (39), it is 
likely that several types of tanycytes are present around the 
canal but distinctive markers are scarce so far. A subset of 
dorsal cells with a radial morphology has been shown to 
express BLBP and CD15, two markers for neural stem cells 
(32) (Figure 1). 
  
3.2. Cerebral-fluid contacting neurons (CSF-cNs) 
 These neurons are very common and well-
described in several lower vertebrates especially fish and 
amphibians (see for review (40)). In mammals, their presence 
has been reported in rats (9, 20, 41), mice (12, 32, 36, 42), cats 
(43, 44) and monkeys (24, 43) with a preferred caudal position. 
These cells are sporadically distributed around the canal with a 
soma in an ependymal or subependymal position (Figure 1). 
They send a single thick dendritic-like process terminated by a 
large bulge (several µm large) in the lumen and occasionally 
have a single cilium (20). They make contact with 
ependymocytes (zonula adherens and zonula-occludens) in 
their apical part and form synapses in their basal part (12, 16, 
20). In the rat, GABAergic CSF-cNs in the low thoracic part, 
send unmyelinated axons forming bundles surrounding the 
ependyma (but with a preferred ventral location) and in close 
association with the basal part of the ependymal cells (20). 
These axons seem then to converge ventrally to localize 
against the walls of the ventral median fissure at the lumbar 
level. However no terminal field was found for these fibres. In 
the rat, few CSF-cNs display immunoreactivity for 
methionine-enkephalin-Arg6-Gly7-Leu8 (45). In the cat, a 
seemingly different type of CSF-cN, expressing VIP, has been 
observed at the thoracic and sacral levels. These cells appear to 
send axons, sometimes in contact with the lumen, that 
terminate in the ventral median fissure and ventral surface (43). 
 
 The function of these CSF-cNs remains elusive. 
They represent the main neuronal population in the spinal 
cord of the prechordate amphoxius and are abundant in 

lower vertebrate caudal CNS (40). In the latter, these cells 
have been considered as mechanosensory neurons 
according to the presence of stereocilia, akin to sensory-
cells of the inner ear and the lateral line organ in fish. 
These neurons may be sensitive to CSF flow or pressure or 
may be able to detect motions of the vertebrate column and 
spinal cord (40). In these species, CSF-cNs send their 
axons to the external CSF-space and may also be endowed 
with neurohormones secretory properties. They may 
represent a phylogenetically ancestral system to monitor 
and modify CSF composition. In mammals, these cells are 
less abundant and the presence of stereocilia has not been 
reported suggesting a different function. In Xenopus, 
GABAergic spinal CSF-cNs are born shortly after neural 
tube closure and thus they may have a role during 
development (46). As they co-express Nkx6.1 in the adult 
lumbar mouse spinal cord (32), they may be derived from 
the V3 ventral neural tube domain during development. 
Even in adults, these cells continue to express PSA-NCAM 
(41, 47), Dcx (32, 41) (Figure 2) and GAP43 (20), three 
proteins involved in plasticity and migration, suggesting 
that they are endowed with some degree of immaturity.  
 
 In rodents, this neuronal system appears to be 
mainly GABAergic (20, 48). They have functional GABAa 
and b receptors (20, 41, 49) and depending on the cells, 
GABAergic stimulation has an inhibitory or excitatory 
effect by eliciting hyperpolarisation or depolarisation 
respectively, which may reflect a different degree of 
differentiation (41). These neurons also express functional 
P2X2 ATP receptor and ATP-induced currents (20, 41, 50). 
More recently, the specific expression of the polycystic 
kidney disease-like channel (PKD2L1) has been reported in 
these cells (51). These channels are stimulated by acidic pH 
and represent the main element for taste responses to sour 
stimuli in the tongue. Likewise, in the spinal cord, CSF-cNs 
are excited by a drop in pH suggesting that these cells may 
be involved in the homeostatic circuitry responsible for 
monitoring and reporting the CSF pH (41, 51). 
 
3.3. Supra-ependymal cells 
  These cells have been detected in the rat using a 
specific histological preparation. They lie within the central
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Figure 2. Brightfield images of immunohistochemistry 
against EGFP performed on adult (or P7 for BMP6) spinal 
cord sections derived from transgenic mice bearing a BAC 
promoter of the indicated gene. These images are 
reproduced with courtesy of The Gene Expression Nervous 
System Atlas (GENSAT) Project, NINDS Contracts 
N01NS02331 & HHSN271200723701C to The Rockefeller 
University (New York, NY) (8). When necessary, the 
central canal region (CC) is indicated on some pictures. 
 
canal apposed to the luminal face of Vim+ ependymocytes. 
They are predominantly found in the lumbar part and 
appear to be neuronal-like cells expressing PSA-NCAM, 
Map2 and β-III-tubulin (52). Similar cells are present on 
the surface of the third and fourth ventricles and can be 
induced to proliferate by EGF/FGF2 infusion. Neuronal-
like cells expressing VIP have also been observed in the cat 
central canal (43). The role of these cells, if any, remains 
elusive.  
 
3.4. Human ependyma  
 Very few data are available regarding the human 
ependymal region especially in the adult. In fact, the spinal 
cord central canal is often found to be occluded with age 
(100% after 65 years) (53-55) and the ependymal region 
appears disorganised with the frequent presence of rosettes 
or micro-canals. Like in rodents, this region retains 
immature features in adults such as the expression of 
Nestin, Sox2, CD15, Nkx6.1 and PSA-NCAM (53, 56). As 
observed in the foetal and post natal ependyma (56) 
different cell types can be distinguished in the adult 
ependyma sometimes with specific locations. In foetal, post 

natal and adult tissue, CD15 cells are mainly present in the 
dorsal half of the central canal. Nestin cells are found to be 
restricted to the dorsal and ventral midlines at the foetal and 
neonate stages, an organisation not observed in the adult 
spinal cord. The presence of these Nestin+ cells is detected 
inconsistently in adults and their number is increased in 
patients with amyotrophic lateral sclerosis and spinal cord 
tumours (56). Strong Nestin and PSA-NCAM stainings are 
also observed associated with a cell cluster lying ventrally 
outside the canal of the adult spinal cord (53). Compared to 
rodents and reminiscent of the reported difference between 
the SVZ in rodents and humans (57), the human central 
canal is surrounded by a hypo-cellular region containing a 
high density of GFAP gliofilaments and nervous fibres 
(53). In addition, contrasting with rodents where GFAP 
cells are scarce in the ependyma, a substantial number of 
ependymal cells express this marker in humans (53). 
 
4. EMBRYONIC ORIGIN OF THE EPENDYMA AND 
POST-NATAL DEVELOPMENT 
 
4.1. Embryonic development 
 The adult spinal cord is derived from the caudal 
neural tube. This structure is initially composed of 
proliferative neuro-epithelial cells surrounding a central 
lumen. These cells are heterogeneous showing different 
proliferative and differentiation potentials. Early during 
development, the caudal neural tube acquires a rostro-
caudal and dorso-ventral specification by the action of 
morphogenetic molecules such as retinoic acid, SHH, Wnt 
and BMP. These molecules will induce restricted and 
complex expressions of a variety of transcription factors 
notably of the homeodomain family. Different 
combinatorial expressions of Hox genes will specify the 
rostro-caudal regionalisation of the spinal cord (58) 
whereas Pax, Nkx genes and other genes will be involved 
in dorsal-ventral patterning (59). In rodents, the walls of the 
dorsal part of the canal will appose before E15 leaving a 
ventral cavity (60). A similar apposition of dorsal luminal 
walls is observed in cats (61). The cavity roof is then 
composed of Nestin+ radial glial cells with long processes 
maintaining contact with the pial surface (62, 63). These 
cells persist around 2 weeks post-natally in the rat and may 
be the origin of the dorsal radial GFAP+ or Nestin+ cells 
seen in the adult spinal cord (21, 32).  
 
 In rodents and chicks, the adult ependyma is 
mostly derived from neuro-epithelial cells lining this 
ventral cavity (64). The latter express Nkx6.1 and 
encompass the embryonic pMN domain which expresses 
the olig2 transcription factor (64). Indeed, tracing 
experiments using Olig2-creTM mice have indicated that at 
least some of ependymal cells are generated from Olig2+ 
cells located in the ventral pMN domain at E9.5 in mice 
(65). Thus in addition to producing motoneurons, 
oligodendrocytes, and subtypes of astrocytes, the pMN 
appear to generate some ependymal cells. This is also 
supported by retroviral lineage tracing performed in chicks 
embryonic spinal cord which demonstrated that 18% of 
clone containing motoneurons also contains cells 
contributing to the central canal region although the 
identity of these cells (ependymocytes or CSF-cNs) was not 
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specified (66). Using marker analysis, Fu et al, concluded 
that spinal cord ependymal cells in mice and chicks are 
derived from Nkx6.1+ Nkx2.2- ventral neuroepithelial cells 
(64). Nkx6.1 expression is still expressed in the adult 
ependymal region both by the CSF-cNs (32) and by 
ependymocytes (64). In the human spinal cords, ependymal 
cells also express Nkx6.1(53). A common origin of the 
ependyma region with the region generating 
oligodendrocytes during development may account for the 
high propensity of ependyma cells to generate 
oligodendrocytes in vitro and during SCI (23, 67). Nkx6.1 
expression is controlled by SHH signalling and its 
downstream target gli2 during development (64, 68). 
Likewise, Nkx6.1 expression in the adult ependyma may be 
controlled by this kind of signalling. In addition to 
containing cells born during early CNS development, 
recent birth-dating experiments using BrdU have indicated 
that a substantial number of cells in the ependymal region 
are produced in rats around E18 but also post-natally (32, 
62). Regarding the CSF-cNs, there are very few data on the 
origin of these cells. BrdU incorporation indicates that they 
are generated between E7-E17 in rats (41) and are not the 
result of a post-natal or adult spinal cord neurogenesis (20, 
32, 41). 
  
4.2. Post-natal development  

 The post-natal development of the ependymal 
region has been studied in several mammals. In cats, 
embryonic-like cells remaining in the dorsal part of the 
central canal after birth disappeared after 2-3 months (61). 
Compared to adult animals, the ependymal region shows an 
increased level of several markers (for instance Vimentin 
and cadherin13) and the presence of few Sox4+ cells (32, 
69) (fig 2). Ependyma aging is associated in the rat with an 
increase of some carbohydrate expression (70). Cellular 
proliferation declines until 12-13 weeks corresponding to 
the end of spinal cord elongation (32, 64). Proliferating 
ependymocytes, identified by S100β or Nkx6.1 labelling, 
have been detected by Ki67 staining and BrdU 
incorporation at 8 and 6 weeks after birth respectively (21, 
64). It is likely that a production of new ependymocytes is 
necessary for extending the length of the central canal. 
Proliferation in the adult ependyma region has been 
repeatedly reported but it is unclear if young adult (10 
weeks) or true adult animals (>13 weeks) were used (62, 
71-74). Variation in animal strain and husbandry conditions 
(like infections) may also influence the rate of cellular 
proliferation around the canal.  
 
5. STEM AND PROGENITOR CELLS IN THE 
EPENDYMAL REGION 
 
 The persistence of stem cells in the adult spinal 
cord was reported using adherent or non adherent culture 
(classical neurosphere assay) conditions in the late nineties 
(5-7). Using microdissection and cytometry analysis, these 
cells were found located mainly in the ependymal region 
(23, 32, 75). Progenitor cells with a more limited 
proliferation potential are also present in the parenchyma 
(32, 67, 72, 75, 76). The presence of stem cells around the 
central canal was suggested by previous work in the early 
sixties showing a remaining mitotic activity in the 

ependymal region (74). Extensive expression analysis 
performed in this region confirmed the persistence of 
several markers typically expressed by immature neural 
cells such as Sox2, CD15, CD133, Nestin, BLBP and PSA-
NCAM (Table 1). These can be expressed by most of the 
ependymal cells (for instance Sox2, CD133) or by cellular 
subpopulations (for instance Nestin, Dcx, BLBP). The 
immature feature of these cells is probably linked to the 
persistence of specific stem cell signaling pathways, such 
as Notch, epithelial-mesenchymal-transition (EMT) and 
BMP signalings (32, 72, 73) in the ependymal region. The 
precise identity of the cells able to form neurospheres, a 
classical assay for identifying stem cells in vitro, is still a 
matter of debate. Using transgenic mice in which EGFP is 
placed under the control of the hGFAP promoter, Sabourin 
et al (32) showed that Zeb1+ GFAP+ radial glial-like cells, 
mainly located in the dorsal part of the canal, are able to 
form passageable multipotent neurospheres, reminiscent of 
the situation observed for neural stem cells in the SVZ (77). 
Through a similar approach but with a gene expressed in 
ependymocytes (FoxJ1, a transcription factor involved in 
cilium formation), Meletis et al (23) provided evidence that 
stem cells are a subpopulation of ependymocytes. Yet, 
recent data from the same group suggests that although 
forebrain ependymocytes are endowed with some stem cell 
properties (multipotentiality), their self-renewal is limited 
in contrast to GFAP-derived stem cells (78). So it is likely 
that similarly to other stem cell niches, the spinal cord 
central canal region harbors several types of stem and 
progenitor cells endowed with different capacities to 
differentiate and self-renew. New markers and new 
transgenic animals will reveal the complete diversity and 
potential of the cells around the central canal.  
 

Spinal cord stem cells, identified by their ability 
to form neurospheres are present along the entire rostro-
caudal axis but the lumbar region appears to be enriched for 
these cells (7). In adult human, Nestin+ Sox2+ neurospheres 
can also be formed by cells derived from the central region 
of the lumbar spinal cord. However these cannot be 
passaged suggesting that these cells are more related to 
progenitors than bona fide stem cells (53). Even more 
caudally, the filum terminale, the terminal end of the spinal 
cord which is mainly composed of ependymocytes 
surrounded by axons and glial cells, has also been recently 
shown to be a source of neural stem/progenitor cells. In 
culture, filum terminale-isolated-cells self-renew and 
proliferate to form neurospheres, and exhibit tripotent 
differentiation into neurons, astrocytes, and 
oligodendrocytes (79). Importantly, neurospheres derived 
from different levels of the adult spinal cord show different 
differentiation properties (80) and express variable 
combinations of developmental Hox genes mimicking the 
Hox gene pattern found in the embryonic spinal cord (32, 
58). This means that adult spinal cord stem cells are not 
equivalent along the rostro-caudal axis which should be 
taken into consideration to develop stem cell based 
strategies for spinal cord repair. Along the dorso-ventral 
axis, neurospheres forming cells are preferentially derived 
from the dorsal central canal part which is in agreement 
with the specific presence of immature radial glial like cells 
in this region (21, 32). Neurospheres derived from the adult 
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spinal cord display features of radial glial cells such as the 
expression of BLBP, RC2 and Glast (81) but also of 
oligodendrocyte lineage cells (Olig2, NG2, Nkx2.2, 
PDGFRa, MBP) (32, 81, 82). This coincides with a higher 
propensity of these cells to differentiate into 
oligodendrocytes vs neurons in vitro (67) but also in vivo 
after spinal cord injury (SCI) (23). Unexpectedly, these 
neurospheres also have mesenchymal features as evidenced 
by the expression of smooth-muscle actin (Acta2), 
fibronectin and several epithelial-mesenchymal transition 
transcription factors (slug, Zeb1, Zeb 2) (32). Zeb1 was 
found to be required for neurosphere growth in vitro. 
Importantly, default differentiation of these spinal cord 
stem cells leads to a predominant GABAergic neuronal 
phenotype (21, 32), however after exposure to embryonic 
spinal cord morphogens (SHH and retinoic acid), HB9+ 
electrophysiological active motoneurons can be obtained 
(82, 83). These can also be generated from stem cells 
isolated from animals with SCI suggesting that these cells 
retain their motoneuronal differentiation potentiality, at 
least in vitro.  

 
 This caudal stem cell niche shares several 
features with the well-characterized SVZ niche. First the 
ependymal region is surrounded by an abundant 
vasculature (Figure 1) and the cellular proliferation within 
the niche occurs in close proximity to the vessels (21). This 
is consistent with the now well-described interactions 
between neural stem/progenitor cells and endothelial cells 
(the so-called neurovascular niche) (84). Second, the spinal 
cord niche maintains a pool of radial glial-like cells, mainly 
dorsally, which express radial glial markers (Nestin, BLBP, 
CD15). During CNS development, radial glial cells are 
transient cells which generate neurons or neuronal 
progenitors notably through asymmetric divisions (85). 
Thus their persistence in specific regions of the adult CNS 
may account for the competence of these niches to generate 
neurons in vitro or/and in vivo. Third, the spinal cord niche 
expresses a high level of DAN, an anti BMP protein (32). 
In the SVZ, ependymocytes express noggin, another BMP 
antagonist (86). BMPs are stem-cell differentiating factors 
(87) and it is likely that the expression of BMP antagonists 
may participate to the maintenance of neural stem cells in 
adulthood. Fourth, this caudal niche maintains a high level 
of Notch signalling as evidenced by expression of the 
Notch1 receptor (72, 88), its ligand Jagged (32) (fig 2) and 
of Hes1, a key effector of this pathway (32). This signalling 
has been well described as having a key role in maintaining 
an adult stem cell pool in the SVZ but also in other non 
CNS niches (89). 
 
 Whereas the role of stem cell niches of the 
forebrain in memory and learning is being elucidated, 
functions of the spinal cord stem and progenitor cells 
remain elusive. In adults, cells within the spinal cord niche 
are not or slowly proliferating and no associated glio- or 
neuro-genesis has been reported. Proliferation studies hint 
at a main post-natal function to provide new cells during 
spinal cord elongation (32). The ependymal region would 
then enter a quiescent state and maintain a stem/progenitor 
pool. Interestingly, physical exercise (treadmill training and 
wheel running) can reactivate proliferation within the niche 

and increase Nestin staining (90, 91). Thus as observed in 
the brain, activation of the spinal cord niche is influenced 
by behaviour. More work is needed to explore the fate and 
location of newly formed cells after training. One 
possibility would be that stem and/or progenitor cells 
generate new CSF-cNs upon training. Work by Marichal et 
al showed that these cells are at different stages of 
maturation raising the possibility that they are in a "standby 
mode” and under some circumstances (e.g., injury or 
training) may complete their maturation to integrate spinal 
circuits (41). Physical exercise and locomotor learning 
induce modifications in the spinal cord (92-96) and one 
exciting possibility would be that some of the central canal 
cells can contribute to this plasticity.  
 
6. EPENDYMA IN SPINAL CORD INJURY AND 
DISEASES 
 
6.1. Spinal cord injury 

Spinal cord injury is a major cause of irreversible 
paralysis, with no effective therapy as yet. The 
demonstration of the presence of a pool of stem/progenitor 
cells in the adult mammalian spinal cord has lead to 
extensive research aiming at characterizing and recruiting 
these cells in the context of SCI and cell replacement 
therapies.  

 
Many earlier studies have described the role of 

ependymal cells after injury in lower vertebrates such as 
urodele amphibians, eels and lizards, where successful 
regeneration is observed (97-99). In the eel, a complete 
spinal cord transection is followed by an active 
proliferation, migration and differentiation of the cells 
surrounding the central canal. They rapidly form a new 
canal, bridging the rostral and caudal cord portions, 
suggesting their capacity to self-organize into circular, 
lumen-containing structures. They also exhibit 
phenotypical plasticity, with higher Nestin/Vimentin 
expression and decreased S-100 labeling compared to 
uninjured tissue, reflecting most likely a new function (98). 
A similar process is observed during urodele regeneration 
(97). In the juvenile turtle spinal cord, the presence of a 
stem cell niche located all around the central canal has also 
been described (100-102). These cells display properties of 
neurogenic precursors (they express BLBP and Pax6) and 
are intermingled with other cells that express early neuronal 
markers and fire action potentials, indicating they are 
immature neurons immersed in a neurogenic environment. 
These endogenous spinal cord precursors are organized in 
functional domains delimited by Connexin-43. 

 
In mammals, the first images of ependymal cell 

proliferation in injured spinal cord were obtained around 30 
years ago in rats (103, 104) and rabbits (105). Post-injury 
ependymal cell proliferation (Figure 3) was then confirmed 
with PCNA/Ki67 markers and BrdU incorporation, in 
various models of SCI: contusion (106, 107), dorsal 
hemisection (73, 108), minimal injury model that preserves 
the integrity of the central canal (109), and compression 
injury (91, 110, 111). In normal and injured spinal cords, 
ependymal cell proliferation can be further increased by 
administration of epidermal growth factor (EGF) and
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Figure 3. Double immunofluorescent staining for Sox-2 
(Rhodamine) and BrdU (FITC) of the central canal region, 
7 days after a low thoracic spinal cord compression injury 
in an adult rat. BrdU was injected once a day during the 
first 3 days following the lesion. Scale bar: 20µm 

 
fibroblast growth factor 2 (FGF2) which concomitantly 
promotes functional recovery after SCI (75, 112, 113).  

 
The ependymal region exhibits high post-injury 

plasticity. Many authors report a significant but transient 
increase of Nestin, a neural precursor marker, within the 
ependymocytes after SCI or ischemia (73, 91, 106, 108, 
111, 114-116). Cell fate determinants, like BMP4, Msx2, 
Notch1, Numb, Pax6 and Shh do also exhibit higher 
expression levels after injury (72, 88), suggesting an 
attempt to recapitulate developmental features and thus a 
likely potential of endogenous self-repair capacity.  

 
The fate of ependymal cell progeny as well as its 

modulation has also been the centre of interest of many 
studies, aiming at improving behavioral recovery and 
successful axonal regrowth after SCI. First, it definitively 
appears that ependymal cells do not undergo apoptosis after 
SCI, as assessed by TUNEL assay. Secondly, thanks to in 
vivo fluorescent labeling strategy of ependymal cells, 
allowing their further identification, it is now well 
established that following SCI, ependymal cells migrate 
towards the injury site, by a mechanism that may involve 
the SDF1/CXCR4 signaling which is present in these cells 
(36) (fig 2). According to some studies, they seem to 
preferentially differentiate into GFAP+ astrocytes 
contributing to scar formation (23, 73, 106, 109) and to 
some extent into myelinating Olig2 oligodendrocytes (23) 
making them interesting candidates for myelin 
degeneration diseases like MS (see below). It thus seems 
that following SCI, ependymal cells do mostly differentiate 
into macroglia cells and not into neuronal cells, despite an 
increased expression of the transcription factor Pax-6 (72, 
73, 117). This could be due to the increase of the Notch1 
signaling pathway, which may restrict the production of 
new neurons in the injured spinal cord (72, 88). 
 
6.2. Amyotrophic lateral sclerosis 

Amyotrophic lateral sclerosis is a 
neurodegenerative disease characterized by the progressive 

loss of motoneurons, leading to progressive paralysis and 
irremediably to death. Recent progress in this field has 
demonstrated that other cell types including astrocytes and 
microglia contribute to the pathophysiology of this 
devastating disease (118-120). In this context, stem cell 
therapy represents an attractive therapeutical approach, 
given the known pluripotentiality of these cells. However, 
despite transient beneficial outcomes, these cell 
transplantations are still confronted to numerous limitations 
(for review, see (121)).  

The existence of neural stem and progenitor cells 
within the CNS, and the demonstration that pathological 
processes like those involved in the Alzheimer’s or 
Huntington’s diseases promote neurogenesis (78, 122), 
have recently opened new research perspectives (123). This 
could also occur in the context of ALS disease and indeed, 
Chi et al (124) provided evidence that motoneuron 
degeneration stimulates stem and progenitor cell 
proliferation, migration and neurogenesis in a mouse model 
of ALS. Interestingly, proliferating cells were mostly 
described within the ependymal zone of ALS-mice during 
the onset and the progression stages of the disease. These 
cells further migrate out of the ependymal zone, to 
progressively reach the dorsal horns of the spinal cord and, 
as disease progresses, the ventral horns, where they were 
preferentially found in the vicinity of dying motoneurons. 
These results suggest that degenerating motoneurons 
release factors promoting ependymal cell migration and/or 
differentiation. The molecular identification of these factors 
would allow researchers to explore new therapeutical 
strategies aimed to stimulate de novo neurogenesis to fully 
replace the degenerated neurons in ALS disease.  
 
6.3. Multiple sclerosis 
 

Multiple sclerosis (MS) is an inflammatory 
disease of the CNS characterized by progressive 
demyelination and axonal degeneration leading to 
permanent neurological disability. Experimental 
remyelination strategies represent an important research 
axis in this pathology. Some of them are based on the 
proliferative response of endogenous NG2+ 
oligodendrocyte precursor cells (OPCs) following 
demyelination lesion induced either via ethidium bromide 
injection (125) or in MOG-EAE model of MS (126). But 
OPCs might not be the only interesting endogenous cell 
type to be recruited for remyelination. Indeed, ependymal 
cells in the spinal cord have been shown to re-express RC1, 
a radial glial antigen, in an experimental model of ethidium 
bromide-induced demyelination. These RC1+ cells give rise 
to a fraction of RC1+ perilesional astrocytes, which are 
necessary for oligodendrocyte maturation and spinal cord 
remyelination (127). In addition, in another model of 
chemical-induced demyelination,   the proliferation of 
ependymal cells can be increased by exogenous 
administration of the Shh protein, a key glycoprotein 
implicated in oligodendrogenesis (128). More recently, 
newly-formed cells with neuronal like appearance have 
been observed in the spinal cord of EAE-rats. These cells, 
identified as being derived from the ependyma, proliferate, 
migrate towards the neuroinflammatory area and 
differentiate into cells expressing the neuronal markers β-
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III tubulin and Neu-N. They moreover exhibit electrical 
activity, as they fire action potentials similar to those of 
immature neurons. The fact that these cells express specific 
neuronal markers and do incorporate BrdU confirms that 
they are likely to be newborn neurons (129). 
 
7. ONLINE GENE EXPRESSION DATABASES FOR 
CHARACTERISATION OF THE SPINAL CORD 
NICHE 
  

Further analysis is needed to characterize the 
spinal cord niche. The diversity of cells, their interactions 
and the specific signalings acting to maintain a pool of 
stem/progenitor cells are still ill-defined. Besides, there is a 
need for defining specific markers or a combination of 
them to readily purify and study the different cell types 
notably through the generation of fluorescent transgenic 
mice. This can be done by performing one-by-one gene 
analysis in the niche using immunohistology and in situ 
hybridization. Yet, the rapid development of CNS gene 
expression databases can greatly assist in this time-
consuming but essential task. These databases are based on 
collections of brain and spinal cord sections where the gene 
expression pattern is revealed by in situ hybridization 
(Allen brain www.brain-map.org, BGEM 
www.stjudebgem.org, Geneatlas www.geneatlas.org) and 
by GFP expression in transgenic mice bearing BAC 
promoters (Gensat www.gensat.org). SAGE libraries have 
also been generated from different CNS regions 
(Mouseatlas www.mouseatlas.org). Image quality is high 
enough to screen at the cellular level the expression of 
genes in specific CNS regions. To illustrate how these tools 
can help get highly relevant information, we screened the 
GENSAT database for genes expressed in the spinal cord 
ependymal region (8). We could confirm many published 
observations such as the restricted expression of Nestin by 
dorsal and ventral cells (21), the strong expression of 
Jagged by most ependymal cells (32), the restricted 
expression of Dcx by CSF-cNs (32, 36, 41) and of Sox 4 by 
unknown ependymal cells (32) (fig 2). More interestingly, 
we observed the expression of the Wnt receptor Fzd3 by 
ependymal cells and of the strong expression of the Wnt7a 
ligand by unknown cells located dorsally around the central 
canal. CXCR4, the receptor for SDF1 was strongly 
expressed in the ependymal region. Several cytokines and 
morphogens were also identified as being expressed by 
specific cell types. BMP6 is expressed by dorsal and 
ventral radial cells, SHH is expressed by ventral ependymal 
cells, GDF10 by dorsal ependymal cells, Mdk (midkine) by 
few dorsal radial cells, Nrtn (neurturin) by subependymal 
cells surrounding the canal, most probably CSF-cNs. These 
expression patterns highlight the complexity of the central 
canal region and show the maintenance in adult of several 
embryonic morphogens (Wnt, SHH, BMP) as observed in 
other adult niches. Furthermore they confirm the dorso-
ventral dissymmetry of the ependyma region (21, 32) as 
some genes are mostly expressed in the dorsal or ventral 
part (Shh, Mdk, Gdf10, Rbp1). These results are generated 
by high throughput analysis which could lead to artefacts 
thus they need to be replicated and confirmed by other 
techniques. However, they constitute a robust basis to 

explore further the cellular diversity and signalings within 
the spinal cord niche. 
 
8. CONCLUSION 
 

The spinal cord stem cell niche constitutes an 
original model to study how and why stem and progenitor 
cells are maintained in the adult CNS. This niche shares 
common features with the brain niches (cellular diversity, 
highly organised structure, maintenance of embryonic 
signalings, close interaction with vessels, activation upon 
training) but display also specific traits such as the absence 
of associated glio- and neuro-genesis in the normal 
situation. The comparison, at the molecular, cellular and 
architectural levels, of neurogenic and non neurogenic 
niches could generate important clues to unravel the 
mechanisms governing adult gliogenesis and neurogenesis. 
As in the brain, this caudal CNS niche appears to contain 
stem cells, proliferation-restricted progenitors and 
differentiated cells with different identities. The 
purification of these cells and their molecular comparison 
would provide meaningful insight to untie the gene 
networks underlying the distinct properties of these cells.  

 
 Besides being an interesting model for studying 
adult stem cells, the rapid activation of the ependymal 
region in several spinal cord lesions call for a better and 
thorough characterization of this region. The mechanisms 
underlying the proliferation, delamination, and migration of 
ependymal cells toward the lesion site need to be analysed. 
Equally, how these cells contribute to the glial scar and 
oligodendrogenesis should be dissected out so as to 
influence the fate of these cells toward spinal cord 
regeneration. Although adult spinal cord stem cells are still 
able to generate neurons in vitro, especially motoneurons 
(82, 83), they do not appear to do so upon spinal cord 
damage. Thus mechanisms that biased their differentiation 
toward gliogenesis at the expense of neurogenesis should 
be explored further to redirect their fate.  
 
 So far, the spinal cord central canal region has 
usually been considered as a homogenous cell layer, which 
is not the case. The activation of this region in spinal cord 
lesion is now well documented, but conversely very little is 
known about the specific behaviour of the different cell 
types encountered in this region (Figure 1), for instance the 
CSF-cNs. The rapid development of fluorescent or cre-
recombinase-expressing transgenic mice which target 
specific cell subpopulations will give very significant 
insight on these open issues. 
 
 Finally, most of our knowledge on adult neural 
stem cells is based on work performed in rodents. However 
there are important anatomical and cellular differences 
between these species especially as regards the niche 
architecture and the presence of bona fide stem cells (53, 
57). Although more complicated due to ethical and 
availability constraints, further work on the human CNS 
should be performed to move forward the possible use of 
these endogenous stem/progenitor pools into clinical 
applications for ALS, MS or SCI.  
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