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1.ABSTRACT 
 

Experimental autoimmune encephalomyelitis 
(EAE), a well-established model of multiple sclerosis, is 
characterised by microglial activation and lymphocytic 
infiltration. Lymphocytic activation through the antigen 
presentation process involves three main signals, the first 
provided by the engagement of major histocompatibility 
complex molecules (MHC) with the receptor of T-cells 
(TCR), the second by the binding of co-stimulatory 
molecules and the third by the secretion or expression of T-
cell polarising molecules in specific populations of antigen 
presenting cells (APC). Microglial cells are considered to 
be the main APC population in the central nervous system 
(CNS). Specifically in EAE an increase in MHCs, co-
stimulatory molecules and different T-cell polarising 
factors have been reported in microglia. However, a 
growing number of evidences suggest that dendritic cells 
(DCs), the main APC in the peripheral immune system, 
may also participate in the regulation of T-cell responses 
within the CNS. In this review we summarize the principal 
knowledge regarding microglial/macrophage function in 
EAE and their role in T-cell modulation, as well as the 
participation of DCs in the immune response associated to 
this disease. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 

 
Microglial cells are considered to be the innate 

immune cell population in the central nervous system 
(CNS) (1-3). These cells originate from highly proliferative 
blood-borne myeloid cells infiltrating the brain parenchyma 
during foetal and early post-natal development to become 
amoeboid cells that, later, transform into the ramified 
microglial cells observed in adult animals (4-10). At least 
two subsets of microglial cells are nowadays recognised in 
adult CNS: 1) the so-called “resting” microglia, which are 
ramified cells distributed in all grey and white matter areas 
of the parenchyma, and 2) the so-called perivascular 
microglia (also called perivascular macrophages), which 
represent a minority population specifically located in 
the perivascular space of blood vessels (11). Ramified 
microglia are a permanent population of cells with a low 
turnover (12), with a very low CD45 expression and no 
expression of MHC-class II (13). In contrast, 
perivascular microglia/macrophages are periodically 
replaced (14), do not present the characteristic 
prolongations of microglia and express high levels of 
CD45, MHC-class II (15) and ED2 (16, 17). Due to their 
strategic location, these perivascular cells seem to play a 
key role in the initiation of immune responses in the 
CNS (11).  
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Over the years, numerous studies have 
demonstrated the fundamental role played by microglial 
cells in the CNS, not only in normal conditions where they 
control tissue homeostasis (18, 19), but also in all of those 
situations in which the integrity of the tissue is disturbed, as 
a result of a wide variety of situations including lesions, 
neurotoxicity or infections (20-23). In these circumstances, 
microglial cells are activated, showing specific reactivity 
patterns that fully depend on changes that take place in the 
specific micro-environment where they are located as well 
as the magnitude and type of injury. The process of 
microglial reactivity involves changes in their gene 
activation and phenotype, manifested in morphological 
modifications, increase/decrease or de novo expression of 
surface molecules and secretion of a wide range of 
substances such as cytokines, chemokines and trophic 
factors (21, 22, 24-26). Nowadays, this great variety of 
changes, coupled with increasing evidence suggesting that 
different microglial subpopulations can co-exist within the 
CNS (27), indicates that microglial reactivity cannot be 
considered as homogeneous, but rather as a heterogeneous 
process that may have different outcomes according to 
where, how and what population of cells are activated.  

 
Microglial cells not only interact with resident 

CNS cells as neurons or other glial cells, but are also able 
to establish a cross-talk with cells of the immune system 
that can be recruited to the CNS parenchyma under 
inflammatory conditions, through the production and 
secretion of the different molecules mentioned above. In 
particular, accumulating evidence in vitro and in vivo 
suggests that microglial cells may act as antigen presenting 
cells playing a role in the modulation of lymphocyte 
activation.  
 
3. ANTIGEN PRESENTATION MECHANISM 
 

Antigen processing and presentation is a crucial 
mechanism in the modulation of the immune response, by 
which foreign molecules or intracellular antigens are 
processed and presented for recognition by T cells, thereby 
inducing their activation. In general, intracellular antigens, 
such as those produced by viruses, defective self-molecules 
or tumour-associated antigens, are presented by the major 
histocompatibility complex class I (MHC-class I). In 
contrast, antigens from extracellular pathogens, such as 
bacteria, parasites and toxins, are presented in the context 
of MHC-class II molecules. Whereas all nucleated cells 
express MHC-class I, only specialised cells, the antigen-
presenting cells (APCs), such as dendritic cells (DCs), 
macrophages and B cells, in addition to expressing MHC-
class I have the appropriate machinery for the processing 
and presentation of extracellular antigens through the 
MHC-class II molecules.  

 
It has been shown that two main signals are 

involved in the mechanism of antigen presentation. The 
first signal is provided by the binding between MHC 
molecules bearing the antigen, with the receptor of T-cells 
(TCR) present on the surface of T-lymphocytes. This signal 
confers the specificity of the mechanism, as MHC-class I is 
specifically recognised by CD8+ T-lymphocytes, whereas 

MHC-class II exclusively binds CD4+ T-cells. The second 
signal, the so-called co-stimulatory signal, is antigen-
independent and is produced by the engagement of 
different receptors and their respective co-receptors 
expressed on the surface of both APCs and lymphocytes 
(28). The presence of these co-stimulatory signals has 
been demonstrated to be essential for the full activation 
of T-cells, as binding of the TCR with the MHCs in the 
absence of co-stimulation can lead to apoptosis or 
anergy of T-cells (29). Different combinations of co-
stimulatory molecules providing stimulatory or 
inhibitory signals have been described (30). For 
example, the binding of ICOS, CD154 or OX40 with 
their corresponding ligands B7h, CD40 and OX40L 
delivers a stimulatory signal in lymphocytes, inducing 
their activation and proliferation, whereas the 
engagement of other co-stimulatory molecules like PD-
1, with its receptor PD-L1, triggers an inhibitory signal 
causing the apoptosis of lymphocytes. Among the 
different co-stimulatory molecules currently described, 
the pair that plays a more relevant role in T-cell 
activation is the one formed by B7 molecules (B7.1 and 
B7.2, also known as CD80 and CD86), present in the 
APC surface and their receptors CD28 and CTLA-4 
expressed in lymphocytes (31-34). Binding of B7.1 or 
B7.2 with CD28 generates a stimulatory signal in T-cells 
inducing their proliferation, expression of anti-apoptotic 
molecules and secretion of different cytokines. In contrast, 
the binding of B7.1 and B7.2 with CTLA-4 results in an 
inhibitory signal that mediates the stoppage in proliferation 
and cytokine secretion, leading to the end of the immune 
response (32, 35). Therefore, the delicate balance between 
positive and negative signals conducted by different co-
stimulatory molecules may provide different outcomes of 
the immune response (See Figure 1 for a summary). 

 
In addition to these two well-known signals, a 

growing body of evidence indicates the existence of a third 
type of signal by which APCs, particularly dendritic cells 
(DCs), may also regulate the immune response. This third 
signal consists of the expression of specific sets of T-cell 
polarising molecules either soluble or membrane-bound 
(see Figure 2). In general, Type 2 IFNs, IL12 and ICAM-1 
are considered to be Th1 polarising molecules; IL4, MCP-1 
and OX40L are Th2 polarising molecules; IL10, PD-L1 
and ILT3/4 are viewed as regulatory T-cell polarising 
molecules; and TGF-beta and/or IL6 as polarising 
molecules for Th17 and inducible T-regulatory cells (36-
38).  

 
The selective expression profile of all of these 

polarising molecules is fully dependent on the signals that 
the DCs receive during their maturation process (Figure 2). 
The binding of pathogens to selective “pattern recognition 
receptors” or factors produced by tissue cells in response to 
these pathogens induce different signalling in immature 
DCs that promotes the specific expression and production 
of these polarising factors. Basically, DCs exposed to 
viruses or intracellular bacteria promote Th1 responses, 
some helminths induce Th2, and the presence of regulatory 
factors or specific pathogens such as Schistosoma mansoni 
support the development of T-regulatory cells (39). 
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Figure 1. Putative effects derived from the interaction between antigen presenting cells (APC) and T-cells. 
 

4. ANTIGEN PRESENTING CELLS 
 

In general terms, it is assumed that those cell 
populations that have the capacity to process and present 
antigens and display them to T-cells are APCs. DCs are 
considered to be the most specialised APC type in the 
periphery. They are generated in the bone marrow and 
migrate as precursor cells to sites considered as potential 
points of entry for pathogens. Thus, there are subsets of 
resident DCs in the skin, in the gastrointestinal and 
respiratory tracts and in lymphoid organs which can be 
distinguished by the expression of different cell-surface 
markers that are not only dependent on the specific organ 
but also on the animal species (40-42). In steady-state 
situations, DCs display an immature phenotype (43, 44) 
characterised by: 1) expression of specific receptors and 
molecules such as Fc- and mannose-receptors whose 
presence confers to them a high capacity to phagocytose or 
endocytose antigens, and 2) high expression of MHC 
molecules, but low or absent expression of co-stimulatory 
or other molecules involved in T-cell activation. This 
phenotype renders these immature DCs able to process 
antigens but not to activate T-cells. Immature DCs are, 
however, not inactive cells but they rather continuously 
circulate through tissues and into lymph nodes capturing 
self-antigens as well as innocuous environmental proteins, 
playing an active role in the maintenance of tolerance (45). 
Under inflammatory conditions, immature DCs become 
activated and differentiate into mature DCs. This 

maturation process involves the down-regulation of 
molecules related to the antigen capture and processing 
mechanism, and the up-regulation of the antigen presenting 
machinery, including an increase or de novo expression of 
co-stimulatory molecules (43). Moreover, mature DCs 
undergo changes in their expression pattern of chemokine 
receptors that allow them to migrate to the lymph nodes 
where they activate T-cells. For instance, DCs decrease 
molecules related to their tissue homing such as CCR5 and 
on the other hand, increase CCR7 expression, a molecule 
involved in their migration to the nearest lymph node.  

 
In addition to DCs, macrophages and B-

lymphocytes can also act as APCs (46). They are 
considered non-professional APCs because, in contrast to 
the professional DCs, they cannot activate naïve T-cells 
and they do not express MHCs constitutively. Nevertheless, 
they have the necessary machinery to capture and process 
antigens, and under inflammatory conditions they increase 
MHC expression, becoming able to activate T-cells.  

 
For many years it has been assumed that there 

were not DCs in the CNS. This, together with the presence 
of the blood brain barrier, the lack of lymphatic vessels and 
the fact that skin grafts, viruses, bacterias or antigens 
directly inoculated in the parenchyma do not induce an 
immune response (47-50), contributes to the initial views of 
the CNS as an immune-isolated site. In this context, 
microglial cells were considered to be incompetent immune 
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Figure 2.Summary of signals leading to the maturation of immature dendritic cells (DCs) into different subtypes of mature DCs. 
These mature DCs secrete different T-cell polarising molecules that regulate the transformation of T-naïve cells into T-effector 
cells. 

 
cells. However, during the last decade, the capacity of 
microglial cells to interact with immune cells recruited into 
the CNS parenchyma under several situations has been 
widely reported (3, 23, 51, 52), suggesting that microglia 
may be considered as being APCs in the CNS and under 
certain circumstances they differentiate into DC-like cells. 
Furthermore, as shall be discussed in detail later, in 
addition to DCs of a microglial origin, an increasing 
number of evidence suggests that specific subpopulations 
of bone marrow-derived DCs may reach the CNS 
parenchyma under certain inflammatory conditions, such as 
focal cortical ischemia (53), stroke (54), excitotoxic lesion 
(55), delayed type-hypersensitivity lesions (56) or 
experimental autoimmune encephalomyelitis (15, 56). 
 
5. EXPERIMENTAL AUTOIMMUNE 
ENCEPHALOMYELITIS 
 

One of the most useful animal models for the 
study of the interactions established between CNS resident 
and peripheral immune cells is experimental autoimmune 
encephalomyelitis (EAE), which is a commonly used 
model of human multiple sclerosis (MS) although it may 

not represent all pathophysiological aspects of the human 
disease. EAE is characterised by progressive muscle 
weakness and paralysis starting in the tail and hindlimbs 
and may eventually lead to paraplegia or even tetraplegia. 
Associated with this clinical symptomatology, animals 
induced with EAE experience a progressive and significant 
loss of weight, mimicking what also happens in MS. There 
are several models of EAE with particular 
symptomatological and histopathological features that 
reproduce different forms of human MS (57, 58). Thus 
there are models, such as that induced by myelin 
oligodendrocyte protein (MOG) immunisation in C57BL/6 
mice, which resemble a form of chronic MS; others, such 
as that induced in SJL mice by proteolipid protein (PLP) 
injection, which reproduce relapsing-remitting MS, which 
alternate stages of paralysis with stages of recovery, and 
also some models like that caused in Lewis rats by myelin 
basic protein (MBP) immunisation, which mimic an acute 
phase of MS characterised by a single peak of disability 
followed by a full and spontaneous recovery. Multiple 
factors including the species, strain, sex and age of animals 
used, as well as the peptide and the protocol utilised in the 
immunization process, seem to be crucial to yield the 
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specific type of EAE. Susceptible animals, mainly rodents, 
can be induced by: 1) active immunisation, which consists 
of the subcutaneous injection of an emulsion containing 
nervous tissue or any peptide of myelin proteins together 
with a coadjuvant, or 2) passive immunisation, based on the 
intravenous injection of T-lymphocytes activated against 
myelin proteins.  

 
EAE primarily affects the white matter of the 

spinal cord although today it has also been reported that the 
spinal cord grey matter and other CNS areas such as the 
cerebellum and the brainstem are affected (59, 60). As 
occurs in human MS, the main histopathological features of 
EAE are glial reactivity, mainly microglial activation, and a 
large infiltration of peripheral immune cells, principally T-
cells (3, 24, 61). Due to the autoimmune nature of EAE and 
MS, it was widely accepted that CD4+T cells with a Th1 
pro-inflammatory phenotype were the principal 
lymphocytes involved in the disease (62). Over the last few 
years, however, the identification of different subsets of 
lymphocytes with varied functions and cytokine profiles 
(63-65), have led to the re-evaluation of this initial 
assumption. It has been demonstrated that Th17 
lymphocytes, a subtype of CD4+ T-cells (66, 67), are able 
to induce EAE when injected into mice (68). It has also 
been shown that Th17 cells are present in the spinal cord at 
the onset of EAE in mice (69), suggesting a pathogenic role 
of these lymphocytes. On the other hand, subtypes of 
regulatory cells, such as the extensively studied Foxp3 T-
regulatory cells (Treg), are also reported in EAE. Treg cells 
have been detected during recovery in mice (70-72), and 
their beneficial role in EAE has been clearly demonstrated 
(71, 73, 74). Furthermore, in addition to CD4+ T-cells, 
some authors have also suggested the participation of other 
types of lymphocytes, such as CD8+ T-cells and gamma-
delta T-cells (75-78). 
 
6. MICROGLIA, MACROPHAGES AND 
MONOCYTES IN EAE  
 

Microglial reactivity has been reported in 
different models of EAE (79-85). The major part of these 
studies has focused on the peak of the disease, where 
maximal levels of microglial activation were found. 
However, only few reports have analysed the temporal 
pattern of microglial reactivity along the course of EAE. 
Specifically in acute EAE, microglial reactivity has been 
detected in close correspondence with the increase in 
clinical symptomatology along the inductive and peak 
phases of the disease (85). Despite the large amount of 
literature describing microglial reactivity in EAE and 
human MS, the exact function played by these cells in these 
diseases still remains to be established. On the one hand, 
the observations of maximal microglial reactivity at the 
peak of the disease, together with the fact that the decrease 
in microglial reactivity, induced by treatments such as 
macrophage inhibitor factor (MIF) (86) and MW01-5-
188WH (87) or observed in microglia-depleted animals 
(88), has been associated with beneficial effects in EAE, 
led to the perception of microglia as detrimental cells in 
EAE pathogenesis. Moreover, it has been reported that 
activated microglia can release a wide range of molecules 

such as cytokines, chemokines and nitric oxide which may 
contribute to the recruitment of immune cells and the 
spread of the inflammatory response in the CNS (2, 24).   

 
On the other hand, it has also been reported that 

during EAE remissions, despite the gradual recovery of 
animals, microglial cells remained very reactive in both 
mice (84) and rat EAE models (85), suggesting a putative 
beneficial role of these microglial cells. Microglial 
reactivity has also been described in EAE-resistant rats (89) 
and in normal-appearing white matter in human MS (90). 
Furthermore, earlier recovery from EAE symptoms has 
been reported in mice administered with tufsin, a 
microglial/macrophage activator (86). In this sense, the 
capacity of microglial cells to also produce protective 
factors such as anti-inflammatory cytokines, prostanoids 
and trophic factors that may contribute to the termination of 
the inflammatory response in the CNS, has been 
extensively demonstrated (2, 24).  

 
In addition to morphological changes, an 

increase in the number of reactive microglia/macrophage 
cells in both chronic (81) and acute EAE (85) has been 
reported. This increase could be due to resident microglial 
cell proliferation or it could be the result of the recruitment 
of blood-borne monocytes, a population whose infiltration 
along the course of EAE has been described (91-93). The 
lack of good markers to distinguish between macrophages 
coming from the monocytic lineage and reactive 
macrophage-like microglial cells makes the analysis of the 
contribution of infiltrated monocytes to the final number of 
microglial/macrophage cells difficult. 

 
Some evidence indicates that besides microglia, 

the perivascular macrophage population may also play a 
role in the pathogenesis of EAE. They are commonly 
distinguished from microglial cells by their specific 
expression of ED2 in rats (16) and its counterpart CD163 in 
humans (17). Data in the acute EAE model induced in 
Lewis rat has reported an increase in the number of ED2+ 
cells before the appearance of clinical signs (94), which is 
in close relationship with the progressive increase in EAE 
symptomatology (85). Moreover, these ED2+ cells 
infiltrate the CNS parenchyma specifically at the peak of 
the disease (85). Due to their strategic location and their 
constitutive expression of MHC-class II (15), perivascular 
macrophages seem to be involved in the initiation of the 
immune response associated with EAE, perhaps 
contributing to T-cell activation, a step required for the 
subsequent infiltration of T-cells into the parenchyma (95, 
96). Indeed, experimental evidence based on the selective 
elimination of perivascular macrophages by the use of 
chlorodate lyposomes (97) revealed that their depletion 
produced a decrease in the symptomatology (94), 
reinforcing the idea of an active participation of these cells 
in EAE evolution.  
 
7. MICROGLIA REGULATE THE LYMPHOCYTE 
RESPONSE 
 

Infiltration and retention of T-cells in the CNS 
requires their interaction with local APCs (95, 96). As 
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microglial cells are currently considered to be the principal 
APC within the CNS parenchyma (2, 24), it is assumed 
that, in the CNS, they may play a key role in modulating 
the lymphocyte response including their proliferation, 
differentiation and apoptosis through the antigen presenting 
mechanism. Although in basal conditions, microglia do not 
express MHC-class I and MHC-class II, it has been shown 
that once activated they can rapidly express these 
molecules in a variety of situations (1, 98).  

 
Specifically in EAE, it has been widely reported 

that when microglial cells become activated, they increase 
the expression of MHC molecules in both mouse (81, 99-
101) and rat models (102-106). The role played by these 
MHC molecules in EAE showed controversial results. On 
the one hand, some studies pointed towards a detrimental 
role, as it has been reported that some treatments with a 
positive effect in EAE were associated with a decrease in 
MHC-class II expression (107, 108). However, on the other 
hand, a growing number of evidence indicated a putative 
beneficial effect of these molecules. It has been shown that 
MHC-class I KO mice present aggravation of EAE 
symptoms (109, 110) and MHC-class II KO showed 
impairment of remyelination after Theiler’s murine 
encephalomyelitis (111). Interestingly, in the acute EAE 
model induced in Lewis rats, the expression of both MHC-
class I and class II molecules increased progressively 
during the inductive and peak phases correlating with the 
increase in clinical symptomatology, but levels of MHC 
expression remained high during the spontaneous recovery 
phase, even in animals that completely recovered and do 
not show any symptomatology (15).  

 
At this point, it is important to highlight that 

MHC expression per se is not sufficient for antigen 
presentation, and co-stimulatory signals are necessary for 
the complete activation of T-cells (28, 31). The 
involvement of co-stimulatory molecules in EAE evolution 
comes principally from studies showing the effects of the 
absence of these co-stimulatory molecules (112). Thus, a 
reduction of EAE severity has been correlated with the 
blockage of CD28 (113, 114) or B7 (115, 116), whereas the 
blockage of CTLA-4, the co-stimulatory signal that drives 
the ending of the immune responses, has been shown to 
produce a worsening of the disease (117).  

 
The question of whether a specific pattern of 

MHC and co-stimulatory molecule expression governs the 
evolution of EAE remains unresolved, and so far it is not 
clearly known which are the cells that express these 
molecules. Differences in the expression of B7.1 and B7.2 
have been detected among different models of EAE. 
Whereas in mouse models B7.1 has been commonly 
described during the relapses, being nominated as one of 
those responsible for the epitope-spreading phenomenon 
and the induction of clinical relapses (115, 118-120), no 
B7.1 expression has been detected at any phase of acute 
EAE in rats (15). In fact, in this acute EAE model, despite 
the high expression of MCH molecules in microglia and the 
infiltration of CD28+ T-cells, neither B7.1 nor B7.2 
expression was found during the inductive and peak phases 
(15), leading the authors to suggest that this expression of 

MHCs without a concomitant co-stimulatory signal can 
mediate either the anergy or the apoptosis of infiltrating T-
cells, as described in the peripheral immune system (29). 
Induction of T-cell anergy or apoptosis may, therefore, be 
the cause of the immune response resolution leading to the 
spontaneous clinical recovery (15). In fact, apoptosis of 
encephalitogenic T-lymphocytes has been widely described 
in EAE models (121-124).  

 
In contrast, during the recovery phase the 

aforementioned study (15) revealed the expression of B7.2 
in a subpopulation of microglial cells located in the vicinity 
of blood vessels. This pattern of expression of MHCs with 
B7.2, in the absence of B7.1, has been reported in reactive 
microglia in acute CNS injuries, such as facial-nerve 
axotomy (125), enthorinal-cortex lesion (126, 127) and 
cuprizone-induced demyelination (128), situations in which 
myelin destruction does not lead to autoimmunity. 
Furthermore, B7.2 expression has been described 
accompanied by an accumulation of cells expressing 
CTLA-4 (15), which is the B7.2 co-receptor that inhibits T-
cell activation (129). CTLA-4 was found constitutively 
expressed in T-regulatory cells (130), a specialised 
subpopulation of T-lymphocytes that suppressed the 
activation of the immune system, whose principal function 
is the maintenance of immunological homeostasis and 
tolerance to autoantigens (For detailed reviews, see (131-
133). The role played by CTLA-4 in T-reg activation is still 
not fully determined. However, it has been shown that 
signaling through this co-stimulatory molecule is necessary 
for the induction of Foxp3, the master transcription factor 
of Treg (134, 135), and for the activation of this population 
of lymphocytes (135-137).  

 
Finally, it is also important to mention that an 

increasing number of reports suggests the involvement of 
other co-stimulatory molecules in EAE progression (138). 
CD40/CD40L molecules have been described in MS 
plaques in humans (139) and during relapses in mice with 
EAE (118). It has been shown that CD40/CD40L 
recognition is instrumental in the development of EAE, 
since EAE induction is prevented in CD40KO mice or by 
treatment of wildtype mice with antibodies to CD40L (139, 
140). Other molecules whose expression has been involved 
in EAE are PD1/PDL1,2 and ICOS/ICOS-L. The 
involvement of PD1 and its receptors PDL1 and PDL2, in 
EAE, came from studies showing the upregulation of these 
molecules at the peak of the disease (141, 142). Some years 
later, the use of KO mice demonstrated that a deficiency in 
either PD1 or PDL1, but not PDL2, induces an increase in 
EAE severity (143), suggesting a putative beneficial role of 
this signalling in EAE progression. Moreover, recently it 
has been shown that EAE can be induced in PD1-deficient 
mice without the use of pertussis toxin (PTX), whereas in 
wild-type animals, PTX administration is essential for EAE 
development (144). Only few studies have addressed the 
role of signalling through ICOS and ICOS-L. These 
molecules may exert a beneficial role, as induction of EAE 
in ICOS-deficient mice results in severe disease (145). 
Nonetheless, treatment with anti-ICOS antibody suggested 
a dual role of ICOS in EAE: treatment during the first days 
post-induction (1-10 days post-induction) exacerbated EAE 
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severity, whereas administration during the effector phase 
(9-20 days post-induction) promotes a delay in onset and 
severity (146). However, no reports about ICOS expression 
in microglia or any other CNS resident cells are currently 
available.  
 
8. DENDRITIC CELLS IN EAE: RECRUITED FROM 
THE PERIPHERY OR DERIVED FROM 
MICROGLIA?  
 

Different subtypes of DCs showing specific 
expression of surface molecules are currently identified in 
both human and mouse (41, 147). They are continuously 
produced from stem cells located in the bone marrow and 
they migrate as DC-precursor cells to peripheral organs 
where they differentiate into specific populations of 
resident DCs, by the action of different factors such as GM-
CSF (granulocyte-macrophage colony stimulating factor), 
Flt-3 and c-Kit, in an antigen-independent manner (148).  

 
The presence of DCs within the CNS has been an 

issue of debate for many years. Nowadays the presence of 
these cells in selective areas of the healthy CNS, such as 
the meninges and the choroids plexus, is accepted (149, 
150). Studies in recent years have reported the existence of 
specific populations of DCs within the brain parenchyma 
under inflammatory conditions (151, 152).  

 
The presence of DCs within the CNS 

parenchyma in different models of EAE in rat (15, 56) and 
mouse (153-155) has been reported. The role played by 
DCs in the evolution of EAE is still controversial. Some 
authors point towards a detrimental role showing that 
intracerebral injection of DCs, pulsed in vitro with MOG, 
exacerbates EAE pathology (156). In addition, it has been 
reported that DCs are responsible for the immune 
infiltration in EAE (157) and promote the polarisation of 
lymphocytes towards Th17-pathogenic cells (155). 
However, some studies have reported that if DCs were 
previously cultured with TNF-alpha, a tolerogenic 
phenotype would be induced in these cells which, when 
injected, produced a decrease in EAE symptomatology 
(156, 158). These results suggest a beneficial role of DCs 
and indicate that further research is needed to clarify the 
exact role of DCs in CNS (159). In addition, the emergence 
of new subsets of DCs with regulatory cues, such as the 
tolerogenic DCs, opens new perspectives in the study of 
CNS DCs. Tolerogenic DCs are considered as an 
incomplete or modulated form of DC maturation, involved 
in peripheral tolerance via induction of anergy, apoptosis or 
Treg activation (160, 161). In vitro studies have 
demonstrated that certain cytokines such as IL10 and TFG-
beta, some vitamins (1,25-dihydroxy vitamin D3, vitamin 
C), immunosuppressive treatments using glucocorticoids or 
NFkB inhibitors can generate a tolerogenic phenotype in 
DCs (162). In contrast to immature DCs, also considered as 
inductors of tolerance, tolerogenic DCs display a stable 
phenotype, which is resistant to further maturation. 
Characteristic features of these tolerogenic DCs have been 
described including the secretion of the anti-inflammatory 
enzyme indoleamine 2,3-dioxygenase (IDO), expression of 
MHC molecules but low levels of co-stimulatory molecules 

and expression of surface molecules involved in T-cell 
inhibition such as PDL1 or CD95L (163). All of these 
molecules contribute to the inhibition of T-cell proliferation 
and induction of apoptosis. Despite the large amount of 
information in the peripheral immune system on the 
phenotype, role and modulation of these tolerogenic DCs, 
little is known regarding the presence and participation of 
these cells in the CNS during EAE. Some evidence, 
nevertheless, raises the possibility that tolerogenic DCs can 
be involved in EAE evolution. The expression of IDO in 
EAE has been described in mouse, coinciding with the 
remission phase (164). IL10 and TGF-beta expression have 
also been detected during the remission stage (165, 166). 
Moreover, low levels of co-stimulatory molecules have 
been detected in acute EAE (15).  

 
Another issue that remains to be elucidated is 

what the origin and the differentiation cues of CNS DCs 
are. Two different theories can be considered to explain the 
possible sources of these cells: differentiation from resident 
microglial cells or recruitment from the periphery. 
Regarding the putative microglial origin, in vitro studies 
have demonstrated the capacity of microglial cells to 
differentiate into cells with a DC phenotype after exposure 
to GM-CSF (13, 154). In addition, recent studies have 
shown the existence of a subpopulation of microglial cells 
that constitutively displayed CD11c in the healthy brain 
(167). In accordance with these observations, the 
expression of CD1, a marker commonly used for the 
identification of immature DCs (168), has been 
demonstrated in a subpopulation of microglial cells located 
in the vicinity of blood vessels during the course of EAE 
(15). In agreement with this idea, an increase in CD1 
expression in CD11b+CD45low microglial cells and 
CD11b+CD45high macrophages has been reported during 
the peak of EAE in mouse by flow cytometry (169). If this 
theory of the microglial origin of DCs were true, microglial 
cells should be considered as a population of immature 
DCs residing in the CNS parenchyma, as already suggested 
by some authors (170).  

 
Alternatively, it has also been proposed that CNS 

DCs can be recruited from the periphery. Although 
monocytes were initially described as the precursors of all 
of the subpopulations of tissue macrophages, it is now 
recognised that they can also differentiate into DCs. In 
steady-state conditions, monocytes are the precursor of tissue-
resident DCs such as the Langerhans cells in the skin, but 
under inflammatory situations the differentiation of monocytes 
into monocyte-derived DCs has recently been described (171). 
The choice of monocytes to differentiate into DCs or 
macrophages is likely determined by the cytokine milieu and 
the signals that these cells received from the environment 
(172). The presence of Ly6C+ monocytes, the putative source 
of monocyte-DCs, has been recently reported in EAE in mouse 
(92, 173). Reinforcing the idea of a putative peripheral origin 
of the CNS DC population, recent findings have revealed 
the presence of a specific population of mature DCs, which 
does not correspond to microglia, within the CNS 
parenchyma (15). These mature DCs were characterised by 
the expression of fascin, an actin-bundling protein whose 
expression has been linked to DC maturation (174-176). 
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Taking into consideration all of these 
observations, the origin and function of DCs in CNS 
remain to be clarified and further research is warranted. 
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