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1. ABSTRACT 
 

The basic idea behind ligand-based approaches is 
that the analysis of sets of molecules with experimentally 
determined activities can highlight those chemical features 
responsible for the activity changes. Historically, such 
approaches have been devised before structure-based 
methods. Nowadays, despite the ever increasing availability 
of experimentally determined structures, ligand-based 
approaches still play a major role in drug design either 
alone or in conjunction with structure-based efforts. This 
manuscript aims to provide a general overview of the main 
computational approaches in ligand-based drug discovery, 
particularly 3D QSAR methods, along with relevant 
references to the literature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
2.1 Ligand-based drug design 

Notwithstanding the complexity of its 
interdisciplinary nature, drug research is fundamentally 
based on simple concepts:  

 
In living organisms, chemicals interact with 

macromolecules, triggering certain biological effects; 
 
Similar molecules trigger similar effects (1). 
 
Given a dataset of chemicals active towards a 

pharmaceutically relevant target, it is therefore common 
practice in drug research to look at similar molecules in 
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order to conveniently modulate certain characteristics 
(potency, selectivity, bioavailability etc.). Here, however, 
the apparent simplicity stops and the first questions arise. Is 
there an unambiguous way to determine whether two 
molecules are similar, and hence likely to produce similar 
biological effects? What metric should be used to correctly 
classify molecular entities? Compelling evidence suggests 
that no satisfactory reply exists (2). 

 
For decades, well before the advent of 

computational resources in medicinal chemistry, those 
questions were addressed using intuition bolstered by 
experience. Given a set of molecules sharing a common 
scaffold (known as ‘congeneric molecules’) with 
experimentally measured activities (a training set), 
researchers aimed to infer, mainly by visual inspection, the 
molecular features responsible for changes in biological 
activity. With varying degrees of success, researchers 
attempted to make predictions based on qualitative models 
(i.e. if A is more active than B, then C, whose activity has 
not yet been assayed, is likely to be more active than A). 
The reliability of these models then had to be established 
by experimental tests. This is known as a structure-activity 
relationship (SAR) study. It is a pivotal step in drug 
discovery. However, practitioners tend to work differently 
nowadays. This is because computers play a key role in 
almost every aspect of the drug discovery process. Model 
generation is now mostly left to complex mathematical 
algorithms, while human intervention is increasingly 
focused on model analysis and interpretation. In 
chemoinformatics (3, 4) computer and information 
technology are applied to a wide range of chemistry 
problems. Compounds thus cease to be ensembles of 
covalently bound atoms and instead are transformed, 
through the use of molecular descriptors, into numerical 
values that, taken together, say something about the 
biological activity and chemical reactivity of a given 
compound. According to the definition given by Todeschini 
and Consonni, a molecular descriptor is “the final result of 
a logic and mathematical procedure which transforms 
chemical information encoded within a symbolic 
representation of a molecule into a useful number or the 
result of some standardized experiment” (5). Mathematical 
applications are then used to find quantitative relationships 
between the descriptors and the measured activities. Their 
reliability is tested using sets of compounds, with known 
activity, omitted from the original model (test set). Data 
torturing rarely produces bad models. For this reason, the 
main duties of the final user are to interpret the outcomes of 
the model, to verify whether the model has any useful 
predictive capabilities, and, if it doesn’t, to assess why. As 
in the days before computer-assisted drug design (CADD), 
new molecules with theoretical enhanced potencies are 
synthesized and bioassayed. The main difference now is 
that researchers attempt to make accurate quantitative 
predictions of the activities that will occur upon chemical 
modification (i.e. quantitative SAR, or QSAR). The final 
stage of the process (and perhaps the most delicate stage 
too) is the return from descriptor space to chemical space in 
pursuit of new molecules with hopefully improved features. 
Human abilities here still make the difference between a 
successful and a fruitless drug discovery campaign (6). 

2.2. Historical perspective 
Traces of elemental SAR studies can be found in 

the scientific literature as early as the end of the 19th 
century, when Richet reported on the relationship between 
solubility and toxicity for a series of compounds (7). Given 
the intuitive and reasonable logic behind SAR (i.e. similar 
things behave in similar ways), this early appearance is not 
surprising. A few years later, Meyer and Overton 
independently showed there was a close relationship 
between the olive oil solubility of molecules and their 
narcotic power in tadpoles (Figure 1) (8, 9). 

 
However, it was Hammett who reported the very 

first case study in which a quantitative understanding of the 
relationships between structure and chemical properties 
was achieved. His linear free energy relationship (LFER) 
model was introduced in physical organic chemistry in 
1937 (10). He discovered that equilibrium constants (K) or 
reaction rates (k) for many reactions involving benzoic acid 
derivatives with meta- and para-substituents can be related 
using just two parameters: a substituent constant (σ) and a 
reaction constant (ρ) (see Equation 1, K0 is the reference 
value) 

 

(Equation 1) 
 
In 1964, after a gap of almost three decades, 

Hansch and Fujita built on Hammett’s findings to produce 
the first medicinal chemistry study capable of relating 
molecular properties to observed biological measures by 
means of numerical equations (11). In this milestone paper, 
Hansch and Fujita used π and σ, respectively, as descriptors 
of the electronic and lipophilic features of molecular 
structures to rationalize certain biological activities in 
several diverse test cases (Figure 2). 

 
It is not by coincidence that these descriptors 

were successfully used and, moreover, seemed to have a 
general applicability. In a basic yet quite realistic 
representation of what goes on at cellular level, π 
accounts for hydrophobic interactions and for the 
molecular propensity to permeate biological barriers. It 
is, in practice, a very handy descriptor of the effective 
concentration of chemicals at the site of action, while σ 
roughly accounts for the molecular interactions 
occurring at the binding site. The study also highlighted 
the very important non-linear dependency between 
biological response and lipophilicity (this concept has 
been more properly addressed by Kubinyi) (12, 13). In 
the same year, Free and Wilson published a 
mathematical study about the estimation of biological 
response caused by structural changes (14): the QSAR 
era had officially begun. These papers had a great 
impact on the scientific community and profoundly 
influenced the way researchers handled molecular 
datasheets. 

 
At the beginning of the 1980s, 3D structures of small 
ligands in complex with macromolecules were just 
becoming available to the scientific community (15). At the 
same time, researchers were starting to accept that drugs 
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Figure 1. The Meyer-Overton correlation for anesthetics. 
 
were more complex than bidimensional sketches on paper. 
The concept of bioactive conformation began to radically 
change the way scientists looked at molecules, at a time 
when computers were becoming increasingly powerful. As 
a consequence, the idea emerged that a target’s chemical 
preferences could be inferred indirectly from studying the 
3D arrangement at the site of action of its binders. The 
basic concept is that molecules are aligned onto each other 
in their putative bioactive conformation. Then, changes in 
experimentally determined activities are related to certain 
properties, which are calculated within a pre-defined 
volume around them using statistical techniques. In 
principle, one advantage of this approach is that 
comparisons are possible between non-congeneric 
molecules too. Based on the assumption of a shared binding 
mode, the exerted fields are what count, not the underlying 
molecular frames. The first example of 3D QSAR 
methodology dates back to 1988, when Cramer III and 
colleagues invented comparative molecular field analysis 
(CoMFA) (16). CoMFA immediately gained extreme 
popularity. It remains the approach of choice in many case 
studies today. 

 
In retrospect, adding an extra dimension to the 

“classical” QSAR approach was an obvious evolution. 
Initially, however, scientists were skeptical about the 
usefulness of 3D interactions with respect to traditional 
monodimensional physicochemical descriptors. A number 
of new concepts had to be digested in order to persuade 
them. For instance, the number of variables (e.g. molecular 
fields) was far greater than the number of studied objects 
(i.e. molecules), hence ad hoc mathematical algorithms had 

to be designed or borrowed from the statistical mathematics 
community. Of these, partial least squares analysis (PLS) 
(17) probably contributed the most to the 3D QSAR legacy. 
At the time, of course, there was not widespread access to 
the computational power needed to deal with multivariate 
problems. This also slowed down the establishment of 3D 
QSAR. 

 
At the beginning of the 1990s, there was a rapid 

increase in the number of applications of 3D QSAR 
techniques in drug design projects. The CoMFA-like use of 
different combinations of the Goodford’s GRID (18) 
interaction points opened the door to countless practical 
applications (19, 20). In 1994, Klebe and colleagues 
published a methodology called CoMSIA (molecular 
similarity indices in a comparative analysis). It shared some 
similarities with CoMFA and aimed to overcome some of 
its pitfalls (21). Soon after, Richards and colleagues 
proposed a CoMFA variant, the self-organizing molecular 
field analysis (SOMFA). However, this was not as popular 
as CoMFA (22). Contextually, the number of available X-
ray macromolecular structures was rapidly increasing. 
Researchers were producing new strategies for studying the 
interactions between small ligands and macromolecules in 
a more direct way (e.g. molecular docking). A bridge was 
needed between the structure-based and ligand-based 
worlds. Unfortunately, despite several cases in which 3D 
QSAR hypotheses were subsequently confirmed by X-ray-
based studies (23-29), it became evident that, in ligand-
based methodologies, certain general issues remained 
unsolved. Anyone who has dealt with classical 3D QSAR 
studies knows how much the final result depends upon a
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Figure 2. Classes of compounds reported in the Hansch-Fujita study. 
 

number of user-dependent choices, such as the box size, the 
grid spacing, the field selection and, most importantly, the 
alignment procedure. Within the last 20 years, much effort 
has been made to improve 3D QSAR analyses. Eventually 
Dobler and colleagues extended the concept of traditional 
3D analysis by adding three more dimensions. By taking 
into account multiple representations of the ligand 
molecules (4D) (30), various induced-fit hypotheses (5D) 
(31) and alternative solvation models (6D) (32) they could 
more accurately depict the biological process of binding. It 
is also worth mentioning the use of atomic property fields 
(APF) recently proposed by Totrov (33). Although its 
general applicability has not yet been proved, it is one of 
the most promising attempts to limit human bias across the 
procedure, from alignment to the final model. 

 
When dealing with datasets of molecules active 

towards a given biological target, an alternative possibility 
is to derive a pharmacophore. The concept of 
pharmacophores was introduced by Kier in the late 1960s 
(34). According to the IUPAC definition, it represents "an 
ensemble of steric and electronic features that is necessary 
to ensure the optimal supramolecular interactions with a 
specific biological target and to trigger (or block) its 
biological response" (35). Commonly used features are 
hydrogen bond donor and acceptor groups, charged atoms, 
aromatic rings etc. This is in line with the concept of 
bioisosterism, which identifies distinct functional groups 
sharing similar biological, chemical, and physical 
properties (36). A pharmacophore can be thought of as a 
coarse representation of a prototypical molecule active 

towards a given biological target. Once developed, a 
pharmacophore model can be used to parse molecular 
databases in order to sort the probably inactive compounds 
from those likely to be active (i.e. those that match the 
pharmacophore hypothesis). At the end of the last century, 
this kind of analysis was mainly conducted by looking at 
the molecules. Unsurprisingly, the scientific community 
can now use complex algorithms to generate, handle, and 
elucidate pharmacophoric hypotheses.  

 
None of the above-mentioned methodologies are 

error-free. Therefore, while older methodologies are still 
successfully applied (37), scientists are focused on creating 
improved protocols. Researchers are constantly proposing 
new descriptors (5), innovative ways of accounting for 
ligand flexibility, and more advanced protocols for 
analyzing the massive amount of data produced. The 
primary goal is still to infer, from a series of flexible small 
molecules with known activities, what drives the activity 
changes. Methodological advances should have an 
enormous impact on medicinal chemistry, allowing the 
prompt identification of candidates with improved features 
at sustainable costs. 
 
2.3. Preamble 

In the following section, the theoretical 
foundations and principles of ligand-based drug design will 
be briefly examined. In medicinal chemistry, the property 
under investigation is typically the affinity constants 
towards a given target (usually a protein) measured in 
terms of IC50 or Ki. However, the investigative methods can 
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Figure 3. General framework of 3D QSAR protocols. 
 
be used to study any observable that is dependent upon the 
geometric arrangement of molecules. In fact, in a broader 
context, the word 3D QSPR is sometimes used. This stands 
for ‘quantitative structure-properties relationship’, which is 
derived from knowledge of the three-dimensional 
arrangements of molecules. I note that, although most 
protocols share similarities to some extent (at least in the 
general framework), there can be remarkable differences 
from case to case. The following is thus intended to be a 
general scheme with a fairly broad applicability. A detailed 
mathematical description is purposely missing; however, 
the interested reader is encouraged to delve into the cited 
publications. This manuscript is not intended to be an 
exhaustive review of ligand-based approaches in drug 
discovery. I therefore apologize to those authors whose 
original work is not included in the references due to space 
limitations. 
 
3. THEORETICAL BACKGROUND 
 
3.1. Five steps to 3D QSAR 

Ligand-based drug design is based on the theory 
that similar molecules cause similar biological effects. This 
intuitive concept does not always hold true (38, 39), but 
most of the time, it does. The reason is found at molecular 
level. Structurally similar molecules bind in a similar 
fashion (40) and are thus likely to be recognized by the 
same biological receptors, triggering similar responses (1). 
Everyday experience tells us that similarity means different 
things to different people, and similarity between ligands is 
no exception. This is because, in chemistry, molecules can 
only be compared indirectly by means of descriptors that 
capture defined aspects of their complex nature, one at a 
time (41). Moreover, there are several descriptors whose 
importance varies from case to case, depending on the 
nature of the ligand-receptor interactions involved. 
Additional complexity arises from the fact that molecules, 
with few exceptions, are flexible elements and, most of the 
time, their bioactive conformations are not known a priori. 
In the following sections, the five distinct phases of a 
general 3D QSAR framework (Figure 3) will be examined. 

 
3.1.1. Structural alignment of molecules 

Alignment is generally the first and most crucial 
phase in a 3D QSAR analysis (although it may be omitted 
from more recent methods, if a number of conformations 

per ligand are provided). In the alignment step, the ligands 
under investigation must be aligned onto each other in their 
putative bioactive poses (i.e. the conformations adopted 
upon receptor binding).  

 
There are several ways to identify structural 

alignments for comparative purposes (42-45). One 
procedure considers the molecular framework and 
functional groups belonging to it. This usually involves 
choosing a reference structure and carefully selecting the 
tethering atoms. The reference structure can be either an active 
ligand whose spatial arrangement at the active cleft is known 
or, if that is unavailable, a known binder with a reduced 
number of rotatable bonds (to limit the uncertainty associated 
with its binding mode). In both cases, the reference can either 
belong to the studied dataset or be an active that shares the 
dataset’s binding mode and that is already in the literature. The 
tethering atoms are chosen in order to guide the subsequent 3D 
ligands’ superposition to the reference. By superimposing 
those parts of the ligands not directly involved in noncovalent 
interactions with the macromolecule, researchers can 
maximize the chances of getting a biologically meaningful 
alignment. Two objectives are thus achieved in one step: 

 
The molecular degrees of freedom are sampled; 
There is minimization of the distance function 

between identical pharmacophoric groups belonging to 
different molecules (one of which is always the reference 
structure). 

 
In alternative methods, several chemotypes are 

assigned to each atom of the molecules in the dataset and 
then the optimal superposition between them is sought (46, 
47). These protocols are easy to implement in computer 
algorithms. Their main advantage is that they converge 
quickly. On the downside, they do not properly capture 
what really goes on at a molecular level. This is because 
target-ligand recognition is exerted through molecular 
surfaces and atomic properties mapped onto them. 
Focusing on atomic superposition, therefore, might not lead 
to the expected results. 

 
To overcome the above-mentioned limits, 

alignments based on molecular fields and surface properties 
have been proposed. In these protocols, properties are 
calculated at equally distributed points on the van der 
Waals surface or on a defined volume surrounding each 
conformer generated for each studied molecule. Then, the 
search algorithm tries to find the optimal superposition, 
which is the one that most minimizes the differences 
between calculated values in the confronted structures. At 
the end of the run, the generated alignments are ranked 
according to this fitness function. Hermann and Herron 
proposed an early implementation of this idea in 1991, 
using electrostatic potential values at the van der Waals 
surface to calculate the goodness of molecular 
superpositions (Figure 4) (48). 

 
Since then, there have been a number of 

applications based mostly on the same principles or on the 
Lennard-Jones potentials, which are calculated at points 
within the buffer area around the molecules (49, 50). This
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Figure 4. Comparison between two molecular 
representations. In A, (S)-Flurbiprofen is represented as a 
stick model, atom type colored. The same molecule is 
shown in B as a van der Waals surface, colored according 
to the electrostatic potential (from red to white for values 
from negative to positive, respectively). 
 
approach yields more meaningful alignments from a 
biological standpoint, since molecules are treated as they 
are really “seen” by their natural counterparts. However, 
such accuracy comes at a cost. The calculation time 
increases considerably with respect to simpler punctual 
atomic superpositions. A recently developed way of 
superposing ligands takes into account the molecular 
topology by representing molecules as graphs of 
connecting atoms. It has produced results comparable to 
more time-demanding methods (51). Molecular 
superpositions can also be achieved without considering a 
reference molecule. However, the lack of reference to an 
established bioactive pose means there is a greater chance 
of deriving alignments that lack biological transferability. 
 
3.1.2. Generation of data  

Once the studied molecules have been pushed 
towards their putative bioactive conformations, the next 
steps are usually: 

 
Creating a virtual box, big enough to contain all 

the molecules in the dataset plus a buffer area; 
 
Calculating the physicochemical properties at 

regularly spaced points within the box. 
 
The grid spacing should be set in a way that 

every field supposedly felt by the target is smoothly 
captured by the minimum amount of points. A value of 
between 1 and 2 Å is usually enough to deal with standard 
systems. In CoMFA (16), Coulombic and Lennard-Jones 
potentials are calculated to represent the steric and 
electrostatic effects accounting for the overall molecular 
reactivity. Similarly, the space around the molecules can be 

sampled by diverse combinations of chemical probes, 
which are accurately chosen to portray the intermolecular 
interactions acting upon target binding. Conversely in 
CoMSIA (21), the calculated properties at each grid point 
do not have a readily usable physical meaning. This is 
because their numerical value indicates the similarity 
between selected probes and the studied molecules in 
arbitrary units, in a distance-dependent functional form. In 
general, the enclosing box can be thought of as a virtual 
cage containing evenly distributed sensors (i.e. the grid 
nodes), which are receptive to pre-selected molecular 
features. Thus obtained, the signals are recorded and 
analyzed for correlations between the dependent variable 
(i.e. the property under investigation) and the independent 
variables (i.e. the values at each grid point). A general 
schematic representation of these steps is provided in 
Figure 5, where Donepezil is the prototypic molecule. 

 
As stated above, the chemical determinants 

intervening upon target-ligand binding differ from case to 
case. This makes it difficult to choose a priori the 
molecular properties to consider in a 3D QSAR. Moreover, 
the best descriptive and predictive models could, in 
principle, be given by combinations of predominant 
properties, increasing the complexity of the analysis. 
Researchers are trying to find the single descriptor that, 
taken alone, could account for all molecular 
activity/reactivity. Quantum mechanical (QM) descriptors 
have been proposed, since they are directly connected with 
the intrinsic molecular reactivity. For example, 
deformations in the local atomic densities have not been 
proven to quantitatively predict the forces implicated in 
molecular interactions and in chemical processes such as 
van der Waals, Pauli, bonding and nuclear un-screening 
forces. However, their use in 3D QSAR has not yet been 
attempted (52). Although QM descriptors can give a more 
accurate picture of the molecular propensities, their use in 
3D QSAR studies is greatly hampered by the associated 
computational burden. QM treatments are extremely time-
demanding as compared to simpler, although less accurate, 
molecular-mechanics-based calculations. Recently, a 
simplified molecular description (named SAMFA) has been 
proposed by researchers at AstraZeneca Pharmaceuticals 
(53). Surprisingly, SAMFA seems to perform exceptionally 
well, compared to standard protocols that use more refined 
descriptors. Moreover, SAMFA models can be 
straightforwardly interpreted due to the simple nature of the 
descriptors used. 
 
3.1.3. Mining of data 

Data mining represents the third step in a 3D 
QSAR study. As shown in Figure 5, for each point of the 
grid, property values are calculated, the accumulated data 
are analyzed, and a virtual model is generated. In this 
phase, the experimentally obtained measurements for each 
studied ligand in the training set are associated with the 
numerical values calculated at each grid node. Thus, the 3D 
information is folded in a 2D matrix. Statistical techniques 
are then used to spot, where present, relationships between 
the variance recorded at each grid node (indicated as x1, x2 
etc. in Equation 2) and the variance of the known activity 
(indicated as biological response, B.R. in Equation 2). This 
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Figure 5. General steps of a 3D QSAR study. Three-dimensional structures of the molecular dataset, overlaid according to their 
putative binding poses, are immersed in a virtual box. For each molecule, the biological response (B.R.) is known along with the 
property values, calculated at each node of a predetermined 3D grid (the grey dots in figure). Statistical tools are then used to 
determine the coefficients that best correlate the dependent variable (B.R.) to the independent variables (field values at the grid 
nodes). The nodes that mostly correlate with the activity changes can be usefully highlighted in 3D (the colored isopotential 
surfaces in figure), indicating regions in space directly involved in the binding process where chemical modifications to enhance 
the observed property are desirable. Once assessed, the model can be used to predict the biological response of new molecules, 
given putative 3D arrangements at the binding cleft. To help interpretation, Donepezil is shown as stick model C-colored cyan, as 
a prototypical molecule surrounded by hypothetical interaction maps in an ad hoc built grid volume. 
 
mathematical effort aims to find the optimal coefficients a1, 
a2 etc. in the equation below, so as to weight each node 
contribution to the biological response: 

 

 (Equation 
2) 

 
Historically, certain indexes have been used to 

monitor the wellness of the model from the earlier stages to 
its final version. For example, in the developing phase, it is 
important to check how well the model explains the activity 
of the dataset used to generate it. To do this, the squared 
correlation coefficient (r2) can be conveniently calculated 
as: 

 

(Equation 3) 
 
Where ycalc, y and ym indicate the estimation of 

the dependent variable, its actual value, and its mean value, 
respectively. The calculation is reiterated over the total 
number (N) of objects (i.e. molecules) considered. Values 
of r2 can vary between 0 and 1, indicating, respectively, the 
total inability and the perfect ability of the model in 
explaining the variation in the dependent variable. In real 
life scenarios, values of r2 between 0.8 and 0.9 indicate a 
good fitness of the model. 
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The most widespread way of generating robust 
linear equations in medicinal chemistry is the partial least 
squares regression analysis (PLS) (17). This is due to its 
strict association with the CoMFA protocol. However, 
scientists have also successfully used variable selections 
based on principal component analysis (PCA), design 
criteria (54), genetic algorithms (55), neural networks (56) 
and inductive logic programming (ILP) (57, 58). In recently 
developed 3D QSAR methodologies where the alignment is 
not required, a sufficiently large number of conformers per 
studied molecule are generated, each of which generates a 
data sheet. The sum of the generated data is then fed into a 
variable selector algorithm. This leads to the above 
equation, with the constraint that, in the end, each molecule 
can contribute just one conformer to the model. The 
advantage of this approach is that there is no need to guess 
the bioactive conformations a priori. These can be inferred 
directly from the final model. On the downside, this 
methodology cannot be readily applied to molecules with 
many degrees of freedom. This is because too many 
hypothetical conformers would be needed to represent the 
likely physiological poses, making the method unfeasible. 
Furthermore, the amount of data thus produced cannot be 
treated with traditional methods. More robust and time-
consuming tools must be used, like machine learning 
methods. Moreover, due to the lack of a human supervised 
superposition, there is a real risk of producing a self-
consistent model that lacks prompt chemical transferability. 
The latter issue will be addressed in the forthcoming 
sections. 
 
3.1.4. Validation of the model 

Once generated, the model must be validated to 
assess its descriptive and predictive capabilities. 
Descriptive and predictive powers refer to model’s ability 
to estimate the known activities of the molecules in the 
training set, and the activities of the molecules in the test 
set, which can be either known or not. The descriptive 
power gives a measure of how well the model performs 
while retrieving the original data (upon which it was 
developed), a measure of which is the above-mentioned r2 
(Equation 3). However, the predictive power can be 
assessed either internally, by predicting the dependent 
variable of molecules arising from the original dataset and 
temporarily left out from it (i.e. cross-validation), or 
externally. In the latter and more challenging type of test, 
the model’s robustness is tested in a real-life scenario by 
making predictions about molecules with known activity 
values that were never included in the model’s 
development.  

 
The cross-validated r2, or q2, is a useful index. It 

is used to measure the ability of the model to predict the 
activity values of molecules temporarily omitted from the 
model.  

 

(Equation 4) 
 
In this equation, ypred, y and ym are the predicted, 

the real, and the mean value of the observables under 

investigation. Intuitively, cross-validated r2 are lower than 
pure r2. Values of between 0.6 and 0.8 are generally 
considered reasonable, at least in 3D QSAR. 

 
Extreme care should be taken when treating 

models with a low predictive power. This low predictive 
power could be due to the presence of molecules with 
unique features whose importance cannot be accounted for 
by the remaining members of the dataset (59). 

 
At this stage, it is also important to pinpoint 

possible outliers (molecules whose activities are badly 
predicted) and to understand the reasons behind such 
behaviors. Detecting outliers is an important task that can 
sometimes highlight incorrect experimental measurements 
and theoretical assumptions. It can also shed light on 
important features of the process under investigation, like 
activity cliffs in the structure-activity landscape (38, 39, 
60). 
 
3.1.5. Back to chemistry 

The final phase of a 3D QSAR study is by far the 
least demanding in terms of CPU time. It aims to translate 
the obtained outcomes into suggested chemical 
modifications, so that molecules with improved 
characteristics can be developed. The relevant variables in 
the data matrix are those that most correlate with property 
changes. Once identified, they can be conveniently 
projected into 3D, highlighting exploitable regions in the 
space within the box. According to the model, appropriate 
chemical modifications in these regions can positively or 
negatively influence the observable property, making the 
rational design process relatively straightforward (Figure 
5). Newly designed molecules can be fed into the model via 
the calculation of properties on given poses. Predictions of 
activity are immediately acquired since the optimal 
coefficients in Equation 2 (see above) are preset. When 
successful, virtual models can predict a given property, in 
silico, for molecules that have not yet been synthesized or 
purchased. However, even very robust models do not 
guarantee accurate predictions. There may always be 
unforeseen factors. It is therefore advisable to reassess the 
model from scratch, starting from the initial binding 
hypothesis. 

 
In summary, the ideal model must fulfill both 

mathematical requirements (i.e. it must be robust from a 
statistical point of view) and more pragmatic requirements 
(i.e. the outcomes should tell us something relevant about 
the underlying biological processes, and give us useful 
indications of how to tune them). 
 
3.2. 3D pharmacophore mapping 

Pharmacophore mapping involves the creation of 
a pharmacophore. Its most challenging aspect is molecular 
alignment (61). Indeed, the underlying common features 
can be captured easily following the superimposition of an 
acceptable number of molecules (all of which actively bind 
the same target). Subsequently, these common features can 
be used to screen large databases of potential binders. 
However, the inclusion of inactive molecules can provide 
valuable information by validating the formulated
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Figure 6. Graphic representation of pharmacophore-mapping and its application in drug discovery. From the analysis of the 
superimposed structures (A), some key features emerge (B). Eventually, a pharmacophore is derived (C). The orange ring 
represents an aromatic ring, the blue sphere a positively charged atom, while the red sphere with the two arrows represents a 
hydrogen bond acceptor. In D, the same molecules are mapped onto the pharmacophore. The active ones match all the extracted 
features (top middle, top right, and bottom right molecules), while the inactive ones do not. The pharmacophore can then be used 
to analyze databases in order to pinpoint the likely active molecules (E). The analysis depicted here was carried out with Phase 
(80) on the Acetylcholinesterase (AChE) dataset compiled by Sutherland and colleagues (76). The molecule on the top right is 
Donepezil, a well-known AChE inhibitor, approved for treatment of Alzheimer’s disease. 
 
hypotheses. There are a growing number of commercially 
available packages that allow researchers to develop 
pharmacophoric hypotheses (62, 63). The basic concepts 
behind them are similar. As with QSAR methodologies, the 
conformational space of fully flexible molecules must be 
sampled while trying to maximize the overlaps between 
the same features in different compounds. Eventually, 
active molecules will share features that are thought 
important for binding, while inactive molecules will not. 

 
Feature assignment is the first step in 

pharmacophore development. Along with traditional 
readily usable properties such as hydrogen bond donor 
and acceptor, it is usually possible to customize 
attributes, thus shaping the model according to particular 
needs. This can be particularly useful when dealing with 
a well-known target whose binding preferences have 
already been extensively studied. Alternatively, 
molecules can be characterized by their exerting fields 
(37). 
 

Once the minimum distance between features has 
been set, the second step involves the generation of a 
series of candidate alignments. Software packages 

usually have built-in conformational sampling engines, 
which run smoothly from input (2D or 3D models of the 
molecules) to final output (the pharmacophore). User-
generated inputs can also be provided. Aside from the 
technical aspects of their generation, overlays are ranked 
according to a score that considers various terms, such as 
feature-matching or volume overlap. But the calculated 
score is just an indication, since it does not consider the 
relative relevance of each term (which is likely to vary 
from case to case). Hence, the only way to assess the 
alignments’ ability to explain the difference between 
actives and non-actives is to validate them. This can be 
done internally (i.e. by visual inspection of the molecules 
used to derive them) or externally (i.e. by predicting the 
activity of new compounds with known activity that were 
omitted from the hypothesis generation). 

 
Thus obtained, the pharmacophore can 

eventually be used to screen 3D databases in order to 
identify putative hits and leads. 

 
Figure 6 provides a pictorial representation of 

pharmacophore-mapping and its application in screening 
databases. 
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Pharmacophore and 3D QSAR models are 
closely related. Both are based on binding hypotheses of 
related molecules to a target. For this reason, the two 
approaches can be integrated in a single workflow. Starting 
from a feature-based hypothesis capable of discriminating 
actives from inactives, this workflow can help develop a 
more refined mathematical model that attempts to relate the 
biological activity to certain 3D-calculated properties (63). 
 
4. ADVANTAGES AND DISADVANTAGES OF 
LIGAND-BASED APPROACHES 
 

Computational methods in drug design can be 
divided into two major classes: structure and ligand-based 
approaches. Structure-based approaches use knowledge of 
the 3D arrangement of the receptor of interest (either 
experimentally solved structures or comparative models). 
Usually, ligand-based approaches only consider molecules 
that reversibly bind using noncovalent interactions. Long 
before the first 3D receptor models became available, 
ligand-based methods were devised to make sense of 
biological assays. They continue to undergo improvement. 
However, after successfully gaining a wider following, 
their popularity greatly suffered from the appearance of 
more direct ways of simulating receptor ligand interactions 
(for example, molecular docking). Nowadays, the 
computational chemist who works in drug design must 
make a choice and decide which protocol best suits their 
needs. 

 
Biological interactions are very involved 

processes and any simulation approach will have both 
advantages and disadvantages. It might seem 
straightforward to use the knowledge of the receptor’s 
binding site when available. But certain considerations 
must be made. Experimentally obtained structures, such as 
those provided by X-ray determination, are single static 
impressions of molecular systems with thousands of 
degrees of freedom, brought, by the experimental 
conditions, towards one of the possible minima in the free 
energy landscape. For instance, the presence or absence of 
a ligand bound at the active site is likely to influence the 
receptor conformation, inducing severe structural 
rearrangements that can bias the output of subsequent 
structure-based procedures. Despite recent developments, 
incorporating protein flexibility into molecular docking 
calculations is still one of the major challenges of 
computational simulations (64-66). Ligand-based 
methodologies, in contrast, have an apparent advantage in 
not having to deal with the receptor. But this is 
counterbalanced by the fact that the negative image of the 
receptor, produced through the study of its ligands, is 
inevitably blurry and incomplete. The chemical 
characteristics of the dataset under investigation are what 
drive the learning process of the binding cleft. This 
automatically produces novel structural modification 
conjectures about the receptor’s preferences. In other 
words, as long as the chemical boundaries dictated by the 
known active molecules are not trespassed, predictions are 
safer. But in drug discovery, researchers are generally 
interested in novel molecules that lie outside the known 
ground. To partly overcome these limits, it can be useful to 

incorporate, into ligand-based efforts, the information 
arising from the knowledge of the binding site. For 
instance, pharmacophoric hypotheses can be directly 
inferred from experimentally determined structures, making 
it possible to account for the presence of 
exclusion/inclusion regions (67). 

 
When dealing with drug optimization protocols, 

one tries to maximize the interactions occurring between a 
macromolecule and a small ligand, usually in terms of 
noncovalent interactions. However, depending on the 
nature of the assays, several other factors can influence the 
final measurements. These can be related to the probability 
that the ligand will reach the binding cleft, and can involve 
chemical stability, off-targets, membrane permeability, and 
so on. In fact, one aspect of deriving virtual models, which 
link a measurable biological response to certain chemical 
properties, is that the underlining causes of the observables 
are considered contemporaneously. In other words, each 
descriptor or feature included in a final ligand-based model 
must explain not only the interactions at the site of action, 
but also any preceding biological processes. This is an 
unsolvable shortcoming in any methodology that attempts 
to correlate an experimental outcome to the result of a 
model that only mimics the interactions at the site of action. 
Monodimensional descriptors in classical QSAR, such as 
those developed by Hansch, are probably more suited to 
capturing the foundations behind complex biological 
assays. This is because no assumption about 3D binding 
modes is made. Surprisingly enough, however, a recent 
study has shown that the addition of monodimensional 
descriptors (i.e. CLOGP and CMR) to a CoMFA analysis 
does not improve the quality of the final model. However, 
this could simply be due to the type of experimental assays 
considered (i.e. where receptor-ligand interactions play a 
predominant role) (59). 
 

The structure-activity landscape is a high-
dimensional representation of the property as a function of 
the descriptors used. For years, following the assumption 
that similar molecules share similar activities, such 
landscapes were thought to be so smooth that activity 
changes within confined regions happened gently. More 
realistically, depending on factors such as the nature of the 
assay, the distribution of the compounds, and, most 
importantly, the nature of the molecular representations 
used, structure-activity landscapes should be considered as 
rugged hyper planes instead (Figure 7). 

 
Extreme care should be taken when dealing with 

molecules that do not fit the elaborated model, resulting in 
surprisingly poor predictions. This behavior could be 
caused by the presence of outliers (i.e. elements that appear 
to deviate markedly from other members of the sample in 
which they occur), or by true drastic changes in the activity 
landscape, called activity cliffs (39). The presence of 
activity cliffs can be revealed by additional experimental 
measurements in the area around the badly predicted 
molecules. Guha and Van Drie recently proposed an index 
to identify and quantify those behaviors (38, 60). Such 
phenomena are not entirely surprising since they lie at the 
core of the receptor-ligand recognition processes, where 
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Figure 7. Bidimensional representation of a hypothetical 
structure-activity landscape. The x and y axes define a 
given descriptors’ space where the molecules reside, while 
the z axis is the measured property. In A, the surface 
appears smooth. In B, the same surface is characterized by 
rough transitions and spikes. 

 
very small chemical modifications can turn an inactive 
molecule into an active one. Here, specificity is achieved 
through almost perfect complementarity between 
interplaying parts (68). 
 
5. CONCLUSIONS AND PERSPECTIVE 
 

Ligand-based approaches establish a relationship 
between the measured responses exerted by a series of 
molecules and a set of parameters determined from their 
structures. Their central assumption is that the numerical 
outcomes obtained under experimental conditions for a set 
of molecules depend solely on their chemical nature. 
Although 3D QSAR and pharmacophore methods have 
been around for some time, they are far from being perfect 
tools for medicinal chemistry. Each constituting step (i.e. 
structural alignment, data generation, data mining, model 
assessment, and predictions) helps determine the quality of 
the final outcome. Each step presents certain challenges. 
Novel protocols, tentatively free from these drawbacks, 
continue to be proposed. Due to the intrinsically modular 
nature of ligand-based methods, there is a general trend of 
combining expertise from different scientific branches to 
optimize each step.  
 

In summary, the ideal methodology should: 

 
• Be free from a user-dependent alignment; 
• Use as few relevant descriptors and features as 

possible; 
• Employ rapid and reliable data-mining methods 

to identify the significant properties; 
• Return a mechanistic interpretation, where 

possible; 
• Have high predictive capabilities. 

 
One way to circumvent the molecular alignment 

is to provide all the possible conformations adopted under 
physiological conditions by the dataset molecules and then 
let the model select the relevant ones. Hence all the 
molecular degrees of freedom should be thoroughly 
sampled and a sensible number of minima in the free 
energy landscape should be retained for post-processing. 
To this end, because of their propensity to generate 
thermodynamics ensembles in a reasonable time, stochastic 
simulation such as Monte Carlo-like schemes have been 
extensively used. Alternatively, researchers could use 
molecular dynamics simulations conducted in explicit 
solvents, which more closely depict the true molecular 
behavior. However, even for small molecules, there is little 
possibility that all the relevant conformations can be 
explored in detail in a feasible CPU time. This is because of 
the system’s propensity to remain trapped in local minima. 
Scientists have shown that this limitation can be 
conveniently overcome, boosting the dynamics by means of 
enhanced sampling methods. To date, however, practical 
applications seem confined to the study of very small sets 
of molecules of biological interest (69-71). 

 
Usually, the establishment of noncovalent 

interactions with a ligand is what triggers a receptor’s 
temporary activation/inhibition, leading to a 
pharmacological effect. Since electrons in the outer shells 
are responsible for the molecular reactivity profiles, QM 
calculations appear to be more adequate, with respect to 
force-field-based potentials, in providing an accurate 
description of the forces occurring during biological 
processes. However, such treatments are time-demanding, 
even for small molecular systems with a reduced number of 
atoms. This helps explains why the use of QM-based 
descriptors in 3D QSARs literature is hard to find (72, 73). 
In addition, such calculations should ideally be carried out 
for each and every conformer generated during the earlier 
step, exponentially increasing the computational burden. 
However, the development of more efficient algorithms and 
increasingly fast processors indicates promising future 
possibilities. 

 
Part of the success of 3D QSARs is due to the 

use of algorithms such as PLS, which can separate the 
useful information in a given molecular description from 
the background noise, and then relate it to a dependent 
variable. However, when several conformers are provided 
for each studied molecule, more complex approaches are 
needed to analyze the increased number of data points. A 
promising approach is the use of advanced supervised 
machine-learning methods, such as support vector 
machines (SVMs), which are extensively used for pattern 
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recognition and classification purposes involving a great 
number of variables (74). 
 

One way to assess the strengths of a newly 
developed protocol is to use publicly available benchmarks. 
The steroid dataset used for the CoMFA validation (16) as 
well as the Selwood dataset (75) have been used for years; 
however they are currently too small or too confined to 
particular chemical classes to offer general applicability. In 
order to compare a number of QSAR methodologies, 
Sutherland and coworkers compiled eight datasets and 
made them freely accessible to the scientific community. 
These datasets ranged from 66 to 397 compounds, 
inhibitors of diverse proteins belonging to several EC 
classes (76). But Manchester and Czermiński showed that, 
apparently, no real benchmark can distinguish the merits of 
3D QSAR methods. This is mostly because too few 
observations are used to describe the response. They 
advocate the use of simulated data instead (77). 

 
Sadly, as Leach and colleagues have pointed out, 

validation standards for pharmacophore mappings are 
inadequate (61). Moreover, little effort has been made to 
develop novel features or more accurate ways of dealing 
with pharmacophore plasticity, which is a direct 
consequence of target flexibility. 

 
Quantitative structure-properties relationships 

have been successfully used for several years in a vast 
number of fields. Despite the advent of more readily 
interpretable structure-based approaches, they still play a 
major role in drug discovery. Regrettably, as Dearden and 
colleagues have noted, analyses are still sometimes carried 
out in a non-satisfactory manner (78). This is mostly 
because the practitioner has excessive freedom when using 
only measured responses for a series of molecules sketched 
on paper. Moreover, QSAR is not free from intrinsic 
weakness and limitations (79). Future improvements will 
likely focus on limiting human involvement as much as 
possible, while safeguarding chemical interpretability. 
Although the use of powerful tools (such as the ones 
mentioned above) could significantly improve the quality 
of each phase, there may be concerns about the creation of 
solid self-consistent models that lack chemical 
transferability. Having being used for over three decades, 
pharmacophore-based approaches are simple and adaptable. 
Although technically classified as a ligand-based approach, 
pharmacophore mapping can be conveniently tuned using 
the knowledge of the binders’ molecular counterpart, 
constituting an ideal bridge between the ever-competing 
ligand- and structure-based followers. Notably 3D 
pharmacophores can also be used to pre-filter large datasets 
before virtual screening efforts in a docking framework, 
lightening the computational load. Despite some inevitable 
technical limitations, pharmacophore-based protocols are 
nowadays successfully applied to a number of different 
purposes spanning from database pre-filtering to hit 
enrichment. Given their robust nature, they are likely to 
play a pivotal role in the future.  

 
No computational technique can be easily used 

as a black box for medicinal chemistry. They all reward 

users who have in-depth knowledge of the biological 
problem they are trying to solve. Finding quantitative 
relationships between chemical structures and properties 
should be seen as a round trip journey. During the 
outbound ride, molecules are transformed into numerical 
descriptors. At the destination, the variables correlated with 
the experimental observable are identified. The return 
journey should produce a mechanistic interpretation useful 
for designing molecules with improved features or 
detecting putative actives within a crowd. 
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