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1. ABSTRACT 
 

Chronic kidney disease has been increasingly 
recognized as a risk factor for incident heart failure. 
Despite advances in chronic heart failure treatment, the 
prognosis remains poor. The annual mortality from all 
cardiovascular causes in the end stage renal disease 
population is significantly higher than the general 
population, accounting for more than half of all deaths in 
this group. The mechanisms underlying the enhanced 
susceptibility to myocardial ischemia in chronic kidney 
disease are not well defined. Traditional cardiovascular risk 
factors, although common in chronic kidney disease, do not 
exert the same impact as in the general population. The 
presence of “renal-specific” non-traditional risk factors 
including endothelial dysfunction, inflammation, oxidative 
stress, anaemia, proteinuria and changes in vitamin D 
metabolism (encompassing the compex interactions of 
calcium and phosphate metabolism, hyperparathyroidism 
and vascular calcification) play an important role in 
cardiovascular disease progression. An increased 
understanding of the array of metabolic 
changes/adaptations occurring in uraemic heart disease 
have allowed one to consider optimal management 
strategies and to develop new strategies for future 
management of uraemic heart disease.  

 
 
 
 
2. INTRODUCTION 
 

In recent years the extent and significance of 
chronic kidney disease (CKD) has been increasingly 
recognized as a risk factor for incident heart failure (1). In 
the United States almost 13% of the population have 
evidence of renal damage (estimated glomerular filtration 
rate (eGFR) less than 60mls/min and/or proteinuria) (2), 
while in the United Kingdom at least 7% of the adult 
population have an eGFR of less than 60mls/min (3) and 
over forty thousand patients are receiving treatment for end 
stage renal disease (ESRD), a figure which continues to 
increase at 5% per annum (4). 

 
Despite advances in the treatment of chronic heart 

failure (CHF), the prognosis remains poor (5). The 
prevalence of kidney dysfunction in the context of cardiac 
failure is about 25% (6, 7), while the prevalence of heart 
failure (related to cardiac disease rather than fluid overload) 
is around 31-40% in patients with ESRD (8-10). The 
syndrome of heart failure starts from impairment of cardiac 
function, a reduction in ejection fraction with subsequent 
inadequate tissue perfusion and arterial under-filling. This 
leads to compensatory mechanisms resulting in salt and 
water retention and subsequent increased venous pressure 
and capillary leak leading to oedema. This vicious cycle
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Table 1. Summary of classical, renal specific and other risk factors in uraemia for cardiovascular disease and heart failure (45, 203) 
Cardiac Risk Factors In Uraemia 

   
Classical Renal Specific Others 

Diabetes Volume overload Hyperhomocysteinaemia 
Male sex Arteriovenous fistula Sympathetic hyperactivity 
Family history Hyperparathyroidism Oxidative stress/endothelial dysfunction 
Smoking Metabolic acidosis Chronic inflammation 
Age Uraemic toxins-middle molecules Hypoalbuminaemia-malnutrition 
Hypertension Anaemia – erythropoietin stimulating agents Insulin resistance 

Left ventricular hypertrophy Functional iron deficiency signalling pathways Akt/PIP3 
GLUT 4 

Obesity Carnitine deficiency Arterial stiffness 
Hypercholesterolaemia Reduced adiponectin  Vascular calcification 
 Hyperphosphataemia  
 Vitamin D deficiency  

 
results in the neurohormonal imbalance between vaso-
dilatory factors (salt and water excretion) and vaso-
constrictory factors causing salt and water retention. Even 
modest decreases in eGFR are associated with increased 
risk of death in patients with cardiac dysfunction, 
suggesting that renal dysfunction (RD) is an important 
additional co-morbid risk factor (11, 12). Impaired renal 
function is a recognized marker of severity of vascular 
disease (13), and patients with chronic renal insufficiency 
carry one of the greatest burdens of cardiovascular disease, 
which frequently leads to death before dialysis requirement 
is reached (14, 15). Indeed the annual mortality from all 
cardiovascular causes in the ESRD population is 
significantly higher than the general population at all ages 
(16), accounting for more than half of all deaths in this 
group (5, 7, 10). 

 
 Ischaemic heart disease (IHD) is highly prevalent 

in the uraemic population, and mortality following 
myocardial infarction increases with the degree of renal 
dysfunction (7, 17). However the mechanisms underlying 
the enhanced susceptibility to myocardial ischemia and 
subsequent morbidity and mortality in CKD are not well 
defined. High mortality rates were considered a result of 
accelerated coronary artery disease (18), but the incidence 
of symptomatic IHD far outweighs the incidence of 
angiographic coronary stenosis (19). Death from ‘classical’ 
myocardial infarction is not more common in uraemic 
patients (20) and autopsy studies have shown that classical 
coronary atherosclerosis is similar in renal failure patients 
in comparison to the age matched general population (20, 
21). Interestingly uraemic vessels display medial 
thickening and calcification that leads to an increase in 
arterial stiffness and decreased compliance (22, 23). Hence 
the ‘traditional’ risk factors for cardiovascular disease, 
although still common in CKD, do not exert the same 
impact as in the general population. Reduced eGFR may 
therefore create a metabolic milieu conducive to promoting 
IHD and CHF. The presence of “renal-specific” non-
traditional risk factors (Table 1) such as the effects of 
uraemia itself, renal anaemia, iron deficiency, carnitine 
deficiency, endothelial dysfunction and oxidative stressmay 
all play a role in cardiovascular disease progression. 
Emerging evidence also suggests that the complex 
interactions of disorders of renal bone disease seen in CKD

 
(encompassing links between disturbances in vitamin D 
metabolism, hyperparathyroidism and in particular mineral 
disarrays such as the increases in serum phosphate) in 
conjunction with vascular calcification and arterial stiffness 
may represent important additional non-traditional risk 
factors in cardiovascular disease. However perhaps 
endothelial dysfunction plays a central role in the entire 
process of cardiovascular risk (10, 24). 

 
In this article we review the array of potential 

factors involved in the cardio-renal interactions leading to 
an increased risk of heart failure, particularly focusing on 
current information on the effects of renal impairment and 
non-traditional risk factors on cardiac function. The renal 
insufficiency that occurs secondary to heart failure has been 
recently comprehensively reviewed and will only be 
mentioned briefly (24, 25). This review will also focus on 
aspects of biochemical and metabolic changes occurring in 
uraemic heart disease. A better understanding of the 
pathophysiology between the heart and the kidney is essential 
to formulate optimal management strategies and develop new 
strategies for future management of uraemic heart disease.  
 
3. PATHOPHYSIOLOGY OF CARDIAC FAILURE 
 

Anatomically and functionally, the kidneys have 
evolved to conserve extracellular fluid volume through 
retention of salt and water. The kidneys are ultimately 
responsible for the oedema seen in heart failure (26), and 
patients with heart failure tend to accumulate fluid before 
they develop overt oedema, due to the inability of the 
kidneys to excrete salt in a normal fashion (27). There is a 
continuous relationship between the level of kidney 
function and mortality rather than a threshold value below 
which reduced kidney function is a risk factor (28). Ronco 
et al have recently proposed a classification of cardio-
renal/reno-cardiac disease (29). This classification has 
some merits but only type IV (chronic reno-cardiac disease 
- chronic kidney disease leading to the progression of 
chronic cardiac disease) is representative of the population 
described here and therefore the classification is perhaps of 
little clinical value (29). 

 
Several homeostatic systems operate in the early 

stages of uraemic cardiac disease. The renin angiotensin
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Table 2. Summary of the pathophysiological, biochemical 
and cellular actions and effects of aldosterone and 
angiotensin II in heart failure. (28, 29-39) 

Aldosterone Angiotensin II 
 

Vascular remodelling Vascular remodelling 
Nephrosclerosis Smooth muscle cell growth 
Cardiac hypertrophy Left ventricular cell hypertrophy 
Inflammation and fibrosis Interstitial fibrosis 
Endothelial dysfunction  
Sodium and water retention Vasopression secretion 
Arrythmogenesis Stimulation of thirst 
Electrolyte disturbances  
Baroreceptor dysfunction Vasoconstriction 
Autonomic dysfunction Sympathetic nervous system activation 

 

 
 
Figure 1. Summary of the pathways involved in 
myocardial substrate metabolism. Glucose enters cells via 
the GLUT1 and GLUT4 insulin-dependent glucose 
transporters to form pyruvate (glyocolysis) and ATP. Fatty 
acids enter cells via the FAT/CD36 transporters and are 
activated to acyl-CoA. Both pyruvate and fatty acids enter 
the mitochondria and undergo oxidation to produce aceyl 
CoA for use in the Krebs cycle (TCA cycle) and 
nicotinamide adenine dinucleotide (NADH) and flavin 
adenine dinucleotide (FADH2) for subsequent ATP 
production via the electron transport chain. 
 
aldosterone system (RAAS) plays a central role. Renin 
Angiotensin Aldosterone System activity progressively 
increases with disease activity in CHF (28, 30), with 
angiotensin II causing vasoconstriction (31). The 
magnitude and duration of reflex renal vasoconstriction are 
both exaggerated in CHF patients (32). Angiotensin II also 
promotes vascular remodeling, smooth muscle cell growth, 
interstitial fibrosis, sympathetic nervous system activation, 
vasopressin secretion and stimulation of thirst (33), while 
subsequent aldosterone secretion (34) also causes vascular 
remodelling, cardiac hypertrophy, endothelial cell 
dysfunction, baroreceptor dysfunction, sodium and water 
retention, electrolyte disturbances, autonomic dysfunction, 
arrythmogenesis and nephrosclerosis (35). Aldosterone is 
also involved in inflammatory and reparative processes, 
stimulating cytokine production, inflammatory-cell 
adhesion, chemotaxis, macrophage activation, fibroblast 
proliferation and synthesis of type I and II fibrillar 
collagens resulting in scar tissue formation and fibrosis (36-

39) (Table 2). These changes are sensed by baroreceptors 
which modulate sympathetic neural outflow and 
vascular resistance to maintain homeostasis (40). A host 
of complex and interdependent neuro-hormonal 
pathways are thus activated to achieve haemodynamic 
stability within the circulatory system. Autonomic 
dysfunction is made worse by uraemic toxins and 
amplification of the sympathetic activity by concurrent 
activation of the RAAS (41). This results in increased 
myocardial contractility, tachycardia, increased cardiac 
after-load due to vasoconstriction, increased cardiac pre-
load due to venoconstriction, myoctye hypertrophy, 
increased risk of cardiac arrhythmias, sodium and water 
retention and accelerated progression of renal disease 
(42-44).  

 
Normally cardiac tissue metabolizes free fatty 

acids (FFA) as its main energy source but this fatty acid 
oxidation (FAO) process requires more oxygen per 
adenosine tri-phosphate (ATP) produced in comparison 
to carbohydrate metabolism (45). In mild to moderate 
heart failure (HF) the myocardium still utilizes a 
significant amount of FFA as a substrate (46) in contrast 
to severe HF. At a cellular level there is a switch in 
energy provision from fatty acid oxidation to glucose 
metabolism, which increases plasma free fatty acids and 
increases oxygen wastage (Figure 1). This increase in 
plasma FFA is further exacerbated by nor-epinephrine, 
which further increases oxygen wastage by reduced 
glucose import into myocytes (47). Therefore one might 
anticipate an increase in FFA metabolism in heart 
failure but this is not always the case and the precise 
processes operating here remain unclear (46). However this 
increase in plasma FFA, in conjunction with the RAAS 
and catecholamines leads to activity of the sympathetic 
nervous system leading to myocardial insulin resistance 
(IR) (48). This insulin resistance may be a key step in 
the process of progressive cardiac dysfunction, from 
reduced glucose uptake by the heart in preference to 
FFA (49), but this remains a contentious theory (50). 
Experimental human and animal studies demonstrate 
evidence of energy starvation in heart failure reflected 
in a reduced phosphocreatinine:ATP ratio (51, 52), 
reduced contractility of individual myocytes (53), and 
altered calcium handling (54). Excess fatty acids may 
also be associated with uncoupled mitochondrial 
respiration (55). This is compounded by uraemia which 
accelerates the process and degree of insulin resistance. 
It also activates transcription factors such as peroxisome 
proliferators receptor-alpha (PPAR-alpha) (56), which 
in conjunction with reactive oxygen species (ROS) and 
lipid peroxidation products lead to an increase in 
uncoupling protein expression (55, 57). Finally with 
advancing uraemic heart failure PPAR-alpha is down 
regulated in addition to transcription factors that 
regulate mitochondrial biogenesis (PPAR-gamma co 
activator-1-alpha (PGC-1-alpha) (58, 59). This later 
transcription factor perhaps has a central role in altering 
the heart’s response to metabolic stress and a target for 
future therapy. The dynamics of this interaction maybe 
more complex due to the ubiquitous nature of these 
factors in many tissues. 
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Table 3. Summary of the structural, metabolic and cellular 
changes occurring in the uraemia heart 

Structural 
 

Metabolic Cellular 

remodelling of the 
heart – eccentric 
and concentric left 
ventricular 
hypertrophy  

abnormal cardiac 
energetics with a switch 
to glucose metabolism 
 

reduction of 
insulin mediated 
glucose uptake 
 

reduced capillary 
density with 
alterations in 
myocyte number 
 

energy starvation Changes in 
GSK-3-
beta/AKt/PIP3K 
signalling 

myocardial fibrosis Reduced 
phosphocreatine/ATP 
ratio 

calcium cycling  
with abnormal 
control of 
intracellular 
calcium handling 
in cardiomyocyte 
 

coronary 
microvascular & 
macrovascular 
disease 

reduced stability of 
energy rich nucleotides 
 

altered activity 
of GLUT 4 

 
 
Table 4. Summary of the main middle molecules currently 
identified as being present in uraemia with biological 
potential 

Adrenomedullin 
AGE 
Angiogenin 
Advanced oxidation protein products (AOPP)   
Atrial natriuretic peptide 
Cholecystokin 
Clara cell protein 
Complement factor D 
Cystatin C 
Cytokines 
Delta sleep inducing protein 
Endothelin 
beta-Endorphin  
Fibroblast Growth Factor-23 (FGF-23) 
Ghrelin 
Glomerulopressin 
GIP I 
GIP II 
Homocysteine 
Methionine-enkephalin 
Beta-2-Microglobulin  
Neuropeptide Y  
Orexin A 
Oxalic acid 
Oxidised LDL 
IG Light Chains 
Retinol binding protein 

 
4. WHAT FACTORS ARE IMPLICATED IN 
URAEMIC CARDIAC DISEASE? 
 

The uraemic heart has a specific phenotype due to 
a series of complex changes at structural, metabolic and 
cellular levels (Table 3) leading to functional effects on 
myoctye contractile function, reduced cardiac output and 
cardiac failure. Several mechanisms operate in uraemia to 
exacerbate these changes. Uraemia leads to the production 
of a large number of “toxins” or middle molecules with 
biological potential (Table 4). Many constituents of this 
abnormal milieu may lead to the adverse cardiac profile 
through a number of vaso-active, pro-inflammatory and 
pro-fibrotic pathways detailed below.  

4.1. Oxidative stress 
Increased oxidative stress, an imbalance between 

ROS production and degradation (i.e. an uncoupling of 
nitric oxide production), is seen in the early stages of renal 
disease and forms part of the mechanism responsible for 
endothelial damage (60, 61). It is a risk factor for 
developing CHF through impairment of the cardiac 
microcirculation (endothelial dysfunction). ROS are 
produced during mitochondrial related energy production 
(62). Excessive production causes cellular and tissue 
damage by interacting with bio-molecules such as lipids 
and proteins leading to alterations in structure and function. 
These then favour atherosclerotic processes culminating in 
direct cytotoxicity of both renal and cardiac cells (63, 64). 
Uraemic toxins lead to an increase in circulating 
asymmetric dimethylarginine ((ADMA) - an endogenous 
inhibitor of nitric oxide synthase (NOS)) thus reducing the 
bioavalability of nitric oxide (NO) (65). Many factors (L-
NAMA, calcium, and oxygen and gene activation) 
influence the activity of NOS, a key component of ROS 
function, in particular AMDA accumulation in CKD which 
leads to endothelial injury (66, 67) (Figure 2). Within the 
kidney, NO antagonises angiotensin II at the glomerular 
and proximal renal tubule level (68, 69) and inhibits 
smooth muscle (70) and mesangial cell growth (71). 
Mechanisms include a blunting of the NOS activity in heart 
failure (72) and an impairment of NO release to various 
stimuli such as exercise in CHF (73). Patients with renal 
dysfunction exhibit abnormal arterial endothelial function 
(74). In uraemia an analogue of L-arginine accumulates and 
inhibits NO production (75) with its subsequent detrimental 
role of further promoting hypertension and vasoconstriction 
with increases in afterload, hypertension and renal 
dysfunction (76). CKD appears to be a primary cause of 
endothelial dysfunction. Factors such as hyperglycaemia 
lead to an overproduction of superoxide by the 
mitochondrial electron transport chain increasing 
expression of Nicotinamide adenine dinucleotide phosphate 
(NADPH) and inducible NOS activation of nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-kappa-
B) (77). Interestingly blockade of the renin-angiotensin 
system with an angiotensin converting enzyme inhibitor 
(ACEi) and use of calcium channel blockers both leads to a 
reduction in markers of oxidative stress and circulating 
dimethylarginine (67). 
 
4.2. Inflammation 

CKD also creates a persistent low grade 
inflammatory state, with activation of cytokines such as C-
reactive protein (CRP), interleukin 6 (IL-6), pentraxin-3, 
tumor necrosis factor alpha (TNF-alpha), adhesion 
molecules and fibringogen, (78-80). These changes reflect 
both reduced renal clearance and increased production, and 
are independent predictors of cardiovascular outcome in 
CKD patients (81-83). This state of chronic inflammation 
induced by the persistent uraemic milieu may modulate 
existing cardiovascular risk factors via triggering 
endothelial dysfunction and exacerbating the 
atherosclerotic process. The end result is both cardiac and 
renal injury from destruction of cells and tissues. Both 
oxidative stress and inflammation processes overlap to 
cause clinical changes including vascular calcification (84). 
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Figure 2. Summary of the potential interactions of insulin resistance and oxidative stress in cardiac disease (63-70). ADMA= 
asymmetric dimethylarginine 

 
The inflammatory state also leads to other effects 

such as decreased iron absorption, increased hepcidin and 
erythropoietin resistance which contribute to the anaemia 
seen in uraemia (85). 
 
4.3. Vitamin D deficiency and calcium phosphate 
metabolism 

Chronic kidney disease is associated with 
abnormal calcium-phosphate metabolism, which leads to 
accelerated medial calcification of coronary blood vessels 
and cardiac valves (86, 87). The increased arterial stiffness 
that occurs in CKD with decreased elasticity contributes to 
cardiac afterload and left ventricular hypertrophy (LVH) 
and stiffness and diastolic dysfunction (88-90). Elevated 
serum calcium and phosphate levels are risk factors for 
CHF in dialysis patients (91). There is also a direct link 

between hyperphosphataemia and mortality in patients with 
chronic renal failure (91). Several studies have recognized 
other factors that contribute to vascular calcification 
including diabetes, inflammation and time on dialysis (92, 
93). The mechanism leading to myocardial dysfunction in 
hyperparathyroidism is purported to be uncoupling 
oxidative phosphorylation, reducing cellular ATP 
concentrations and impairing calcium extrusion leading to 
calcium overload in cardiomyocytes, initiated by activation 
of parathyroid hormone (PTH) receptors on myocytes (94). 

  
Vitamin D deficiency (reduced circulating 1, 25 

(OH)2 vitamin D3 (active Vitamin D) due to reduced 1-
hydroxylase activity in the kidney as renal function 
declines), which is common in CKD, also appears 
important in relation to possible left ventricular remodeling 
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and vascular calcification (95). A degree of nutritional 
Vitamin D deficiency also occurs in CKD ((25 (OH) 
vitamin D) and may also be involved in the process of 
accelerated cardiac risk. Vitamin D3 plays a role in the 
maintenance of cardiac cell contraction, proliferation, 
hypertrophy and protein and collagen expression, and also 
affects vascular tone. This is in part explained by the 
calcium uptake by cardiac myocytes being regulated by 
vitamin D3 (96). Thus a deficiency may lead to LVH via 
impairment of contractile function, increasing collagen 
deposition and effects on the RAAS (97). Furthermore the 
activation of PTH leads to vascular smooth muscle cell 
(endothelial cell) calcification and LVH from increased 
calcium phosphate product (98).  

 
Fibroblast growth factor-23 (FGF-23) inhibits 1-

hydroxylation, potentially aggravating vitamin D 
deficiency and leading to hyperparathyroidism and serving 
as a risk factor or biomarker for cardiac disease. This novel 
protein closely interacts with the transmembrane protein 
klotho and both may serve as useful biomarkers associated 
with cardiovascular disease. Mirza et al  have shown that 
FGF-23, which increases with CKD progression, is   
associated with LVH and a marker and/or potentially an 
aetiological cofactor involved in the progression of cardiac 
disease (99). Recent studies using vitamin D analogues 
demonstrate improved survival on haemodialysis (100-
103). They have also shiwn areduction in cytokine 
production (TNF-alpha, increased IL-10) and left 
ventricular mass in heart failure patients (104). Finally 
early data suggests that vitamin D therapy may reduce 
insulin resistance (105).  
 
4.4. Carnitine deficiency 

Carnitine, a key metabolite in cellular metabolism 
is significantly depleted from the myocardium during 
ischemia (106). Carnitine plays a pivotal role in myocardial 
energy metabolism, as the transporter of long chain fatty 
acyl intermediates across the inner mitochondrial 
membrane for beta oxidation (107) and as a key regulator 
of carbohydrate metabolism by modulation of the intra-
mitochondrial acetyl-CoA/CoA ratio (108). Secondary 
carnitine deficiency is a frequent observation in uraemic 
patients, particularly in maintenance haemodialysis therapy 
(109). Thus the presence of carnitine deficiency in uraemia 
may further aggravate the deleterious myocardial metabolic 
remodeling during ischemia, and exacerbate contractile 
dysfunction. Experimental and clinical studies have 
reported beneficial effects of carnitine treatment in the 
setting of non-uraemic myocardial ischemia and 
reperfusion including, modulation of myocardial 
metabolism (45, 110), reduction in necrotic cell death and 
infarct size (111), decrease in the incidence of arrhythmias 
(112) and preservation of mechanical function (113). 
Clinically carnitine replacement appears to improve 
exercise performance, muscle weakness, fatigue and 
cramps in addition to benefits on cardiac function (114). 
More recent studies suggest carnitine supplementation may 
limit development of myocardial hypertrophy and myoctye 
injury during ischemia in uraemic animals. There is a 
reduction in infarct size in reperfused isolated rat hearts 
treated with acute L-carnitine and a decreased release of 

myocardial creatinine kinase in patients with acute 
myocardial infarction (111, 113)  

4.5. Anaemia and iron deficiency 
The prevalence of anaemia in patients with CHF 

and CKD is high, with only 29% of patients having a 
haemoglobin level above 11g/dL (115, 116). The main 
causes are erythropoietin deficiency, functional iron 
deficiency and the anaemia of chronic disease (117, 118).  

 
Anaemia is a risk factor for LVH, heart failure 

and all-cause mortality in the ESRD population (119). 
Chronic anaemia results in insufficient oxygen delivery to 
tissues and increased cardiac work with subsequent 
ventricular remodeling and cardiac dysfunction (120). This 
results in increased sympathetic activity leading to further 
oxygen requirements and potential ischemia. Correction of 
anaemia with recombinant erythropoietin in patients with 
renal dysfunction has beneficial effects, including the 
regression of LVH, and reduction in hospitalizations (121, 
122). In patients with CHF, correction of anaemia increases 
the ejection fraction, improves prognosis and can reduce 
hospitalizations but also led to exacerbations of CHF (123).  

 
At a cellular level in uraemia erythropoietin 

abrogates the increased oxygen consumption and reduced 
cardiac efficiency seen in erythropoietin naive uraemic rats. 
There is a reduction in palmitate oxidative metabolism in 
favour of increased glucose utilization (re-expression of the 
fetal phenotype) and alterations in myoctye contraction and 
relaxation. Recombinant erythropoietin may reduce 
myoctye apoptosis and hence cardiac fibrosis via 
phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) 
and janus kinase-2/signal transducer and activator of 
transcription-5 (JAK2/STAT5) pathways by downstream 
effects on glycogen synthase kinase-3-beta (GSK-3-beta) 
acting to block mitochondrial permeability pore opening. It 
may also be cardio-protective from acting via protein 
kinase-C (PKC) to increase the opening of mitochondrial 
KATP channels (124-125). Erythropoietin has also been 
shown to modulate NO via up-regulation of endothelial 
nitric oxide synthase (eNOS). This up-regulation occurs via 
activation of the PI3K-Akt pathway (126-129). The result 
is a reduction in oxidative stress and cellular damage (130, 
131) (Figure 3). 
 

Recent studies reassessing erythropoietin 
derivatives and iron in anaemic patients with heart failure 
demonstrate varied results (132). Partial correction of 
anaemia among dialysis patients has been shown to reduce 
left ventricular mass, but the effects of increasing 
haemoglobin on cardiovascular events in pre-dialysis 
patients are somewhat controversial as to the level of 
anaemia correction to provide benefit rather than detriment 
(133-136) This may relate to correction in platelet 
dysfunction and increased blood viscosity. The importance 
of iron deficiency in the genesis of uraemic 
cardiomyopathy remains unclear. The limited ATP 
production in iron deficient mitochondria can contribute 
per se to cardiac hypertrophy due to changing balance 
between ATP supply and demand. Furthermore, studies on 
mitochondria of cardiac as well as skeletal muscle have 
demonstrated substantial alterations in the process of 
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Figure 3. Schematic representation of the potential signalling pathway of Erythropoietin (EPO) mediated through its specific 
cellular receptor - EPO receptors. Once bound, EPO causes phosphorylation and subsequent activation of the receptor-associated 
Janus Kinase2 (JAk2) and activation of signalling cascades of proteins including STAT 5 (signal transducer and activator of 
transcription 5). This leads to transcriptional activation of NF-kappa-B-dependent mitogenic and anti-apoptotic Activation of the 
erythropoietin receptor also stimulates the phosphatidylinositol 3-kinase (PI3K) pathway which has down stream effects on pro-
survival pathways including Akt, protein kinase C (PKC), glycogen synthase kinase 3-beta (GSK-3b) and nitric oxide (NO) with 
eventual effects on the mitochondrial pore opening (mPTP) and apoptosis. mKATP = mitochondrial ATP sensitive potassium 
channel. ROS= reactive oxygen species (124-13).  

 
oxidative phosphorylation in iron deficient rats (137, 138). 
A further important factor in CKD and iron deficiency and 
cardiac disease is the increased inflammation which is 
present. This leads to increased hepcidin thus affecting the 
utilization of iron by cells such as the mitochondria (85, 
139-141).  
 
4.6 Proteinuria and albuminuria 

An initial insult to the kidneys results in a loss of 
nephrons leading to changes in renal haemodynamics 
(142). Adaptive changes in the form of glomerular 
hypertension increase the filtration capacity of the 
remaining nephrons, which ultimately becomes detrimental 
(143). Increased glomerular capillary pressure (142, 143) 
enlarges the radius of the pores in the glomerular 

membrane leading to increased protein content within the 
glomerular filtrate, which in turn increases the endocytosis 
of protein by tubular epithelial cells resulting in a 
nephritogenic effect. Microalbuminuria in the absence of 
clinical proteinuria is caused by endothelial dysfunction. 
(144, 145), decreased glomerular charge selectivity, size 
selectivity and increased intraglomerular pressures (146). 
Prevalence of microalbuminuria is a predictor of 
cardiovascular risk and CHF (147, 148). Abnormal 
accumulation of proteins activates genes encoding vaso-
active and inflammatory substances such as endothelin, 
chemokines and cytokines, resulting in fibrogenesis and 
renal scarring (149). Mesangial cells have properties 
similar to vascular smooth muscle cells (VSMC) and 
therefore factors affecting vascular smooth muscle cells 
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will therefore have a bearing on the function of these 
mesangial cells. Pathological mechanisms in the kidney, 
partly mediated by angiotensin II , include effects on the 
contractile properties of the mesangial cells, which in turn 
dictate glomerular size and filtration area, raises glomerular 
capillary hydraulic pressures and the plasma concentrations 
of macromolecules within the glomerular capillary tuft, and 
has independent effects on sieving function by modifying 
the F-actin fibre assembly of the podocytes and 
modulating the matrix network and collagen content of 
the glomerular basement membrane (143, 150, 151). 

 
The reasons for the poor cardiac outcomes in 

the presence of proteinuria are multi-factorial. Low 
serum albumin causes structural and functional 
abnormalities in the myocardial contractile proteins, 
actinomyosin and its precursor proteins and is 
accompanied by an increase in capillary permeability and 
an attenuated endothelium-dependent response to 
vasodilator stimuli ( 152) and local microvascular structural 
and functional changes resulting in an increase in 
peripheral vascular resistance and subsequent increase in 
cardiac afterload. Albuminuria is also associated with other 
well-established risk factors for the development of CHF 
such as hyperglycaemia, hypertension, smoking, and 
dyslipidaemia (153-155). In primary hypertension, it is also 
associated with factors that increase cardiovascular risk, 
such as endothelial dysfunction, insulin resistance, 
hyperlipidemia, and a high body mass index (156). 
Microalbuminuria is also associated with abnormal left 
ventricular geometry, lower left ventricular contractility 
and abnormal diastolic flow patterns independent of 
systolic blood pressure, age and diabetes mellitus 
suggesting parallel cardiac and microvascular damage 
possibly due to the role of angiotensin II as a growth factor 
involved in LVH and renal vascular changes (148, 151). 
There is growing evidence that reduction and normalisation 
of proteinuria is a key treatment goal for renal protection 
and possibly cardio-protection (157-159). 
 
4.7. Homocysteine and Hyperuricaemia 

Small reductions in GFR are associated with an 
increase in total plasma homocysteine due to impaired 
extra-renal metabolism (160). Indeed more than 90% of 
patients with advanced CKD have hyperhomocysteinaemia. 
Prospective observational studies show a greater risk of 
coronary artery disease in the presence of elevated 
homocysteine levels (161) and it is an independent risk 
factor for the development of cardiovascular disease (162). 
Mechanisms include inducing dysfunction of the vascular 
endothelium, (163) increasing proliferation of VSMC (164) 
and increasing oxidative stress (165). Interestingly data 
from the “HOST” multi-centre double blind clinical trial in 
patients with renal disease with high homocysteine levels 
with intervention with folate, pyridoxine and 
cyanocobalamin versus placebo have not demonstrated any 
clinical benefit despite a mean reduction in homocysteine 
of 6.2 micromol/L (166). A more recent randomized study 
verified this finding in haemodialysis patients (167). This 
may be due to the lack of normalization of homocysteine 
levels with treatment despite the significant reduction or the 
multiple other risk factors present having a greater effect. 

Hyperuricaemia, which is often present in renal 
dysfunction, correlates with the existence of 
nephrosclerosis (168). Higher levels appear predict 
increased mortality in patients with chronic heart failure, 
but the mechanism is unclear (169).  
 
4.8. Lipids 

There is a wide spectrum of changes in 
lipoproteins in uraemia which tend to be qualitative rather 
than quantitative and vary depending on the severity of 
renal disease. Adverse effects on lipid profiles in renal 
impairment include reduced high density lipoprotein (HDL) 
levels, probably due to decreased levels of apo A-1, and 
apolipoprotein which is a necessary constituent of HDL 
(170) and an increase in low density lipoprotein (LDL) 
cholesterol (171). Prolonged lower levels of HDL are 
associated with a 20% higher risk of coronary artery 
disease (172). Apolipoprotein B is increased; there is 
hypertriglyceridaemia and elevated levels of oxidised LDL 
activity (173-175). The latter is perhaps due to inadequate 
removal rather than excess production (174-175). 
Lipoprotein(a) is a prominent and independent risk factor in 
atherogenesis in dialysis patients (176) and levels are 
elevated in renal failure and are associated with a 1.7-fold 
higher risk of coronary-artery disease (177). However, in 
severe CKD the pattern of dyslipidaemia is unique and 
there is a ‘U-shaped’, rather than linear, relationship 
between cholesterol and mortality (174, 178). This might 
relate to the presence of inflammation leading 
hyperocholesterolaemia which may affect acute mortality 
thus complicating the risk. Interventions to reduce 
cholesterol in haemodialysis patients have shown that 
despite improvements in LDL cholesterol by 24% there 
was no significant improvement in cardiovascular 
outcomes (179. 180), although they still appear effective in 
mild to moderate CKD (181).  
 
4.9 Left ventricular hypertrophy (LVH) and metabolic 
changes 

Chronic kidney disease is associated with several 
adverse alterations in cardiac structure. Left ventricular 
hypertrophy is particularly prevalent in CKD patients. The 
incidence of LVH is inversely related to renal function, 
ranging from 26% in patients with a GFR greater than 
50mls/min to 75% in patients starting renal replacement 
therapy (182-184) . The presence of LVH in renal failure is 
an independent predictor of cardiac symptoms and ESRD. 
LVH begins early in the course of renal failure - the 
pathogenesis of LVH includes haemodynamic factors such 
as blood pressure, volume load, arterial structure and blood 
viscosity, and non-haemodynamic factors such as 
activation of the sympathetic nervous system and the 
RAAS, genetic factors, age, sex, race, salt intake, obesity 
and alcohol. Additional contributing factors specific to 
renal dysfunction include anaemia, fluid overload, and 
arterial stiffness and vascular calcification (183). The 
underlying features that distinguish pathological from 
physiological hypertrophy, and which leads to the 
progression from compensated to decompensated 
pathological hypertrophy are incompletely understood. The 
geometry of the LVH is important, with concentric patterns 
(classic wall thickening with a reduction in the ventricular 
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Figure 4. Types of cardiac hypertrophy: Physiological hypertrophy is characterised by a reversible, uniform hypertrophy in 
which muscle wall and chamber enlarge together without cardiac dysfunction.   Pathological hypertrophy can be either concentric 
(thickening of chamber wall with reduction in chamber size) or eccentric (dilation of ventricular chamber).   Function is impaired 
and fibrosis present.  It is not (or only partially) reversible. DCM - dilated cardiomyopathy; LV - left ventricle; RV - right 
ventricle. (modified from Heineke, & Molkentin 185) 

 
lumen) being observed in pressure overload states such as 
hypertension and an eccentric pattern (wall thickening but 
early LV dilatation) being associated with volume 
overloaded states such as anaemia (184, 185) (Figure 4). 
Both these forms of LVH occur in uraemia. The 
hypertrophy of the cardiac smooth muscle cells is mediated 
by angiotensin II (186). Sustained increases in ventricular 
mass create an imbalance of the growth of the myocardium 
and coronary capillaries, (reduced myoctye capillary 
density), observed in both experimental and human uraemia 
(187-188) leading to reduced blood flow to the 
hypertrophied myocardium. This is associated with 
ischaemia and cardiac dysrhythmias due to disturbed 
repolarization, and progresses to cardiac dysfunction and 
heart failure from both diastolic and systolic dysfunction 
(57) and subsequent poor clinical outcomes (189, 190). 
Pathological cardiac hypertrophy is characterized by 
contractile dysfunction, fibrosis and re-expression of fetal-
type cardiac genes (191). Although macroscopic and 
cellular changes are evident, the hypertrophied heart is also 
associated with a multitude of complex biochemical and 

molecular alterations, which render the hypertrophied heart 
more susceptible to ischaemic injury and loss of cardio-
myocytes through apoptosis contributing to ventricular 
dysfunction and the clinical syndrome of heart failure (192-
194).  

 
Underpinning the biochemical and molecular 

changes that lead to heart failure is a complex system of 
intracellular signaling pathways. Unraveling this network is 
vital to determining the mechanisms involved in the 
progression from hypertrophy to failure, and may identify 
novel therapeutic targets in the future.  
 
4.10. Insulin resistance and glycaemic control 

Insulin resistance is a common feature in a 
number of conditions which result in an increased risk of 
cardiovascular disease, including cardiac hypertrophy, 
CKD and heart failure (195-198). Hypertension is also 
closely associated with insulin resistance, renal failure and 
heart failure (199). Previous studies on experimental 
models of insulin resistance have demonstrated increased 
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Table 5. Summary of the proteins and processes involved 
pro-survival and pro-death pathways involved in signalling 
in uraemic heart disease 

Pro-survival Pro-death triggering apoptosis 
JAK-STAT signalling ROS 
PIP(3)K - Akt signalling Angiotensin II 
Inhibition of cyclophilin D Sympathetic stimulation 
 Cytokines 
 Increased cytosolic calcium 
 Inflammation 

 

 
 
Figure 5. Akt-PIP3K pathways for insulin signalling. 
Insulin resistance decreases phospohrylation of Akt 
(protein kinase B) and sunsequently phosphorylation of 
GSK-3b (glycogen synthase kinase 3-beta). PKA = protein 
kinase A and PKC= protein kinase C 
 
myocardial utilization of fatty acids and decreased glucose 
oxidation, accompanied by a reduction in cardiac efficiency 
(200, 201). Thus in uraemia insulin resistance may 
exacerbate metabolic remodeling in the heart by limiting 
the uptake and metabolism of glucose, predisposing the 
uraemic heart to progress into chronic energy deficiency 
and later failure. Insulin resistance in renal disease results 
in endothelial dysfunction and increased sodium 
reabsorption, which then contribute towards the 
progression of CHF. However it is not clear how insulin 
resistance, uraemia and heart failure interrelate to produce 
the cardiac morbidity seen in renal disease. It may be the 
close association of insulin resistance with atherosclerosis 
and cardiovascular mortality in the general population is 
critical, and indeed it has been shown to be an independent 
predictor of cardiovascular mortality in patients with end 
stage renal disease (198). The signaling pathways of insulin 
resistance in uraemic heart disease are complex and 
undefined but recent data has given some insight into the 
effects of uraemia on downstream signaling targets 
including Akt/PKC (202, Figure 5). Glucose transport via 
GLUT4 appears to remain intact but there may be changes 
in post translational modification as a result of uraemia 
leading to effects on insulin resistance (203). Preliminary 
data from our lab suggests no or little change in Akt/GSK-
3-beta but examination of isoforms is ongoing (204). In the 
failing uraemic heart there is an imbalance between 
signaling pathways promoting cell survival and cell death 
(Table 5) with a final common result of reduced myoctye 

numbers. Uraemic cardiomyopathy may also cause 
reduction in the expression of the nuclear receptor PPAR-
alpha and its co-activator PGC-1-alpha, which have been 
identified as the master switches for the myocardial 
metabolic remodeling (202, 205)  

 
In summary an understanding of links between 

cardio-renal disease is essential. The previous sections have 
highlighted the array of risk factors critical in the 
pathogenesis of uraemic cardiac disease. The literature 
demonstrates that renal specific and other factors are 
important and potentially modifiable. Emerging novel areas 
including vitamin D deficiency and phosphate balance and 
metabolic adaptations are growing in importance. The links 
between inflammation, endothelaial dysfunction, oxidative 
stress and cardiac disease still remain somewhat obscure. In 
formaulating a potential unifying pathway of cardiac risk in 
the development of uraemic cardiac disease, one might 
consider theb process of endothelial dysfunction induced 
by a number of micro and macro mechanisms with changes 
in metabolic profile and the presence of insulin resistance 
playing critical roles in the genesis of cardiac disease in the 
presence of CKD (206).  
 
 
5. TREATMENT OPTIONS FOR URAEMIC HEART 
DISEASE 
 
5.1. Established treatments 

Current therapies largely consist of those used in 
patients with CHF and normal renal function translated into 
a population of CKD patients. Diuretics remain the 
standard treatment of acute cardiac failure. However they 
promote insulin resistance, so in the longer term may 
adversely affect myocardial metabolism and exacerbate the 
energy starvation experienced by the failing heart (207). 
Digoxin now demonstrates a consistent fall in 
hospitalizations when used in patients with CHF and sinus 
rhythm (208). The role of beta blockers in particular those 
with combined alpha, beta activity which appear to reduce 
FFA extraction is now well established in CHF to lead to a 
decreased morbidity and mortality (209-212). Their role 
and benefits in patients with CKD is less well defined.  

 
Modern therapy with angiotensin-converting 

enzyme inhibitors (ACEi) and angiotensin II receptor 
blockers (ARB) have improved quality of life and 
decreased hospital admissions. Numerous large randomized 
trials have shown the benefits of ACEi on mortality, 
morbidity and exercise capacity in all degrees of heart 
failure even after ischaemic events (213-218). ACEi 
improve vascular endothelial function), enhancing 
fibrinolysis, antagonizing the proliferation of vascular 
smooth-muscle cells and rupture of plaques (219, 220). 
Decreased breakdown of bradykinin which releases NO is 
one mechanism by which endothelial function is improved 
(221). The combined effects of ACEi therapy which 
reduces thirst and proximal tubular re-absorption of sodium 
and interaction with the hydro-osmotic effect of vaso-
pressin helps to offset the physiological factors causing 
impaired excretion of water. ACEi also decrease the 
markedly elevated left ventricular wall stress of patients 



Metabolic change in uraemic cardiomyopathy 

1374 

with congestive heart failure that may lead to progressive 
cardiac dilatation and death (222, 223). Some reversal of 
left ventricular hypertrophy and remodeling also occurs 
(224-226). ARB’s are also promising in CHF. This is 
perhaps through their haemodynamics, anti-
inflammation, endothelial function from a reduction in 
mRNA and protein expression of endothelin, and TGF-
beta dependent inhibition of fibrosis (227). The RALES 
and Eplerenone studies (228, 229) have confirmed the 
benefits of aldosterone antagonists via improvements in 
cardiac performance due to a reduction in systemic 
vascular resistance, vasodilatation secondary to 
decreases in interstitial oedema and a subsequent 
decrease in cardiac afterload (228-230).  

 
The Choice study demonstrated a paradoxical 

inverse relationship between serum cholesterol and 
mortality in dialysis patients (231). Perhaps statins may 
help reduce cardiac damage by increasing eNOS 
activation which increases NO from L-arginine via 
activation directly through the PI3K/Akt pathway and 
indirectly through Rho activation. Thus interfering with 
this pathway of damage in early CKD may reduce 
inflammatory markers and oxidative stress (232). 
However once ESRD is established the benefits of 
statins are much less clear in relation to cardiovascular 
protection (179, 180). Despite early studies suggesting 
some benefit from the pleotropic effects of statins via 
affects on oxidized LDL (233) current data is 
disappointing. These negative results from two major 
studies may perhaps be explained by the persistent high 
triglyceride levels or the increase in small dense LDL 
particles seen in severe CKD or from presence of a 
mixed array of interacting risk factors in severe renal 
disease.  The ongoing study of heart and renal protection 
(SHARP) which have approximately 9000 patients with 
a composite end point of cardiac disease, non fatal and 
fatal stroke may provide further insight (234).   

 
Several mechanical advances can improve 

cardiac function. Cardiac resynchronization with 
implantable pacemakers improves glucose metabolism and 
reduces insulin resistance. It also improves myoctye cell 
survival mediated by the Akt-BAD (BcL2 antagonist of cell 
death) signaling pathway. Implantable cardioverter 
defibrillators improve mortality while left ventricular assist 
devices may improve calcium cycling and adrenergic 
responses thus augmenting cardiac function (203, 235). 

 
 5.2. Other treatments in heart failure and their effect 
on renal function 

Studies on humans have demonstrated that the 
administration of oral vasopressin antagonists to patients 
with CHF significantly increased urine flow, plasma 
sodium whilst reducing urine osmolality, confirming an 
increase in solute-free water clearance. They behave as 
‘aquaretics’ causing loss of water alone with no effect on 
electrolyte excretion. Studies using combined V1 and V2 
receptor antagonists (236) and selective V2 receptor 
antagonists (237) have been reported with favourable short-
term results.  

 

Exogenous recombinant human brain naturetic 
peptide (BNP), nesiritide, has been demonstrated to 
produce a rapid and sustained beneficial haemodynamic 
effect when given intravenously for symptomatic 
decompensated HF patients (238-240). These beneficial 
effects produce a moderate increase in urine output during 
nesiritide infusions (240). In a canine model with CHF, 
repeated short-term administration of subcutaneous BNP 
resulted in an improvement in cardiovascular 
haemodynamics (241) that may be used for chronic 
administration in humans. Synthetic BNP had beneficial 
haemodynamic and renal effects when used intravenously 
in experimental heart failure. In the presence of uraemia the 
effects are unknown (242). 

Natriuretic peptides are catabolized by neural 
endopeptidases. Inhibition of this breakdown step could 
lead to potentiation of the beneficial circulatory and renal 
effects observed with the natriuretic peptides. 
Vasopeptidase inhibitors are molecules which 
simultaneously inhibit neutral endopeptidase and ACE 
(243-244). Vasopeptidase inhibitors have broad potential 
benefit in renal disease as well as in hypertension and heart 
failure (245). 

 
Gottlieb et al (246) using an A1 adenosine 

receptor antagonist in patients with heart failure on 
standard treatment concluded that the antagonist conferred 
a protective role against the commonly observed decline in 
GFR associated with loop diuretics. An increase in urine 
output was also demonstrated. The endothelin receptor 
antagonist BQ-123 increased survival in rats with heart 
failure (247). Administration of antibodies to tumor 
necrosis factor improved cardiac function in patients with 
sepsis (248). The effects on the kidney of these treatment 
modalities are not known.  
 
5.3. Renal specific therapies 

Anaemia correction in CKD and heart failure 
with iron and erythropoietin therapy improves quality and 
heart failure parameters (115, 119, 122, 123, 132). 
Normalisation of haemoglobin is not recommended but 
conservative improvement to a haemoglobin target of 
12g/dL seems optimal (135). A recent study has shown 
benefit of intravenous iron therapy in in heart failure and 
iron deficiency (249). Longer term studies are necessary to 
examine for possible adverse effects of excess labile iron 
leading to oxidative stress and potentially influencing both 
cardiac and mitochondrial function (250).  

 
Vascular calcification is multi-factorial in CKD 

and potentially mediated by many stimuli including mineral 
changes and use of interventions such as phosphate binders 
and vitamin D therapy. Currently mianly epidemiological 
evidence indicates that treatment of mineral bone disease 
from a cardiovascular perspective may be beneficial. 
Cacium based phosphates binders may lead to increased 
progression of vascular calcification and arterial stiffness 
and possible use of the non calcium based binders may be 
useful in limiting cardiac disease progression in CKD 
(251). Further randomised controlled studies are required to 
confirm whether modulation of vitamin D and the calcium 
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sensing receptors with calcimimetics and active vitamin D 
analogues is of clinical value.  

 
The option of mechanical ultrafiltration in 

unstable acute heart failure has been recommended as an 
appropriate therapeutic alternative not only to improve 
extracellular volume overload, but also to mitigate 
neurohumoral stimulation (252). In 1949 Schneierson first 
introduced intermittent peritoneal dialysis for severe 
cardiomyopathy refractory to conventional treatment (253). 
Since that landmark paper several groups have reported use 
of ultrafiltration and/or peritoneal dialysis for the effective 
treatment of severe heart failure (254, 255) and to remove 
excessive salt and water in patients (256-261). This is a 
current revived area of intervention. 
 
5.4. Other future targets - The metabolic pathways to 
reduce uraemic heart disease 

There is great interest in correcting the metabolic 
changes to a heart which is ‘running out of fuel’ (262) and 
therefore energy deficient as the heart normally needs to 
manufacture more than 70 times its own weight in ATP 
daily (263). A recent review has summarized potential 
targets which may be adopted but in uraemia this may not 
be so simple (235). Manipulation of various parts of the 
signaling pathway of the RISK pathway (Reperfusion 
injury salvage kinase pathway of pro-survival proteins; 
Table 5) in uraemia may prove a useful intervention to 
protect the heart especially during the repetitive iscaemic 
reperfusion injury seen in haemodialysis patients (264). 
Recent data from our lab suggests, that the insulin mediated 
protective which is lost in the uraemic population may be 
partly restored using insulin sensitizers (PPAR-gamma 
agonists) such a rosigltazone and pioglitazone (unpublished 
data). These PPAR-gamma agonists seem promising with 
their multiple actions including anti-inflammatory, 
antihypertensive, anti-proteinuric, and insulin sensitizing 
(265). Recent clinical data is however conflicting especially 
in relation to their effects on fluid and sodium retention 
leading to worsening of heart failure and potentially 
increased risk of myocardial infarction. The recent meta-
analysis and results from the RECORD study suggest that 
there is no increased risk of cardiac death but a slight 
increased risk of heart failure in non uraemic patients (266- 
273). In uraemia they may be particularly beneficial, as in 
ESRD renal fluid and sodium homeostasis is less dependent 
on the kidneys (273).  

 
Finally in heart failure accumulation of fatty acyl 

compounds, due to the reduced uptake of lipids results in 
sequestration of coenzyme A. The end result is an 
inhibition of the key catalytic enzyme pyruvate 
dehydrogenase. This leads to reduced fatty acid and 
glucose utilisation from the Krebs cycle and energy 
starvation and lipotoxicity. Stimulating glucose utilization 
with drugs such as ranolazine and trimetazidine may 
abrogate this and improve cardiac function via a reduction 
in fatty acid oxidation (235, 274). A more recent drug 
perhexiline, a carnitine palmitoyl transferase-1 inhibitor (a 
mitochondrial FFA transport blocker) has also shown early 
promise. Other targets in the metabolic pathway are 
currently under study (235). 

6. PERSPECTIVE 
 

Whether it be from a prognostic, 
pathophysiological, metabolic or therapeutic aspect, it is 
clear that the intricate relationship present between the 
heart and the kidney is difficult to unravel and separate. 
Renal dysfunction plays a key role in addition to non-
traditional factors in uraemic heart failure which will need 
considering in future therapies. Nephro-cardiology may 
well be an important concept in the future (275).  
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