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1.  ABSTRACT 
 

Maintenance of vascular tone by the endothelium 
involves the production of endothelium-derived nitric oxide 
(NO).  NO, produced from endothelial nitric oxide synthase 
diffuses to the underlying smooth muscle to stimulate 
soluble guanylate cyclase, resulting in increased cyclic 
GMP levels, and subsequent smooth muscle relaxation and 
blood vessel dilatation. Endothelial dysfunction, manifested 
as diminished NO bioavailability, is a common feature of a 
number of vascular-related diseases.. Oxidative stress can 
be defined as an imbalance between reactive oxygen 
species (ROS) production and/or impaired ROS 
metabolism that favours them being present in excess of 
physiological levels. Oxidative stress can negatively impact 
many cell types, including in the vasculature.  There is now 
a wealth of evidence suggesting that oxidative stress is a 
major cause of endothelial dysfunction in the cerebral 
circulation. This review will summarize disease models in 
which both oxidative stress and endothelial dysfunction 
occur in the cerebral circulation, namely hypertension 
involving angiotensin II (Ang II), diabetes, subarachnoid 
hemorrhage, stroke and Alzheimer’s disease.  Molecular 
mechanisms by which oxidative stress occurs, (eg increased 
NADPH-oxidase activity) will also be discussed. 

 
 
 
 
 
 
 
 
 
2. INTRODUCTION 

 
Reactive oxygen species (ROS) include the 

superoxide and hydroxyl free radicals, and non-radicals, 
such as hydrogen peroxide. In addition to ROS, a number 
of reactive nitrogen species (RNS) are produced within 
vascular cells including peroxynitrite. The parent ROS 
molecule superoxide can be generated by several enzyme 
systems, including NADPH-oxidases, cyclooxygenases 
(COXs), the mitochondrial electron transport chain, 
xanthine oxidase and uncoupled endothelial nitric oxide 
synthase (eNOS) (1) (Figure 1).  Antioxidant defense 
mechanisms include the superoxide dismutases (SODs), of 
which there are three isoforms expressed in the vasculature: 
cytosolic or copper-zinc SOD (CuZnSOD or SOD-1), 
manganese SOD (MnSOD or SOD-2) localized in 
mitochondria, and an extracellular form of CuZn-SOD 
(ECSOD or SOD-3) (2).  Glutathione peroxidases are 
expressed in blood vessels and are also an important 
antioxidant defense mechanism (3). 
 

Generally speaking, physiological levels of 
ROS serve as mediators and modulators of cell signaling, 
and are important for maintaining vascular homeostasis (4). 
However, under conditions of enhanced ROS generation 



Cerebral endothelial oxidative stress in disease 

1734 

 
 

Figure 1. Endothelium-dependent agonists can stimulate the production of eNOS-derived nitric oxide (NO) in the endothelium, 
which then diffuses to the underlying smooth muscle to elicit vascular relaxation.  During cerebral vascular disease states, 
increases in reactive oxygen species (especially superoxide, O2

-) are generated by several sources (e.g. NADPH-oxidases, 
cyclooxygenases [COXs] and the mitochondria).  COX activity may also be necessary to facilitate Ang II-induced increases in 
ROS via NADPH oxidase (see ref 41).  Superoxide reacts extremely efficiently with NO to form the reactive nitrogen species, 
peroxynitrite (ONOO-), leading to a decrease in NO bioavailability and impaired vascular relaxation.  Oxidative stress can also 
reduce dimethylarginine dimethylamine hydrolase (DDAH) activity, leading to increased asymmetric dimethylarginine (ADMA) 
levels, decreased eNOS activity and impaired vascular relaxation (see text for details). 

 
and/or impaired ROS metabolism, oxidative stress can 
develop.   Evidence indicates that oxidative stress may 
contribute to the initiation and development of a number of 
disease states, including (but certainly not limited to) 
hypertension and stroke (5-8). 
 

The endothelium is a single cell layer that 
lines the luminal surface of blood vessels and which 
provides a protective barrier between tissues and the 
circulating blood, as well as being involved in the 
regulation of vascular tone and vascular structure.  An 
essential component of the maintenance of vascular tone by 
the endothelium involves the production of endothelial-
derived nitric oxide (NO).  NO, produced from eNOS, 
diffuses to the underlying smooth muscle to stimulate soluble 
guanylate cyclase (sGC), resulting in increased levels of cyclic 
GMP, and subsequent smooth muscle relaxation and blood 
vessel dilatation (9), (Figure). The term endothelial 
dysfunction has been used to refer to several pathological 
conditions, including altered anti-coagulant and anti-
inflammatory properties of the endothelium, impaired 
modulation of vascular growth, and dysregulation of vascular 
structure (10). However, more commonly this term is used to 
refer to an impairment of endothelium-dependent 
vasorelaxation caused by diminished NO· bioactivity.  It is this 
particular aspect of endothelial dysfunction that will be the 
focus of this review. Endothelial dysfunction in the cerebral 
circulation is associated with a number of vascular-related 
diseases including hypertension, diabetes and stroke. 
Moreover, endothelial dysfunction is associated with increased 

risk of acute clinical events, such as stroke (11, 12) and may 
contribute to cognitive decline (13).  Over the past several 
years an enormous amount of research has been devoted to 
understanding the mechanisms underlying endothelial 
dysfunction. As such, compelling evidence implicates 
oxidative stress as an important underlying cause of 
cerebral endothelial dysfunction in a number of disorders. 

 
The aim of this review is to summarize key 

findings where oxidative stress and endothelial dysfunction 
occur, namely hypertension involving angiotensin II (Ang 
II), diabetes, subarachnoid hemorrhage (SAH), stroke and 
Alzheimer’s disease.  In particular, this review will focus 
on experimental evidence for the occurrence of oxidative 
stress and endothelial dysfunction in the cerebral 
circulation, as well as the enzymatic sources of ROS 
implicated in the development of oxidative stress.  The 
potential protective role of SOD isoforms and 
dimethylarginine dimethylamine hydrolase (DDAH) in 
protecting against endothelial dysfunction will also be 
discussed. 
 
3.  OXIDATIVE STRESS AND CEREBRAL 
ENDOTHELIAL DYSFUNCTION IN ANIMAL 
MODELS OF CARDIOVASCULAR DISEASE 
 

As mentioned, oxidative stress is believed to be a 
major cause of endothelial dysfunction in the cerebral 
circulation (10, 14). When superoxide generation is 
enhanced or its metabolism is decreased in the vascular 
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Table 1. Summary of experimental models with oxidative stress and endothelial dysfunction in the cerebral circulation 
Disease Animal Model EDR Reversed by ROS Scavenger References 
Hypertension (Increased Ang II) -Systemic Ang II infusion in mice 

-R+/A+ mice 
-Acute Ang II treatment 

↓ EDR reversed by tiron, tempol, MnTBAP,PEG-
SOD 

(40-48) 

Diabetes -Mouse (db/db; tallyHo) 
-Rat (STZ-i.v.) 
-Rat (OLETF) 
-Obese Zucker rat 

↓ EDR reversed by tempol and PEG-SOD (19, 20, 22-25) 

Aging 12-24 month old mice ↓ EDR reversed by tempol, MnTBAP, AT1R-
deficiency 

(92, 105, 106) 

Hypercholesterolemia ApoE-/-mouse ↓ EDR reversed by tiron, tempol, MnTBAP,PEG-
SOD 

(107-109) 

Hyperhomocysteinemia Cbs+/- mice fed a high methionine diet ↓ EDR reversed by tiron (110) 
Alcohol Chronic (3 month) alcohol diet ↓ EDR (111) 
Smoking -i.v. infusion of nicotine for 30 mins 

-nicotine via osmotic minipump 
-cigarette smoke inhalation 

↓ EDR reversed by tiron, tempol, MnTBAP,PEG-
SOD 

(112-115) 

SAH -Rat double hemorrhage model 
-Rat single hemorrhage model 
-Endovascular perforation of rat ACA 

↓ Luminal diameter (52-54) 

Hypoxia Vessels exposed to no-oxygen conditions ↓ EDR reversed by tempol (62) 
PPARγ interference -P465L mutation 

-Endothelium-specific PPARgamma mutation 
+ high fat 

↓ EDR reversed by tempol (116-118) 

Alzheimer’s disease -Topical treatment of mouse cerebral vessels 
with Aβ 1-40 
-APP overexpressing mice 

↓ EDR reversed by tempol, SOD, catalase, N-
acetyl-cysteine, pioglitazone 

(13, 26, 28-35, 
119) 

SOD deficiency CuZnSOD-/- 
MnSOD+/- 

ECSOD-/- 

↓ EDR reversed by tempol (46, 47, 92-94) 

Stroke SHRSP ↓ EDR reversed by losartan and pioglitazone (120-124) 
Cerebral Ischemia MCAO/reperfusion ↓ EDR (60, 64, 66-68, 

125-128) 
 

wall, the major consequence is its reaction with NO, 
resulting in reduced NO bioavailability both under basal 
conditions and in response to endothelium-dependent 
agonists which stimulate NO production. A loss of 
bioavailable NO results in less NO acting on the underlying 
smooth muscle, and thus impaired vasodilatation. In 
addition, the reaction of superoxide with NO leads to the 
formation of the highly reactive RNS peroxynitrite. 
Peroxynitrite can further impair NO signaling and enhance 
oxidative stress by oxidation of tetrahydrobiopterin 
(cofactor for eNOS) (15), causing eNOS to produce 
superoxide rather than NO (ie. eNOS uncoupling), and by 
activating poly (ADP-ribose) polymerase (PARP) (16).  A 
survey of the literature reveals that there is a wealth of 
biochemical, functional and molecular evidence that link 
oxidative stress and cerebral endothelial dysfunction in a 
number of disease models, and these will be discussed 
below (Table 1). 
 
3.1.  Diabetes 

Type II diabetes is a major risk factor for 
stroke as well as for Alzheimer’s disease (17, 18). In db/db 
mice (a genetic model of type II diabetes), superoxide 
levels (measured by hydroethidine based confocal 
microscopy) in cerebral arterioles were elevated when 
compared with levels in control mice (19).  Similarly, in 
Otsuka Long-Evans Tokushima Fatty (OLETF) rats, 
another model of type II diabetes, basilar artery superoxide 
levels (measured by amount of nitro blue tetrazolium 
reduced) were increased when compared with control rats 
(20). In the obese Zucker rat, a model of metabolic syndrome 
which involves hyperglycaemia, hyperinsulinemia, insulin-

 
resistance, hypertriglyceridemia and hypercholesterolemia (21, 
22), cerebral artery superoxide levels (measured using 
dihydroethidene fluorescence microscopy) were augmented 
when compared to the lean Zucker rat (22).  Also, in 
streptozotocin-treated rats (a model of type 1 diabetes) 
superoxide levels in the parietal cortex were found to be 
increased when compared with non-diabetic rats (23, 24). 
Moreover, this increase in superoxide was attenuated by the 
superoxide spin trap agent tempol (24). Taken together, these 
findings provide evidence that superoxide levels are elevated 
in both the brain and cerebral vasculature in several 
experimental models of diabetes.  Evidence indicates that 
cerebral endothelial dysfunction occurs in all these 
aforementioned models of diabetes (19, 20, 22, 23), and in 
tallyHo mice (another genetic model of type II diabetes) (25), 
probably as a result of oxidative inactivation of NO.  For 
example, in cerebral arterioles from db/db and tallyHo mice, 
impaired NO-dependent relaxation responses were reversed by 
acute application of polyethylene glycol (PEG)-SOD (19, 25). 
Similarly, in OLETF rats, impaired NO-dependent relaxations 
of the basilar artery were significantly improved by tempol or 
PEG-SOD (20). Also, in the obese Zucker rat, impaired NO-
dependent relaxation responses of the middle cerebral artery 
(MCA) were partially reversed by tempol (22).  Thus, these 
data suggest that inactivation of NO by superoxide might be 
an important underlying mechanism of impaired NO-
dependent responses in the cerebral circulation during 
diabetes. 
 
3.2.  Alzheimer’s disease 

Alzheimer’s disease is a complex clinical 
condition that is thought to be largely neurodegenerative, 
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however recent evidence indicates there is a vascular 
component to this disease, and it is that aspect of 
Alzheimer’s disease pathology we wish to discuss here.  
Alzheimer’s disease progression is perhaps mediated, in 
part, by the overproduction of the amyloid beta (Abeta) 
peptide, a cleavage product of the amyloid precursor 
protein (APP) (26). An experimental model of Alzheimer’s 
disease, which has been widely studied in recent years, are 
mice expressing human APP carrying an Alzheimer’s-
associated mutation. These mice exhibit elevated brain 
levels of Abeta, and develop cognitive, neuropathological 
and cerebral metabolic alterations that resemble those of 
Alzheimer’s disease (27, 28).  Cerebral vascular deposition 
of Abeta (cerebral amyloid angiopathy) and also elevations 
in soluble Abeta are associated with impaired cerebral 
endothelial function. For example, in APP transgenic mice, 
NO-dependent increases in cerebral blood flow (CBF) (13, 
28, 29), and NO-dependent relaxation responses of the 
isolated MCA (30-32) were impaired compared to 
responses in wild-type mice. Furthermore, application of 
exogenous Abeta 1-40 (one of the predominant Abeta 
species) to mouse cerebral arterioles (26, 33) and the rat 
basilar artery (34) resulted in similar cerebral vascular 
alterations to those seen in APP transgenic mice.  The 
precise mechanisms by which Abeta impairs endothelial 
function have not been fully elucidated, however, several 
lines of evidence suggest a role for oxidative stress. In APP 
transgenic mice and in wild-type mice where the cerebral 
cortex was treated with Abeta 1-40 increases in ROS levels 
were observed in neurons and endothelial cells (13,26). 
Moreover, this increase in ROS was inhibited by the ROS 
scavenger MnTBAP (13).  Cerebral vascular nitrosative 
stress is also evident in the cerebral circulation of APP 
transgenic mice.  For example, increased 3-nitrotyrosine 
immunoreactivity, indicative of nitrosative stress, was 
found in both small cortical microvessels (30) and 
endothelial cells of pial arterioles (35) of APP transgenic 
mice compared with wild-type controls. Also, impaired 
NO-dependent responses were not apparent in APP mice 
overexpressing SOD1 (29), and when either SOD (29) or 
MnTBAP (13) were applied to the cerebral cortex.  
Endothelial dysfunction of the isolated MCA from APP 
mice was acutely reversed by SOD and catalase, (30).  In 
vivo treatment with tempol and N-acetyl-cysteine (a 
precursor for cysteine, which is important in glutathione 
synthesis.  Glutathione plays an important role in 
antioxidant defense (36)) also reversed the endothelial 
dysfunction (31).  Moreover, the effect of exogenous 
Abeta1-40 on cerebral vascular NO-dependent responses 
was reversed by treatment with both SOD and MnTBAP 
(33), and prevented by a NOS inhibitor (26).  More 
recently, the PPAR gamma (peroxisome proliferator-
activated receptor gamma) agonist pioglitazone was also 
found to improve endothelial function in APP transgenic 
mice, an effect the authors attributed to increased NO 
bioavailability due to suppression of NADPH-oxidase 
activity and/or enhanced SOD1 activity by pioglitazone 
(31). Taken together, these data suggest a role for 
augmented superoxide and hydrogen peroxide production 
by NADPH-oxidases (see Section 4.0: Sources of 
Oxidative Stress and Cerebral Endothelial Dysfunction) in 

the impairment of endothelial function associated with 
augmented levels of Aβ. 
 
3.3.  Hypertension Involving Elevated Ang II 

The renin-angiotensin system and its main 
effector, Ang II, underlie many of the changes in vascular 
structure and function that occur in several forms of 
hypertension (8, 37).  Indeed, pharmacological inhibitors of 
the renin-angiotensin system are widely used in the clinic 
for the treatment of hypertension (38). Hypertension has 
profound effects on the cerebral circulation and is a major 
risk factor for stroke (39).  A wealth of evidence indicates 
that Ang II increases ROS production in the cerebral 
circulation. Several studies have reported that acute 
intravenous infusion of mice with Ang II increased blood 
pressure and ROS production by cerebral blood vessels 
(40-44). Furthermore, the increase in cerebral vascular 
ROS production was prevented by treatment with 
MnTBAP (44).  Acute intravenous infusion of Ang II has 
been reported to increase 3-nitrotyrosine immunoreactivity 
in mouse cerebral vascular endothelial cells, an effect that 
was prevented by a peroxynitrite scavenger and NOS 
inhibitor, and also in Nox2-deficient mice (41). Thus, these 
findings suggest that Ang II increases peroxynitrite 
formation in the cerebral vasculature largely via the 
reaction of Nox2-NADPH-oxidase-derived superoxide with 
NO. 

 
Acute intravenous administration of Ang II 

has also been reported to impair NO-dependent increases in 
CBF (43, 44)), an effect that was reversed by MnTBAP and 
the angiotensin type 1 (AT1) receptor antagonist losartan 
(44).  In mice overexpressing human renin and 
angiotensinogen (a genetic model of chronic hypertension), 
endothelial dysfunction of the basilar artery was completely 
reversed by PEG-SOD (45). Similarly, Ang II-induced 
endothelial dysfunction in cerebral arterioles of ECSOD 
deficient mice was reversed by tempol (46).  Importantly, 
systemic administration of a non-pressor dose of Ang II 
also caused endothelial dysfunction in the basilar artery 
(47).  Endothelial dysfunction in response to Ang II was 
reversed by tempol (47).  Moreover, topical application of 
Ang II to cerebral arterioles in vivo caused impaired NO-
dependent responses that could be prevented by the 
superoxide scavenger tiron (48). Taken together, these data 
suggest that Ang II causes endothelial dysfunction in the 
cerebral circulation by activating AT1 receptors on the 
vessel wall leading to an increase in superoxide production, 
and subsequent oxidative inactivation of NO. 
 
3.4.  Subarachnoid hemorrhage (SAH) 

SAH is a unique disorder and a major clinical 
problem that most commonly occurs when an aneurysm in 
a cerebral artery ruptures, leading to bleeding and clot 
formation. SAH results in death or severe disability of 50-
70% of victims and is the cause of up to 10% of all strokes 
(49). Cerebral vasospasm leading to brain ischaemia is a 
critical clinical complication that occurs after SAH.  
Indeed, decreased NO bioactivity and oxidative stress are 
both thought to be involved in cerebral vasospasm (50, 51). 
Several studies have shown that SAH is associated with 
elevated levels of superoxide in cerebral arteries. For 
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example, increased superoxide production was reported in 
the MCA from rats injected twice with autologous blood to 
induce SAH (52). Cerebral vascular superoxide production 
by NADPH-oxidase was ~3-fold higher in rats following 
subarachnoid injection of autologous blood compared with 
controls (53).  Similarly, in another model of SAH 
(endovascular perforation of the right anterior cerebral 
artery), superoxide levels and NADPH-oxidase activity 
were increased by ~2-fold compared with controls (54). 
Thus, these studies would suggest that superoxide 
production by NADPH oxidases is augmented in SAH, and 
may be associated with endothelial dysfunction and 
reduced diameter of cerebral arteries following SAH (52, 
54-56). 
 
3.5.  Experimental Cerebral Ischaemia and Reperfusion 

There is now a considerable body of evidence 
indicating that oxidative stress in the brain is a fundamental 
mechanism of neuronal damage following cerebral 
ischaemia and reperfusion (4, 57). During the early stages 
of post-ischaemic cerebral reperfusion, the function and 
integrity of cerebral arteries are critical to support CBF and 
thus minimize further neuronal damage (58). As in 
systemic vascular beds, reperfusion (up to 6 hours) after 
partial or complete cerebral ischaemia is known to result in 
excessive production of cerebral vascular ROS, including 
hydrogen peroxide, hydroxyl, peroxynitrite and 
predominantly superoxide (59-61).  Similarly, superoxide 
production by rat basilar arteries is augmented in response 
to hypoxia/reoxygenation in vitro (62).  In addition, 
Gursoy-Ozdemir et al found that 3-nitrotyrosine 
immunoreactivity is increased in mouse cerebral 
microvessels and capillaries of the ischaemic hemisphere 
during the early reperfusion (up to 6 hours) period 
following transient middle cerebral artery occlusion 
(MCAO) (63). Of potential importance, evidence now 
suggests that augmented cerebral vascular superoxide 
production persists for several days after the initial 
ischaemic insult. Indeed, we have found that superoxide 
production by NADPH-oxidases is elevated in rat arteries 
from the ischaemic hemisphere for up to 3 days after mild 
cerebral ischaemia (64). 

 
An increase in the production of NO in the 

brain has been demonstrated during ischaemia (65).  
Endothelial NO production could conceivably improve 
CBF following ischaemia and reperfusion, however, a 
concomitant surge in superoxide production is likely to lead 
to the formation of peroxynitrite and hence a loss of 
bioavailable NO. Indeed, as mentioned there is evidence of 
oxidative/nitrosative stress in cerebral blood vessels after 
ischaemia and reperfusion. Moreover, several studies have 
reported that NO-dependent responses of cerebral arteries 
are impaired in models of ischemia and reperfusion (60, 62, 
66-68).  Furthermore, there is some evidence that 
superoxide and peroxynitrite scavengers can improve 
cerebral vascular NO-dependent responses following 
cerebral ischaemia and reperfusion (60, 62, 68).  The 
enzymatic source of cerebral vascular superoxide during 
ischaemia and reperfusion remains to be fully elucidated, 
however, evidence suggests a possible role for NADPH-
oxidases (see section 4: Sources of Oxidative Stress and 

Cerebral Endothelial Dysfunction). 
 
3.6.  Clinical stroke 

eNOS oxidizes its substrate L-arginine to form 
L-citrulline and NO (Figure 1).  In this manner, L-arginine 
is thought to act on the vascular endothelium to result in 
increased production of NO.  Therefore, using 
cerebrovascular reactivity to L-arginine as a measure of 
cerebral endothelial function, it was found that cerebral 
endothelial function in stroke patients was impaired when 
compared with healthy controls (69, 70). Similarly, 
cerebrovascular reactivity to L-arginine was impaired in 
ischemic versus non-ischemic hemispheres of stroke 
patients (71). Furthermore, flow-mediated dilatation of the 
brachial artery was also impaired, suggesting that both 
cerebral and peripheral endothelial function is impaired in 
stroke patients (69, 72).  It is currently unclear whether the 
endothelial dysfunction found in stroke patients is related to 
oxidative stress. However such a mechanism appears likely 
given the wealth of evidence from animal models of stroke, 
and other diseases that predispose to stroke, linking 
oxidative stress with endothelial dysfunction. 
 
4.  SOURCES OF OXIDATIVE STRESS AND 
CEREBRAL ENDOTHELIAL DYSFUNCTION 
 
4.1.  NADPH-oxidase 

NADPH-oxidases comprise two membrane-
bound subunits, Nox (catalytic subunit) and p22phox, up to 
three regulatory cytoplasmic subunits (p47phox/NoxO1 
and p67phox/NoxA1) and a small G-protein (Rac1/Rac2) 
(4, 73). To date, several NADPH-oxidase isoforms have 
been identified of which Nox1-, Nox2-, Nox4- and Nox5-
containing NADPH-oxidases are known to be expressed in 
vascular cells (4, 73).  As has been alluded to above and is 
further discussed below, there is now a substantial body of 
evidence (including pharmacological, biochemical and 
molecular) to suggest that NADPH-oxidases are likely 
contributors to the development of oxidative stress and 
endothelial dysfunction in the cerebral circulation in a 
number of disorders.  Pharmacological evidence comes 
largely from studies using apocynin (an NADPH oxidase 
inhibitor), and while the selectivity of apocynin for 
NADPH oxidase has recently been questioned (74), 
evidence using other approaches also supports a role for 
NADPH oxidase in these disorders.  Of potential 
importance, NADPH-oxidase activity and function is 
reportedly greater in cerebral versus systemic arteries under 
physiological conditions in at least four animal species (75, 
76).  As such, the cerebral vasculature may be relatively 
more susceptible to the development of oxidative stress.  
 
4.1.1.  Diabetes 

In OLETF rats, impaired NO-dependent 
relaxation of the basilar artery could be reversed by the 
NADPH-oxidase inhibitor apocynin (20).  Protein 
expression of Nox2 was also found to be increased in 
basilar arteries of OLETF versus control rats (20). Thus, 
this study would suggest a role for increased Nox2-
NADPH-oxidase expression and hence activity as a 
mediator of oxidative stress and endothelial dysfunction 
during type II diabetes (20). 
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4.1.2.  Alzheimer’s disease 
Several lines of evidence indicate that 

NADPH-oxidase is the likely enzymatic source of the ROS 
responsible for the detrimental effects of Abeta on 
cerebrovascular function.  Park et al. found that either 
inhibition of NADPH-oxidase activity with gp91ds-tat (a 
peptide that inhibits p47phox association with Nox2 (77)) or 
genetic deletion of Nox2 (26), counteracts the oxidative 
stress and endothelial dysfunction induced by exogenous 
Aβ 1-40. Moreover, genetic deletion of Nox2 abrogates 
cerebrovascular dysfunction in young APP transgenic mice 
(26). Similarly, either NADPH-oxidase inhibition or Nox2 
deletion restored endothelial function in cerebral arteries 
from aged APP mice, suggesting that in more advanced 
stages of pathology, NADPH-oxidase-derived ROS remain 
an important initiator of oxidative stress and subsequent 
endothelial dysfunction (78). 
 
4.1.3.  Hypertension Involving Ang II 

It has been demonstrated that increases in 
ROS and endothelial dysfunction following Ang II 
treatment do not occur in cerebral arterioles treated with 
gp91ds-tat, suggesting a role for NADPH-oxidase (44).  
These findings were extended and similar findings 
observed in mice genetically deficient in Nox2 (40, 41, 44).  
Indeed, the endothelial dysfunction that is normally 
observed in the cerebral circulation of wild-type mice 
following Ang II treatment was absent in Nox2-deficient 
mice despite the fact that Ang II still elevated blood 
pressure in these genetically modified mice (44, 79). Thus, 
the increase in blood pressure caused by Ang II is unlikely 
to contribute to the development of endothelial dysfunction 
in the cerebral circulation, but instead points to a direct 
effect of Ang II on vascular NADPH-oxidase.  
Furthermore, Ang II had only minimal effect on relaxation 
responses to acetylcholine in Nox1-deficient mice, 
suggesting that Nox1 may also contribute to Ang II-
induced cerebral endothelial dysfunction (79).  Another 
study reported that superoxide generation by cerebral 
arteries in response to Ang II is partially Nox1-dependent 
(80).  Overall, these data support the concept that cerebral 
vascular oxidative stress and endothelial dysfunction in 
response to increased levels of Ang II is largely dependent 
on Nox2-NADPH-oxidase, with some role for Nox1-
NADPH oxidase. 
 
4.1.4.  Subarachnoid hemorrhage 

The activity of vascular NADPH-oxidases is 
reported to be enhanced following SAH (52, 54).  
Furthermore, apocynin attenuated cerebral vasospasm (52, 
54), suggesting that NADPH-oxidase-derived ROS may 
directly contribute to the pathogenesis of cerebral 
vasospasm following SAH. In addition, evidence suggests 
that augmented expression of one or more of the NADPH-
oxidase subunits may account for the elevation in NADPH-
oxidase activity associated with SAH. Indeed, augmented 
NADPH-oxidase activity was associated with increased 
expression of p47phox, but not Nox2 or p22phox, in the 
membrane fraction of rat cerebral arteries 24 hours after 
SAH (double hemorrhage), with levels returning to normal 
by 48 hours (52). The authors of this study concluded that 
the augmentation in NADPH-oxidase activity was likely 

due to increased membrane translocation of p47phox, and 
hence assembly and activation of NADPH-oxidase, rather 
than altered expression of membrane subunits (52). 
Consistent with this hypothesis, treatment of rats with 
apocynin decreased membrane translocation of p47phox and 
superoxide levels following SAH (induced by endovascular 
perforation of the anterior cerebral artery) (54).  In contrast, 
increased mRNA and protein expression of Nox2 was 
reported in rat cerebral arteries following SAH (single-
injection model), and this was associated with an increase 
in membrane translocation of Rac (53). Taken together, 
these studies suggest that augmented NADPH-oxidase 
activity contributes to the development of oxidative stress 
and vasospasm during SAH. However, more work is 
needed to elucidate the precise molecular mechanisms that 
lead to an increase in NADPH-oxidase activity following 
SAH. 
 
4.1.5.  Stroke 

Recent studies have demonstrated a role for 
NADPH-oxidases in neuronal damage following cerebral 
ischaemia and reperfusion. For example, Nox2-deficient 
mice have smaller cerebral infarcts following MCAO than 
wild-type mice (81, 82).  In addition, there is some 
evidence that NADPH-oxidases may contribute to ROS 
production and endothelial dysfunction associated with 
ischaemia and reperfusion. Indeed, rat cerebral artery 
superoxide production by NADPH-oxidases was ~8-fold 
greater following stroke (64).  Moreover, apocynin 
improves NO-dependent relaxant responses of rat basilar 
arteries following  hypoxia/reoxygenation in vitro (62). 
 
4.2.  Cyclooxygenases (COXs), mitochondria and 
PARP1 

COXs have been shown to be an important 
source of superoxide in the brain and cerebral circulation 
(14, 83, 84).  A very recent study provided both genetic and 
pharmacological evidence for an important role of 
cyclooxygenase in the deleterious effects of Ang II.  This 
study showed that Ang II-induced endothelial dysfunction 
was completely attenuated in prostaglandin E2 EP1 receptor 
(EP1R)-deficient mice, and endothelial dysfunction and 
increases in ROS by Ang II were prevented by an EP1 
receptor antagonist or a COX-1 inhibitor.  Moreover, these 
effects were reversed by PGE2.  A COX-2 inhibitor was 
without effect, suggesting that PGE2 derived from COX-1 
and acting on the EP1 receptor plays a role in mediating 
oxidative stress and cerebral endothelial dysfunction 
following Ang II treatment (42).  Since Ang II causes 
oxidative stress and endothelial dysfunction through Nox2-
containing NADPH oxidase (see section 4: Sources of 
Oxidative Stress and Cerebral Endothelial Dysfunction), 
the authors suggest that constitutive activation of the EP1 
receptor by PGE2 may facilitate Ang II-induced increased 
in ROS from Nox2-containing NADPH oxidase (42).  Such 
an effect may occur as a consequence of an EP1 receptor-
mediated increase in intracellular Ca2+ which is needed for 
NADPH-oxidase activity (42).  The mitochondria may be a 
particularly important source of superoxide in the cerebral 
vasculature, because the mitochondrial content in cerebral 
endothelium is relatively high (85).  Indeed, endothelial 
dysfunction of the basilar artery was enhanced in Ang II-
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treated MnSOD-deficient when compared with the effect of 
Ang II in wild-type mice, suggesting that MnSOD normally 
protects the vasculature during disease states in which Ang 
II contributes to cerebral vascular dysfunction (47). Ang II 
is an important mediator of disease in hypertension, but 
also in diabetes, atherosclerosis and aging, and can 
stimulate ROS production from mitochondria (86).  Not 
only is mitochondrial oxidative stress important in response 
to Ang II, several studies, including in humans, suggest that 
mitochondrial dysfunction, increased oxidative stress and 
neuronal death are prominent in Alzheimer’s disease 
(reviewed in (87)). Reactive oxygen species signaling in 
mitochondria also occurs in ischemic brain injury 
(reviewed in (88)), and is demonstrated by findings such 
as increased infarct volume and neuronal apoptosis 
following cerebral ischemia in mice deficient in MnSOD 
(89).  This is also important in periods of ischemia that 
occur following SAH, where mitochondria can 
excessively produce free radicals (90).  Furthermore, 
although to our knowledge this is yet to be addressed in 
the cerebral circulation, oxidative stress and 
mitochondrial dysfunction in the vasculature may lead 
to endothelial dysfunction observed in diabetes (90). 
Another potential mediator of vascular dysfunction is 
PARP, a downstream target of ROS (91).  Increased 
levels of superoxide in brain and endothelial 
dysfunction of pial arterioles in streptozotocin-induced 
diabetic rats could be reversed by the PARP inhibitor 
PJ-34 (23).  Furthermore, PJ-34 also partially restored 
severe endothelial dysfunction observed in aged mice 
(92), suggesting that activation of PARP may contribute to 
oxidative stress and cerebral endothelial dysfunction in 
disease states such as diabetes and aging. 
 
4.3. SOD deficiency 

Mice deficient in genes encoding protein for 
SOD isoforms are useful models to study the impact of 
oxidative stress in various subcellular compartments on 
endothelial function.  In mice lacking cytosolic SOD 
(CuZnSOD), endothelium-dependent relaxation of the 
isolated basilar artery was significantly impaired compared 
to littermate controls (93), whereas basilar artery 
endothelial function was not impaired in mice deficient in 
mitochondrial SOD (MnSOD) (47, 92, 94).  In cerebral 
arterioles, deficiency in MnSOD resulted in impaired 
endothelium-dependent responses versus controls (94), 
although ECSOD deficiency was without effect (46).  
These studies suggest that different subcellular 
compartments may contribute to oxidative stress and 
endothelial dysfunction in different blood vessels of the 
cerebral circulation. 
 
4.4.  DDAH Deficiency 

As mentioned, endothelial levels of NO are in 
large part due to synthesis by eNOS, which produces NO 
and L-citrulline using L-arginine as a substrate.  NO 
synthesis can be selectively inhibited by guanidine-
substituted analogues of arginine, including the endogenous 
inhibitor of eNOS, asymmetric dimethylarginine (ADMA). 
Dimethylarginine dimethylamine hydrolase (DDAH) 
hydrolyses ADMA into L-citrulline and dimethylamine 
(95).  ADMA is considered an independent marker for 

acute stroke and transient ischemic attacks (96) and has 
been reported to inhibit endothelium-dependent cerebral 
vasodilation (97, 98) and cerebral perfusion in humans 
(99).  In humans, 80% of ADMA generated is metabolised 
by DDAH (100).  Thus DDAH, which is expressed in 
vascular tissue (101-103) represents a potentially important 
pathway preserving NO bioavailability.  Furthermore, 
DDAH is an oxidant-sensitive enzyme, and DDAH 
activity is reduced during oxidative stress (103, 104).  A 
recent study reported that cerebral endothelial 
dysfunction by ADMA is prevented in mice 
overexpressing DDAH-1 (98). 
 
5.  CONCLUDING REMARKS AND PERSPECTIVE 
 

Over the last decade there have been significant 
advances in the understanding of mechanisms involved in 
oxidative stress and endothelial dysfunction in the 
cerebral circulation in several disease states (Table 1).  
Experimental evidence indicates NADPH-oxidase may 
be a major source of pathological ROS, although more 
work is needed to clarify the relative importance of 
other potential sources, and the interaction between 
these ROS sources.  This latter point notwithstanding, it 
is apparent that the identification and development of 
therapeutic agents that specifically target vascular 
NADPH-oxidases could represent a novel strategy for 
the treatment and prevention of diseases affecting the 
cerebral circulation. 
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