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1. ABSTRACT 
 

Purinergic receptors or purinoceptors are 
expressed in many mammalian cells and are activated by 
extracellular purines (adenine, purine nucleotides and 
nucleosides). Both adenosine (P1) and 
nucleotide/nucleoside (P2, grouped in P2X and P2Y 
subtypes) receptors exert important role in the 
inflammatory processes. The significative up-regulation of 
many purinoceptors located on the immune cells 
(neutrophils, eosinophils, monocytes, macrophages, mast 
cells and lymphocytes) in the course of inflammatory 
diseases supports the interpretation of their functions. New 
insights into the involvement of purinoceptors also in the 
neuro-inflammatory diseases (e.g. conditions of chronic 
inflammation associated with neurodegenerative diseases) 
are proposed. The identification of antagonists of 
purinergic receptors potentially useful to control 
inflammatory pathways represents the object of many 
studies reported in the recent literature. Aim of this review 
is to recapitulate the most recent data and experimental 
findings that highlight the critical, double edge, effect of 
these receptors in inflammation, making consistent the 
possibility to target them to control and regulate 
inflammation. 

 
 
2. INTRODUCTION 
 

Extracellular nucleotides released in many 
tissues, following cell lysis, exocytosis, efflux, cellular 
stress upon changes in osmolarity and mechanical 
perturbations, exert their activity by binding to purinergic 
receptors. The knowledge of the extracellular signalling 
role for purine compounds (adenine, purine nucleosides and 
nucleotides) has been developed in many years, as recently 
reported in an historic overview by Burnstock et al. (1). 
Firstly, extracellular effects of purines were identified both 
in cardiovascular (2-5) as well as in non-cardiovascular 
preparations (6, 7); successively, increased evidences of 
purine effects on the nervous system culminated in the 
theory of purinergic neurotransmission (1, 8, 9). Further 
studies have more recently evidenced the role of long-term 
(trophic) purinergic signalling in cell proliferation, 
differentiation, motility, and death in development and 
regeneration (10, 11). Short-term purinergic signalling have 
been shown implicated in neurotransmission, 
neuromodulation and neurosecretion (10-12). Moreover, 
purinergic signal involvements in platelet activation (13, 
14), in bone remodelling (15), in the special senses areas 
(16), in cardiovascular regulation and disease (17) have 
been described. Purinergic receptor structure and function 
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has been studied and clarified. Identification of 
purinoceptors in mammalian tissues as well as their main 
functional role have been exhaustively reported (1). 
In this review, the role of purinoceptors in inflammation is 
considered and described. Moreover, the possibility to 
candidate them as possible targets for pharmacologic 
treatment in inflammatory diseases is proposed and 
discussed. 
 
3. PURINOCEPTORS 
 

The numerous purinoceptors have been classified 
into the subtypes P1 and P2 on the basis of 
pharmacological, biochemical and molecular biological 
studies (18-20). In several cases, the use of genetic deletion 
of a single receptor (knock-out mice) has increased the 
knowledge on the same receptor functions. P1 are 
adenosine purinoceptors, whereas P2 are purinoceptors for 
phosphorilated nucleosides (as ADP, ATP) and other 
related nucleotides. P2 receptors have been further on 
grouped in ionotropic P2X and metabotropic P2Y subtypes 
(21). 
 
3.1. Adenosine receptors (P1) 

Four subtypes of adenosine receptors are 
described and characterized: A1, A2A, A2B and A3. They 
are members of the heterodimeric guanine nucleotide-
binding protein (G protein) coupled receptors (GPCR) 
family A. Since adenosine receptors are widespread 
throughout the body, they are involved in a variety of 
physiological processes and pathology including 
neurological, cardiovascular, inflammatory diseases and 
cancer (22). Primary sequence and covalent modifications 
of adenosine receptors, overall three-dimensional structure 
and comparison to other GPCR, have been recently 
reviewed (23). In particular, the crystallographic model of 
the human adenosine A2A receptor could provide new 
insight to elucidate the relation between structure and 
function of the adenosine class of GPCR. Each adenosine 
receptor subtype has revealed a unique binding profile, 
activation profile, subcellular localization and G protein 
binding preference. A1 and A2A adenosine receptors have 
displayed specific physiological role in regulating heart 
rate, body temperature, locomotor activity, oxygen 
consumption in mice, in a sex-dependent manner (24). In 
addition, being adenosine involved in the regulation of 
digestive functions, A1 and A2A receptors were 
demonstrated efficient in mediating inhibitory effects of 
adenosine on the activity of human colon (25). A1, A2A 
and A2B adenosine receptors activity was shown inhibited 
by naturally occurring methylxanthines such as caffeine or 
theophylline (26). The omnipresence of adenosine and A1 
and A2A receptors in all nervous system cells (neurons and 
glia) have suggested their implication in the homeostatic 
co-ordination of brain function (27). However, much 
evidence argued for a role of the A1, A2A, A3 adenosine 
receptors in neurological diseases as Alzheimer’s disease, 
Lesch-Nyhan syndrome, Creutzfeldt-Jakob disease, 
Huntington’s disease, multiple sclerosis, Parkinson’s 
disease (28). A particular role for A2B adenosine receptors 
has been assigned in regulating platelet function (29) and in 
damping mucosal inflammation and tissue injury during 

intestinal ischemia or experimental colitis (30). Finally, A3 
receptors, together with A1 receptors, have been shown 
able to protect astrocytes from hypoxic damage (31), 
whereas A3 receptor inhibition improved the efficacy of 
hypertonic saline resuscitation in a mouse sepsis model 
(32). 
 
3.2. P2 purinoceptors 

They have been subdivided in two families (33): 
1) P2X purinoceptor subtypes, which are ion channels, and 
2) P2Y purinoceptor subtypes, which are G protein-coupled 
receptors. 
 
3.3. P2X receptors (P2XR) 

Seven subtypes of these ATP-gated membrane 
ion channels have been identified. The recent elaboration of 
the crystal structure of the zebrafish P2X4 receptor by 
Gouaux et al. (34) has allowed the re-interpretation of 
channel function at molecular levels and could provide a 
basis for the structure-based design and study of 
pharmacological agents (35).The major physiological 
functions of P2XR are here summarized. 
 

P2X1R: control contraction of the vas deferens 
and male fertility (36), provide renal microvascular 
autoregulation (37), promote neutrophil chemotaxis (38), 
regulate T cell activation in immune synapse (together with 
P2X4 and pannexin-1 hemichannel-mediated ATP release) 
(39), modulate heteromeric P2X1/5 receptors by 
phosphoinositides in astrocytes through the P2X1 lipid-
binding domain (40), mediate sympathetic control and 
paracrine regulation of renal blood flow of renal vascular 
smooth muscle cell (together with the heteromeric P2X1/4 
receptors) (41). 

 
P2X2R: contribute to fast synaptic excitation in 

myenteric neurons of the mouse small intestine (42), have a 
role in chemosensory signalling in rat carotid body afferent 
neurones (together with P2X3R subunits) (43), mediate 
ventilatory responses to hypoxia (44), are crucial for taste 
responses in the taste nerves (45). 

 
P2X3R: regulate urinary bladder reflex (46) and 

peristalsis in the small intestine in mice (47) P2X4R: 
potentiate hyppocampal synapsis (48) and control vascular 
tone and remodelling due to impaired flow (49). 

 
P2X5R: their extensive expression within the 

central nervous system of the mouse suggest the role for 
extracellular ATP as a fast neurotransmitter; in particular 
they form together with the P2X1R the functional P2XR in 
mouse cortical astrocytes (50); moreover, activation of 
P2X5R expressed on satellite cells regulate the ATP-
dependent differentiation of mammalian skeletal muscle 
(51). 
 

P2X6R: are important, together with P2X3R and 
P2X5R, for the modulation of amacrine cells in mouse 
retina (52); are expressed and may be involved in the 
physiological function of the enteric neurons in the rat 
gastrointestinal tract probably in heteromeric combination 
with P2X2R (53); finally are involved (together with 
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P2X2R) in neuronal differentiation in mitogen-free cultured 
rat neurospheres (54). 

 
P2X7R: are important in cytokine release (55), in 

bone remodelling (56), in glia-neuron interactions (57); are 
involved in short-term physiological regulation of exocrine 
gland secretion (58). P2XR are also implicated in many 
physio-pathologic or pathologic conditions, as thrombosis 
(P2X1R) (59); inflammatory and neuropathic pain: P2X2R 
and P2X3R (60), P2X4R (60), P2X7R (61, 62); 
inflammation  and renal fibrosis (63); disorders of the 
central nervous system (P2X4R, P2X7R) (64). 
 
3.4. P2Y receptors 

Eight subtypes of these receptors have currently 
been identified. They exhibit sensitivity to adenine 
nucleotides ATP and ADP (P2Y1R, P2Y11R, P2Y12R, 
P2Y13R), to uracil nucleotides UTP and UDP (P2Y2R, 
P2Y4R, P2Y6R) or to UDP-glucose (P2Y14R) or to both 
adenine and uracil nucleotides (P2Y2R) (65). Many roles 
have been attributed to P2YR in physiological and patho-
physiological processes. For example, an antihypertensive 
activity has been shown for P2Y2R through regulation of 
renal transport mechanisms (66). Both P2Y1R and P2Y12R 
are rapidly and reversibly modulated in human platelets 
following ADP activation (67) and antagonism of P2Y12R 
exerts antiplatelet activity, as obtained by the use of 
clopidogrel and prasugrel (68). P2Y12R are also involved 
in inflammatory and neuropathic pain (69), P2Y4R in 
chronic pain (70), as well as in cancer because a P2Y2R-
dependent pathway has been demonstrated able to induce 
reactive oxygen species production, resulting in increased 
tumor growth (71). It is likely that different receptors have 
distinct roles in cell physiology and pathology. 
Accumulating evidence suggests that extracellular 
nucleotides, depending on their concentration, activate and 
signal through distinct receptors, triggering cellular 
changes that modulate cell function. The activation 
pathway is so far poorly identified, but activation of such 
receptors elevates cytosolic Ca2+ concentration [Ca2+] (i). 
 
4.PURINERGIC SIGNALLING AND 
INFLAMMATION 
 

In this section general considerations about the 
involvement of different purinergic signalling in 
inflammation are reported. 
 
4.1. Adenosine and inflammation 

Extracellular adenosine can signal through each 
adenosine receptor (AR): A1AR, A2AAR, A2BAR and 
A3AR. Expression of AR is under dynamic regulation in 
many cell types (platelets, lymphocytes, eosinophils, 
neutrophils, mast-cells and macrophages) during many 
forms of physiological and pathological stress including 
inflammation (72). Stimulation of A1AR provokes pro-
inflammatory effects, whereas stimulation of A2AAR and 
A3AR has anti-inflammatory effects; in particular, the 
usefulness of A3AR up-regulation in the treatment of 
patients affected by rheumatoid arthritis has suggested this 
receptor as a therapeutic target (72). Stimulation of A2BAR 
favours the release of pro-inflammatory cytokines and cell 

degranulation, but this receptor is endowed also of anti-
inflammatory properties. Recently, extracellular adenosine 
has been implicated as anti-inflammatory signalling 
molecule during lipopolysaccharide (LPS)-induced acute 
lung injury in mice. The main source of extracellular 
adenosine is the coordinated two-step enzymatic 
conversion of nucleotides via the ectopyrase (CD39) and 
the ecto-5’-nucleotidase (CD73): their expression on the 
pulmonary tissues and neutrophils after LPS exposure 
attenuated pulmonary neutrophil accumulation, suggesting 
the role for adenosine in reducing LPS-induced 
inflammation (73). However, a detrimental role of elevated 
adenosine levels in studies investigating chronic pulmonary 
diseases has been previously described (74, 75). 
 
4.2. A1AR involvement in inflammation 

AR are differently involved in the inflammatory 
processes.evertheless selective A1AR antagonists targeting 
renal microcirculation represent novel pharmacologic 
agents that are currently under development for the 
treatment of acute and chronic heart failure, hepatorenal 
syndrome, hypotension on dialysis and nephropathy due to 
radiocontrast use (76), emerging studies evidence the role 
of A1AR in inflammation. In an allergic mouse model of 
asthma, A1AR have been shown responsible for altered 
vascular reactivity, increased airway hyper-responsiveness 
and systemic inflammation (77). A1AR have been shown 
able to regulate neutrophil trafficking and microvascular 
permeability in LPS-induced lung injury (78), confirming 
the involvement of adenosine in LPS-induced acute lung 
injury (73). Antinociceptive properties of the 
neuromodulator adenosine have been shown, through 
activation of A1AR. Such activation was responsible for 
the long lasting antinociceptive effects due to treatment of 
mice with recombinant CD73 (which induced hydrolysis of 
AMP to adenosine, followed by A1AR activation) in 
experimental models of both inflammatory and neuropathic 
pain (79). Noteworthy, A1AR expression mediated local 
antinociceptive effects of acupuncture, the procedure 
commonly used to relieve pain (80). 
 
4.3. A2AAR involvement in inflammation 

Both A1AR and A2AAR are involved in neuro-
inflammatory processes. They have been shown able to 
regulate the pre-synaptic release of glutamate, whose 
extracellular increase has been associated with chronic 
neuro-inflammation. Indeed, consumption of caffeine, 
which is an antagonist of A1AR and A2AAR, reduced the 
risk of Alzheimer’s and Parkinson’s diseases. It has been 
shown that adenosine exerts a role in the propagation of 
inflammation and caffeine may reduce microglia activation 
directly by blocking adenosine receptor on microglia: e.g. 
caffeine attenuated the number of activated microglia 
within the hippocampus of rats affected by LPS-induced 
and age-related inflammation (81). Inosine also, an 
endogenous purine which is the first metabolite of 
adenosine in a reaction catalyzed by adenosine deaminase, 
has been shown able to reduce pain-related behaviour in 
mice by acting on A1AR and A2AAR as well as through 
blockade of the protein kinase C pathways (82). A2AAR 
alone have been shown able to modulate neuro-
inflammation and traumatic brain injury upon influence of 
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glutamate levels in cultured microglial cells (83). 
Moreover, the deficiency of A2AAR in leukocytes 
enhanced their homing ability and increased the formation 
of the arterial neointima after injury (84). Induction of 
A2AAR on iNKT (invariant natural killer T cells) and NK 
cells reduced pulmonary inflammation and injury in mice 
with sickle cell disease (85). Interestingly, DNA 
methylation regulated A2AAR gene transcription and, 
subsequently, A2AAR constitutive cell surface expression 
levels (86). 
 
4.4. A2BAR involvement in inflammation 

Adenosine has been proposed as a “stopping” 
signal for the immune response during excessive 
inflammatory conditions affecting not only the pathogens 
but also the infected or neighboring tissues (87). Among 
AR, only A2BAR appear up-regulated during hypoxia (88), 
because contain the hypoxia inducible factor (HIF-1α) 
binding site in its promoter region (89). Indeed, A2BAR 
may play a key role in response to extracellular adenosine 
under hypoxic conditions, whereas A2AAR may regulate 
the response during inflammation in the absence of 
hypoxia. The infection induced with intracellular bacteria 
as Chlamydia trachomatis in cervical epithelial cells (HeLa 
cells) was reversibly retarded by prolonged exposure of 
infected cells to extracellular adenosine. This effect was 
mediated by the A2BAR and was dependent on an increase 
in the intracellular cAMP levels, but was independent of 
cAMP-dependent protein kinase (PKA) (90). Cultured 
endothelia or epithelia exposed to inflammatory mediators 
showed time-dependent induction of the A2BAR. 
Analogously, in vivo studies in mice bearing endotoxic-
induced lung injury promoted induction of A2BAR 
transcript. Moreover, functional studies of LPS-induced 
murine lung injury demonstrated that pharmacological 
inhibition or genetic deletion of the A2BAR was associated 
with dramatic increase in lung inflammation and histologic 
tissue injury (91). These studies suggest that A2BAR are 
potential therapeutic target in the treatment of endotoxin-
induced forms of acute lung injury. Other studies have 
shown that A2BAR protect against mortality and 
inflammatory response of mice following polymicrobial 
sepsis (92). Finally, taking into account that the 
atherosclerosis process is a chronic inflammation, it seems 
to be important to highlight the role for A2BAR in 
regulating platelet function. Recently, it has been 
demonstrated that platelet A2BAR are up-regulated under 
stress in vivo, play a significant role in regulating ADP 
receptor expression and inhibit agonist-induced platelet 
aggregation (29). 
 
4.5. A3AR involvement in inflammation 

Following the identification of the trimeric G-
protein Gi3 as the cellular target of basic secretagogues that 
activate mast cell independently of IgE-receptors, it has 
been shown that, coupling with Gi3, the A3AR stimulate 
multiple signalling pathways in human mast cells. Such 
stimulation could lead to up-regulation of cytokines, 
chemokines and growth factors. Stimulation induced by 
direct binding to A3AR could be mediated also by contact 
with T cell membranes (93). In addition, selective 
activation on neutrophils of A3AR inhibited superoxide 

production and chemotaxis (the movement of cells toward 
chemical gradients) of these cells: indeed, the suppression 
of neutrophil function was mediated by the inhibition of the 
monomeric GTPase Rac (94). Furthermore, the 
antiapoptotic effects exerted by glucocorticoids in 
monocytes, resulting in differentiation to an anti-
inflammatory phenotype, was shown as promoted by 
stimulation of A3AR (95). Simultaneous activation of 
A2AAR and A3AR ameliorated chronic experimental 
colitis (96), whereas selective activation of A1AR, A2AAR 
and A3AR provided significant protection against lung 
ischemia-reperfusion injury, via the reduction of TNF-α 
and decreased neutrophil sequestration (97). A role for 
A3AR has been shown for eosinophil degranulation in a n 
model of mouse pulmonary inflammation and fibrosis (98), 
whereas attenuation of pulmonary inflammation in A2BAR 
knockout mice has been described (99). 
 
4.6. P2 receptors and inflammation 

Many P2 receptors (P2R) are involved in the 
course of inflammatory processes. The leukocyte 
chemotaxis plays an essential role in generating and 
delivering immune responses and is a critical component of 
inflammation. Recent investigations have shown that 
macrophages move in a gradient of the chemoattractant 
complement fraction C5a through the release of ATP and 
autocrine “purinergic feedback loops” that involve 
receptors for ATP (P2Y2R), for ADP (P2Y12R) and 
adenosine (A2AAR, A2BAR an A3AR). The inhibition of 
purinergic receptors as well as degradation of ATP and 
ADP induced by apyrase were able to block chemotaxis 
(100). Interestingly, the uptake of apoptotic bodies derived 
from dying cells (phagocytosis) by macrophages and 
clearance of such bodies seem to be modulated by 
purinergic receptor agonists. In fact ATP, ADP, alpha, 
beta-methylene ATP, 3’-O-(4-benzoyl) benzoyl ATP, UTP 
and UDP increased macrophage phagocytosis, which was 
inhibited by pre-treatment with some P2 receptor 
antagonists. These data have suggested that engagement of 
the P2X1R or P2X3R by extracellular nucleotides released 
from dying cells increased the ability of macrophages to 
bind apoptotic bodies, thus enhancing their capacity to 
internalize and present antigens (101). In a rat model of 
systemic inflammation provoked by LPS-induced septic 
shock, pre-treatment with an inhibitor of the ADP receptors 
(the clopidogrel, able to inhibit platelet function) reduced 
the levels of inflammatory markers as interleukin-6 (IL-6) 
and TNF-alpha and the signs of inflammation at the levels 
of lung and other tissues (102). 
 

The recent studies on the inflammasome have 
highlighted the role of P2X receptors. The inflammasome 
is a multpiprotein complex that mediates the activation of 
caspase-1, which promotes secretion of the pro-
inflammatory cytokines IL-1-beta and IL-18, as well as 
“pyroptosis”, a form of cell death induced by bacterial 
pathogens. Members of the NOD (nucleotide binding and 
oligomerization domain)-like receptor (NLRP) family are 
critical components of inflammasome that link microbial 
and endogenous “danger” signals to caspase-1 activation 
(103). Several diseases are associated with dysregulated 
activation of caspase-1 and secretion of IL-1-beta. The
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Figure 1. Immune cell function mediated by purinoceptors. The main purinoceptors expressed on each immune cell are reported. 
Activation or inhibition of cells and induction of main effector functions, following binding of receptor agonists, are represented. 
Abbreviations: AR=adenosine receptors; P2XR and P2YR= P2X and P2Y receptors; TNF-alpha=tumor necrosis factor alpha; IL-
1 b=Interleukin 1-beta; HLA-G Ag=HLA-G Antigens; I/R= ischemia/reperfusion; T reg=T regulatory cells, PGE2=prostaglandin 
E2. References: (1, 101) (mast cells); (94, 107) (neutrophils); (98, 99, 110) (eosinophils); (1, 111-114) (monocytes); (100, 101, 
104-106, 116, 117) (macrophages); (118-122) (lymphocytes). =Activation; X=inhibition 

 
danger signal byglican (a ubiquitous leucine-rich repeat 
proteoglycan of the extracellular matrix) has been shown 
effective in activating the NLRP3 inflammasome via Toll-
like receptors and P2X4/P2X7R on macrophages (104), 
suggesting a new attractive role for P2XR. Moreover, the 
ATP-dependent activation of P2X7R has been 
demonstrated useful to trigger the elimination of 
Toxoplasma gondii from infected macrophages through 
ROS production (105). In addition, P2X4R have been 
shown able to mediate prostaglandin E2 release by resident 
macrophages of inflamed tissues and initiate inflammatory 
pain (106). Thus both P2X7R and P2X4R might represent 
useful therapeutic targets in the immune/inflammatory 
responses. 
 
5. PURINOCEPTORS ON IMMUNE CELLS 
 

The immune cells responsible for inflammatory 
reactions display both adenosine and P2 receptors, which 

have a role in cell activation and effector functions. This 
section reports specifically the role of purinergic receptors 
on each immune cell involved in inflammation. Indeed, the 
main purinergic receptors responsible for activation or 
inhibition of the immune/inflammatory cells are reported 
and summarized in the Figure 1. 
 
5.1. Mast cells 

They are recognized as the key components of 
allergic inflammatory reactions, but are also implicated in 
the pathogenesis of chronic inflammatory diseases, in 
wound healing, in fibrosis, thrombosis/fibrinolysis and in 
innate immunity. The involvement of A3AR has been 
previously reported (93). Many different P2 receptor 
subtypes are expressed on mast cells, depending of the 
distinct species (human, mouse or rat) and sources 
(different anatomic site) of the cells (107). The main P2 
receptor-mediated responses of mast cells are: membrane 
permeabilization and Ca2+ influx mainly via P2X7R, 
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degranulation via P2X7R, P2Y1R and P2Y2R, intracellular 
signalling via P2X1R, P2X3R, P2X7R, P2Y1R and 
P2Y12R, cytokine/chemokine expression and secretion via 
P2X1R, P2X3R, P2X7R, P2Y1R, P2Y11R and P2Y12R, 
chemotaxis via P2Y2R receptors and apoptosis via P2X7R 
receptors (107). 
 
5.2. Neutrophils 

The involvement of A3AR has been above 
reported (94). Neutrophils are recently been shown able to 
release ATP in response to exogenous stimuli such as 
formylated bacterial peptides and inflammatory mediators 
as IL-8, C5a complement, leukotriene B4. Specifically, 
stimulation of the formyl peptide receptor led to ATP 
release through pannexin-1 hemichannels (responsible for 
rise in cytosolic calcium); formyl peptide receptors 
colocalized with P2Y2R (the most abundant in human 
neutrophils) on the cell surface to form a purinergic 
signalling system that facilitated neutrophil activation (108, 
109). 
 
5.3. Eosinophils 

The role of A3AR has been above reported (98, 
99). Eosinophils incubated with the endogenous danger 
signal crystalline uric acid released ATP. The latter acted in 
autocrine manner via P2 receptors (in particular P2Y2R) to 
stimulate production of cyto-/chemokines by eosinophils 
(110). 
 
5.4. Monocytes 

Other than in isolated human and murine, also in 
equine peripheral blood monocytes, LPS and TNF-alpha up-
regulated the expression and functional activity of A2AAR 
(111). Moreover, adenosine receptors are involved in the 
caffeine modulation of TNF-alpha production by cord blood 
monocytes (112). Extracellular ATP, acting via the P2X7R, 
impaired the expression and secretion of HLA-G Antigens 
(which are currently defined as nonclassical HLA class Ib 

molecules) in human monocytes in an IL-10-dependent 
fashion (113). Concomitant activation of P2Y2R and P2Y6R 
on monocytes have been shown required for IL-8-dependent 
neutrophil migration (114). Recently it has been proposed the 
contribution of P2YR to immunocytes microglia activation and 
their late phagocytosis in the central nervous system (115). 
 
5.5. Macrophages 

As reported above, it has been shown that 
autocrine purinergic receptor signalling is essential for 
macrophage chemotaxis (100) and that purinergic receptor 
agonists modulate phagocytosis and clearance of apoptotic 
cells in macrophages (101). The macrophage activation via 
P2X7R has been demonstrated: indeed, millimolar ATP 
was able to induce macrophage death in a concentration 
dependent manner but the anthraquinone emodin inhibited 
such death by antagonizing P2X7R (116). The P2X7R-
mediated killing of the intracellular parasite Toxoplasma 
gondii has been shown both in human and murine 
macrophages (105, 117). 
 
5.6. Lymphocytes 

A2AAR activation on CD4+ lymphocytes (other 
than on neutrophils) has been demonstrated able to 

attenuate lung ischemia reperfusion injury (118). Moreover, 
A2AAR activation on CD4+ and CD8+ cells has been 
determined expansion of cells lacking effector functions 
(119). Signaling via A2AAR and A2BAR on CD8+ cells 
resulted in inhibition of TCR (T cell receptor)-triggered 
activation and of many effector functions. Specifically, 
hypoxia inducible factor 1(HIF-1) and A2AAR in T 
effector cells not only inhibited the TCR-induced 
production of pro-inflammatory cytokines, as INF-gamma, 
but also re-directed the inflammatory repertoire of the T 
effector cell produced cytokines toward an anti-
inflammatory repertoire. Specifically, maximal 
immunosuppression and re-direction of immune response 
have shown to be possible in T regulatory cells only if the 
TCR-triggered activities were combined with and/or 
enhanced by the HIF-1-driven and adenosine receptor-
mediated immunosuppressive mechanisms (120). P2X1R, 
P2X2R, P2X4R and P2X7R have been identified on B 
lymphocytes, but their significance deserves further 
investigations (121). In addition, the P2X7R involvement 
in Trypanosoma cruzi infection through the induction of 
CD4+/CD8+ double positive cells in thymus has been 
proposed (122). 
 
6.THE SPECIFIC ROLE OF PURINERGIC 
RECEPTORS IN NEURO-INFLAMMATION AND 
PAIN 
 

It is known that inflammation and immunity 
have a key role in a vast range of central nervous system 
diseases. Signals endogenous to the nervous system, as 
extracellular nucleotides and nucleosides released upon 
injury, have been identified to be responsible for initiating 
neuro-inflammation by acting on purinergic receptors: the 
latter are expressed on neurons, oligodendrocytes and on 
the two types of glial cells involved in inflammatory 
reactions (microglia and astrocytes). Indeed, purinergic 
signals severely affect neuro-inflammation (115, 123, 124). 
Modulation of ischemic brain injury and neuro-
inflammation by A2AAR has been described as well as a 
novel role for glutamate in the modulation of neuro-
inflammation and traumatic brain injury by the same 
receptors (83, 125). The role of caffeine and other A2AAR 
antagonists in attenuating LPS-induced neuro-inflammation 
in rats has confirmed these data (81, 126). The molecular 
pathway in mouse and human microglia responsible of 
converting ATP-driven process of extension into a process 
of retraction during inflammation has been reported: such 
chemotactic reversal was driven by concomitant A2AAR 
up-regulation and P2Y12R down-regulation (127). Some 
P2 receptors (P2X4R, P2X7R, P2Y6R) localized on 
microglia have been shown up-regulated in mouse models 
of amyotrophic lateral sclerosis, indicating the pro-
inflammatory action of such receptors (128). In particular, 
P2XR, have been recognized to affect neuronal cell death 
through their ability to regulate the processing and release 
of IL-1-beta, a key mediator in neuro-degeneration, other 
than in chronic inflammation and chronic pain (129). 
Interestingly, P2X7R over-expression was associated to 
microglial activation and proliferation (130). In addition, 
the neuronal soma-satellite glial cell interactions in sensory 
ganglia have suggested the participation of purinergic 
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Figure 2. Inflammatory network in the central nervous system via purinoceptors. A schematic representation of the main cell 
interactions in the central nervous system, following damage to neurons, and involving purinergic receptors, is reported. Damage 
(injury) to neural cells can activate the release of mediators from the same cells. Released nucleotides provokes activation via 
purinoceptors of astrocytes and microglia, which produce cyto-chemokines able to re-activate neural cells. Abbreviations: 
AR=adenosine receptors; P2XR and P2YR=P2X and P2Y receptors 

 
receptors in these intracellular communications (131). 
Finally, an involvement of P2Y1R (132) and P2Y12R 
(133) over than of P2X4R, P2X7R, and P2Y6R have been 
proposed in microglial activation. A particular role for 
P2X7R and P2YR have been shown in the inflammatory 
pathways in astrocytes (134, 135). Chemotaxis through 
P2Y12 receptors of microglia as well as phagocytosis 
through P2Y6R, following nucleotide release from 
damaged neurons, have been reported (136). 

 
Since pain represents an important component in 

the inflammatory processes, a brief relief on pain 
transmission mediation by purinergic receptors may be 
useful. Purinoceptors have been identified in central 
(neurones, astroglia, oligodendroglia and microglia) and 
peripheral nervous system (sensory, sympathetic, 
parasympathetic, enteric neurones) (1). P2XR and P2YR 
have been described not only on sensory neurons but also 
on their peripheral and central terminals in dorsal root, 
nodose, trigeminal, petrosal, retinal and enteric ganglia. 
During inflammatory processes, ATP released from 
damaged cells and from sensory nerves of inflamed tissues 

is able to stimulate purinergic receptors of nociceptive 
neurons, thus initiating a nociceptive signalling. Indeed, 
purinergic mechanisms are enhanced in inflammatory 
conditions. Several works have highlighted the contribution 
of both adenosine receptors (69, 80), and P2XR or P2YR to 
pain transmission (70, 137-140) both in central and 
peripheral nervous system. 

 
The main cell activations in the central nervous 

system, mediated by purinergic receptors, are schematically 
reported in the Figure  2. It is noteworthy that some cyto-
chemokines released from the glial cells could be able to 
further activate neurons and oligodendrocytes which are 
also endowed of purinergic receptors. In the context of 
identification of P2XR expression on nociceptive neurons 
and on their peripheral terminals, we hypothesized some 
years ago the role of such receptors in the inflammatory 
pain transmission. Our studies have focused on the role of 
extracellular ATP interaction with P2X7R, able to mediate 
ATP cytolytic activity on macrophages: for this, we have 
tested the relief of inflammatory pain induced by the 
P2X7R inhibitor periodated oxidized ATP (oATP), 
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showing that oATP inhibited inflammatory pain in arthritic 
rats through the inhibition of P2X7R expression on 
peripheral nerves as well as on endothelial cells (141, 142). 
Moreover, we demonstrated that local, oral and intravenous 
administration of a single dose of oATP reduced thermal 
hyperalgesia in inflamed hind paws of rats and that, 
following oATP treatment, the expression of some pro-
inflammatory cytokines within the inflamed tissues 
markedly decreased on vessels and inflamed cells, 
associated with an impairment in P2X7 expression (143). 
The anti-hyperalgesic effect of oATP was also 
demonstrated in mouse models of visceral and neuropathic 
pain (144). Accordingly, others showed the efficacy of 
oATP treatment in preventing ATP excitotoxicity in 
oligodendrocytes, that resulted in improvement of 
experimental autoimmune encephalomyelitis (145). More 
recently, the anti-hyperalgesic effects of P2X7R blockade 
by a selective antagonist, in an inflammatory pain model in 
mice, has been shown mediated by blocking the release of 
IL-1-beta (146). 
 
7 PURINERGIC RECEPTOR ANTAGONISTS: 
THEIR ROLE IN INFLAMMATORY DISEASES 
 

The expression of many purinergic receptors on 
immune/inflammatory cells and their implications in 
immune/inflammatory reactions have emphasized the 
research of compounds able to antagonize or specifically 
block the involved receptors. For instance, due to the 
documented role of adenosine receptor subtypes in a 
number of the characteristic features of asthma, new 
molecules with high affinity and high selectivity for such 
human receptors designed to control the airway 
inflammatory component of asthma have been developed 
and currently tested in clinical trials (147, 148). 
Concomitantly, some A2AAR antagonists as caffeine were 
shown able to diminish adenosine-mediated 
immunosuppression, thus increasing inflammatory tissue 
damage secondary to enhanced immunity, but to enhance 
the immunomodulatory pathway useful to prevent 
inflammatory tissue destruction (149). Neuroprotection 
against inflammatory neurotoxicity and neurodegeneration 
associated with neuro-inflammation has been induced by 
caffeine and A2AAR antagonists in animal models of 
Parkinson’s disease (150). Accordingly, chronic caffeine 
consumption prevented memory disturbance in different 
animal models of memory decline mimicking Alzheimer’s 
disease (151). 

 
Extracellular ATP is the most known agonist of 

P2 receptors and can induce inflammation by binding to 
them and acting as a “danger signal”. It has been recently 
demonstrated that endogenous ATP contributed to smoke-
induced lung inflammation and then development of 
emphysema in mice via the purinergic receptor subtypes, 
such as P2Y2R (152). Recently, an interesting pathogenetic 
mechanism of chronic obstructive pulmonary disease 
(COPD) ATP-mediated has been reported (153). Based on 
this proposed model, cigarette smoke could activate lung 
and bronchial epithelial cells to produce chemokines able to 
recruit neutrophils to the lung tissue; cigarette smoke could 
also induce neutrophils to release ATP which, acting 

mainly through P2X7R, activates inflammasome pathway 
in epithelial cells and macrophages, favouring the release 
of IL-1-beta, thereby inducing chronic stages of the disease. 
Involvement of both P2X and P2Y purinergic signalling in 
pain, has also increased the literature regarding current 
developments of compounds for the therapeutic treatment 
of pain, including inflammatory pain (69, 154, 155). 

 
A recent review reports the new patented 

compounds able to bind each P2XR (P2X1R-to P2X7R) 
which could be attractive targets for novel therapeutics in 
areas comprising chronic inflammation and pain (156). 
However, among the receptor antagonists proposed as 
useful to reduce inflammation, the most studied and 
evaluated for clinical and research purposes seem to be the 
P2X7 receptor antagonists. In particular, the arise of 
inflammation in the central nervous system from a number 
of neurodegenerative disorders and tumors, as well as from 
ischemic and traumatic brain injury, mediated by the 
release of extracellular adenine nucleotides activating P2X7 
receptors, has highlighted the interest in compounds able to 
reduce neuronal cell death by inhibiting the inflammation. 
Indeed, recent patents on P2X7R antagonists and their 
potential for reducing central nervous system inflammation 
have been published (157, 158). The results regarding the 
P2X7R antagonists overcome the data related to the 
inflammation “in se”. In fact, ischemic damages causing 
oligodendrocyte death, myelin disruption and axon 
dysfunction mediated by P2X7R activated by ATP released 
during ischemia has permit to propose such receptors as 
therapeutic target to limit tissue damage in cerebrovascular 
diseases (159). Moreover, the identification of P2X7R 
expression in neuroblastoma cells, in which the receptor-
mediated Ca++ signal appeared important in maintaining 
cellular viability and growth, has encouraged the 
development of P2X7 selective antagonists to treat 
neuroblastoma (160). A recent review has focused the role 
of oATP in the treatment of some experimental models of 
inflammatory/immune diseases, reporting also patents 
related to the proposed effects of oATP in such diseases 
(161). The recent progress in the development of adenosine 
receptor ligands as anti-inflammatory drugs has been 
previously reported (162). The above cited reviews (156, 
157, 161) exhaustively report the recently patented 
compounds antagonists of each P2XR subtype and in 
particular of P2X7R.  
 
8 CONCLUSION AND PERSPECTIVE 
 

Extracellular nucleotides are important players in 
regulating inflammatory response through the binding to 
purinergic receptors. The activation of such receptors plays 
many roles in various pathologic processes. In particular, 
the expression of purinergic receptors on immune cells 
have suggested for their important functions in the 
inflammatory/immune diseases. Indeed, endogenous 
nucleotides, released upon inflammatory injury by the cells 
of inflamed tissues, can in turn stimulate the release of pro-
inflammatory cyto-chemokines from immune cells, upon 
binding with purinoceptors. The development of 
compounds able to activate or limit purinergic receptor 
expression during inflammation may be relevant to 
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modulate the inflammatory processes. To this aim, a better 
knowledge of purinergic signal role in inflammation is 
mandatory. However, the hypothesis to control 
inflammatory diseases by regulating the purinergic receptor 
expression is at present very promising, and may offer a 
rational basis to design  targeted therapies. 
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