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Angiotensin II induces inflammation leading to cardiac remodeling
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1. ABSTRACT

Hypertension, especially for elevated renin-
angiotensin I (Ang II), induces cardiac fibrosis and
remodeling. Ang II, acting via its receptors, causes both
hemodynamic and nonhemodynamic effects. These effects
trigger a series of inflammatory responses. Recent studies
have demonstrated that hypertension stimulates infiltration
of leukocytes into heart, and interaction among
macrophages, T cells, and monocytic fibroblast precursor
cells regulates the imbalance of pro-inflammatory and anti-
inflammatory factors. Several studies have demonstrated
that the inflammatory microenvironment in hypertensive
heart promotes a forward feedback infiltration of
leukocytes, differentiation of monocytes, and formation of
myofibroblasts. An increased number of myofibroblasts,
the dominant source of extracellular matrix production,
results in deposition of collagen and cardiac remodeling. A
thorough understanding of the pathological process
underlying hypertension-induced cardiac remodeling may
help in prevention and treatment.
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2. INTRODUCTION

The dysregulated renin—angiotensin system
(RAS) plays a key role in the development of
cardiovascular diseases. Angiotensin II (Ang II), a core
effector of RAS, is a multifunctional peptide with
pleiotropic actions, modulating vasomotor tone, cell
growth, senescence, apoptosis, migration and extracellular
matrix (ECM) deposition (1). The increase in angiotensin
converting enzyme (ACE) activity and concentration of
Ang II causes inflammation. Ang II has an important
proinflammatory effect on cardiovascular diseases by
triggering vascular damage, inducing adhesion molecule
activity, recruiting inflammatory cells, increasing cytokine
expression and repairing tissue. The physiological effects
of Ang II are mediated by Ang II receptor subtype 1
(ATIR), which is widely distributed in many organs.
Cardiopathological fibrosis, including accumulation of
ECM, is a final fate of various CVDs, leading to increased
ventricular stiffness, with diastolic function failure and then
systolic cardiac dysfunction (2,3). ACE inhibitor (ACEI)
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and Ang II receptor blocker (4) slow down the
development of left ventricular remodeling (2). Recent
studies have demonstrated that inflammation is involved in
the whole process of cardiac fibrosis. The present review
focuses on the key inflammatory events linking Ang II-
induced inflammation and cardiac fibrosis.

3. ANG II AND INFLAMMATION

Ang II infusion stimulates the expression of P-
selectin, L-selectin, and E-selectin and P-selectin
expression via AT1. Increased vascular permeability occurs
as a direct consequence of pressure-mediated mechanical
injury to the endothelium. Increased vascular permeability
expands endothelial gaps and the intracellular junction.
Adhesive leucocytes on the endothelium begin to
transmigrate into tissue. Shulman et al. found that Ang II
stimulates the synthesis and secretion of vascular
permeability factors, also known as vascular endothelial
growth factor (VEGF), in patients with glomerular
diseases, primarily through the ATIR on vascular smooth
muscle cells (VSMCs) and endothelial cells (ECs). VEGF
regulates  angiogenesis, vascular permeability and
inflammation, independent of Ang Il-induced increase in
blood pressure change. Through a set of intracellular
signaling pathways, Ang II induces vascular endothelial
injury and dysfunction. For example, Ang II activates
NAPDH oxidase, generates oxidative stress and nitrogen
species, and triggers DNA breakage in endothelium (5). In
a Dahl salt-sensitive hypertensive rat model, Ang II
activated the endothelial apoptotic pathway, endothelial
nitric oxide synthase (eNOS) uncoupling, in hypertensive
heart failure (6). In clinical trials, blocking Ang II effects
by Ang II receptor blocker (ARB) reduced vascular
endothelial damage (7). Using intravital microscopy,
Alvarez et al. found that after Ang II infusion in rat
arterioles, the inflamed endothelium expressed adhesion
molecules and cell adhesion molecules and caused release
of mediators such as selectin, cell adhesion molecules and
integrins, intracellular adhesion molecule-1 (ICAM-1) and
vascular cell adhesion molecule-1 (VCAM-1) (8). Ang II
treatment stimulated these adhesion molecules moving to
the surface and initiated a series of pathological processes.
The process included leukocyte adhesion and
transmigration. Selectins, lectin-like molecules, present on
leukocytes (L-selectin), ECs (E-selectin) and platelets (P-
selectin), are involved in rolling of leukocytes. Ang II
infusion stimulates the expression of P-selectin, L-selectin,
and E-selectin expression via AT (9). In addition, Larsson
et al. reported that intravenous infusion of Ang II in healthy
volunteers elevated arterial blood pressure and activated
platelets (10); platelet-leukocyte interactions promoted
mutual cell activation and facilitated the secondary capture
of leukocytes (11). Selectins also prime leukocytes for
integrin-mediated leukocyte adhesion. Wang et al. found
impaired leukocyte adhesion in P-selectin—deficient mice,
which was rescued by soluble P-selectin mediated by the P-
selectin glycoprotein ligand 1 pathway (12). Integrin is
essential for cell interaction and cell communication.
Upregulated and activated integrin increases its affinity to
adhesion molecules, thus resulting in firm adhesion
between ECs and leukocytes. In cultured VSMCs. Using a
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co-culture system, leda et al. found that embryonic cardiac
fibroblasts regulated myocardial proliferation in a paracrine
fashion through integrin-1f signaling (13). Ang II also acts
as an autocrine fashion, a recent study used transgenic
mice with cardiac-specific expression of a transgene fusion
protein that releases Ang Il from cardiomyocytes (Tg-ANG
1) and found that, in animals with hypertension, cardiac
Ang II, acting via AT1IR, enhances inflammation, oxidative
stress, and cell death, contributing to cardiac fibrosis (14).

4. ANG II AND CHEMOKINES

Leukocytes move towards the injury site along
the chemical gradient. Chemokines, with low-molecular-
weight protein, induce leukocyte trafficking. Chemokines,
mostly involved in inflammation and remodeling, are
subdivided into 4 families (CC, CXC, XC, CX3C). In CC
chemokines, the first 2 cysteines are adjacent to each other,
whereas in the CXC chemokines, one amino acid separates
the first 2 cysteine residues. Infusion of Ang II in rats
stimulates the production of various chemokines (15,16).
Ang II can induce leukocyte infiltration into hearts, which
generates and releases CC and CXC chemokines (2,16,17).
Monocyte chemoattractant protein (MCP-1/CCL2) plays a
key role in regulating monocyte and T-lymphocyte
recruitment. Moreover, an ACE inhibitor or ARB reduced
macrophage infiltration by inhibiting MCP-1 production.
Haudek et al. reported that Ang II-infusion—induced cardiac
fibrosis required the induction of MCP-1, which modulated
the uptake and differentiation of a bone-marrow—derived
monocyte  fibroblast  precursor  population  (18).
Angiogenesis, the growth of new blood vessels, is a critical
biological event that occurs during chronic inflammation
and vascular remodeling (19,20). Strieter et al. showed that
CXCLS8 regulated vascular remodeling by modulating
angiogenesis in pulmonary fibrosis (21). Two pairs of
distinct chemokine-chemokine receptors, known as MCP-
1/CCR2 and fractalkine/CX3CR1, play a key role in
vascular remodeling by mediating lesion leukocyte
infiltration and increasing neointimal SMC expansion
directly (22). Kodali et al. demonstrated that the
proinflammatory chemokines eotaxin and stromal-cell-
derived cell factor-1 stimulate matrix metalloproteinase-2
(MMP-2) expression in arterial SMCs (23), whereas MMPs
facilitated leukocyte infiltration by degrading ECM. The
CC and CXC chemokines showed cross-talk. A CXCR2
antagonist reduced Ang Il-infusion—induced release of the
CC chemokines MCP-1, CCL3 and CCLS5, followed by
reduced neutrophil and mononuclear cell infiltration (24).
In a model of Apo E treated with ACEI, Abd et a/ showed
that inhibition of Ang II down-regulated expression of the
C-C chemokine receptor 9 (CCR9) and chemokine ligand
25 (CCL25). Moreover, inhibition of CCR9 by RNA
interference in hematopoietic progenitors of Apo E-
deficient mice significantly retarded the development of
atherosclerosis (25).

5. ANG II AND INFLAMMATORY CELLS
Ang II infusion induces the expression of

chemokines and infiltration of inflammatory cells into the
myocardium. Macrophages and T lymphocytes mostly
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contribute to the development of inflammation and
remodeling (26,27). ATIR is expressed in macrophages
and T and B lymphocytes. Circulating blood-derived
monocytes mature into tissue macrophages, with
involvement of macrophage-colony stimulating factor. De
Ciuceis et al. showed that genetic deletion of macrophage-
colony stimulating factor blocked Ang II infusion—induced
endothelial dysfunction, vascular remodeling, and oxidative
stress (28). In an Ang II infusion—induced aortic dissection
mouse model, Tieu ef al. found that Ang II stimulated
interleukin 6 (IL-6) production, promoted macrophage
recruitment and macrophage-derived MCP-1 expression
and accelerated macrophage-mediated vascular
inflammation and remodeling (29).

Macrophages play multiple and complex roles.
They are responsible for phagocytosis of dead cells and
debris and clearance of apoptotic cells. As well,
macrophages directly secrete the cytokines and growth
factors regulating fibroblasts and other cells. Circulating
monocytes that migrate into tissue undergo differentiation
into 2 distinct subsets in response to the microenvironment:
classically activated macrophages (Mls) and alternatively
activated macrophages (M2) (30). M1s are activated after
exposure to interferon y (IFN-y)-dependent response, which
propagates  inflammation. = M1  macrophages are
characterized by a high capacity to present antigen, high
IL-12 production, and high production of nitric oxide and
other reactive intermediates, therefore M1 macrophages
with this phenotype, are proinflammatory. On the other
hand, “alternatively activated” or M2 macrophages are
hyporesponsive to proinflammatory stimuli with an
enhanced IL-10 production. M2 macrophages are activated
by IL-4— or IL-13-mediated response, which inhibits
inflammation, promotes cell proliferation and stimulates
angiogenesis. Ang II may modulate macrophage
polarization. A recent study have shown that macrophages
from mice lacking mineralocorticoid receptor in myeloid
cells exhibited M2 macrophage phenotype.
Mineralocorticoid receptor deficiency in macrophages
prevented Ang Il-induced cardiac fibrosis, and vascular
damage. Therefore mineralocorticoid receptor regulates
macrophage polarization and Ang Il-induced fibrotic
responses (31). AT1R was expressed on macrophages. Aki
et al demonstrated that in a model of anti-glomerular
basement membrane glomerulonephritis, inhibition of Ang
Il reduced glomerular infiltration of macrophages and
suppressed M1 cytokines production, while high-dose ARB
increased the numbers of M2 macrophages and suppressed
inflammation (32). Moreover, macrophages from mice with
enhanced macrophage-specific ACE expression prone to
differentiated into M1 macrophage to suppress tumor
formation (33). Indeed human macrophage ACE expression
was also upregulated by IL-4 and IL-13, which promote the
"alternative" M2 activation of macrophages and decreased
by LPS and IFN-y. Mechanistically, AMPK increased ACE
expression and prevented the pro-inflammatory cytokine
production by macrophages (34).

T lymphocytes play an important role in the
genesis of Ang Il-induced hypertension and vascular
dysfunction. In 1986, clinical observations suggested that T
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cells were linked to hypertension; administration of T
lymphocytes during cancer treatment increased blood
pressure (35). Indeed, RAG-1-/- mice, deficient in T and
B lymphocytes, did not show hypertension and did not
develop abnormalities of vascular function during Ang II
infusion and these abnormalities were restored by
transferring T but not B lymphocytes (36). The
mechanism involves a pathway of Ang II infusion
activating NADPH oxidase subunits and reactive oxygen
species (ROS), modulating T lymphocyte activation,
increased tumor necrosis factor-o (TNF-o) and IFN-y
levels and, ultimately, hypertension caused by ATIR
(36). In a study involving specific antagonists and T cells
from ATIR- and AT2R-deficient mice, Hoch et al
showed that an endogenous RAS in T lymphocytes was
involved in regulating T-lymphocyte function, NADPH
oxidase activity and TNF-o production (37).
Furthermore, the adaptive immune response plays an
important role in Ang Il-induced hypertension. Various
hypertensive stimuli cause T-cell activation and
infiltration into target organs leading to increase in blood
pressure. T-cell activation requires T-cell receptor
ligation and costimulation. The latter often involves
interaction between B7 ligands (CD80 and CDS86) on
antigen-presenting cells with the T-cell coreceptor CD28.
A recent study showed that blockade of B7-dependent
costimulation with CTLA4-Ig reduced both Ang II -
induced hypertension. Furthermore, in mice lacking B7
ligands, Ang II can not increases blood pressure elevation
and vascular inflammation, and these effects were restored
by transplantation with wild-type bone marrow, these
results indicate T-cell co stimulation via B7 ligands is
essential for development of experimental hypertension
(38).

T-helper (Th) lymphocytes are subdivided into
Th1, Th2 and Th17 cells by their unique pattern of cytokine
secretion and functions. Ang II alters the balance of
Th1/Th2. Shao et al. reported that Ang II infusion induced
an increase in the production of the Thl cytokine IFN-y and
a decrease in that of the Th2 cytokine IL-4 in rats, whereas
administration of the ATIR blocker prevented the
imbalance of Th1/Th2 subsets (39). The changes in
imbalance of Th1/Th2 regulates cardiac remodeling; for
example, an elevated Thl immune condition led to pro-
fibrotic activity and increased ventricular stiffness, but an
Th2 immune condition reduced cardiac collagen disposition
(40). Madhur et al. reported that Ang II infusion stimulated
IL-17 production from Thl7 lymphocytes in the aortic
media. Indeed, IL-17—deficient mice did not show
hypertension after Ang II infusion and showed undamaged
vascular function and decreased superoxide production, as
well as less T-lymphocyte infiltration (41). Treatment with
ACEI induced proliferation of regulatory T lymphocytes
and suppressed autoreactive Th1l and Th17 proliferation in
an animal model of multiple sclerosis (42). Kvakan et al.
demonstrated that adoptive transfer of regulatory T
lymphocytes inhibited CD4', CD8', CD69" cell and
macrophage infiltration, ameliorated cardiac damage and
explained the improved electric remodeling independently
of blood pressure in Ang Il-infused hypertensive mice
(43). (Figure 1).
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Figure 1. Angiotensin II promotes to macrophage polarization.

6. ANG II AND IMBALANCE OF INFLAMMATORY
OR ANTI-INFLAMMATORY CYTOKINES

Cytokines regulate the activation and growth of
inflammatory cells. Ang II stimulates NF-kB activation and
ROS production through both ATIR and AT2R, thus
leading to coordinated increases in the expression of genes
and proinflammatory cytokine secretion. Ang II infusion
stimulated the production of proinflammatory cytokines
such as IL-1B, TNF-a, IL-6 and inducible nitric oxide
synthase (iNOS) in many organs such as heart, liver,
kidney, brain and retina (44,45,46,47). Gurantz et al.
reported that IL-1B and TNF-a act coordinately to increase
ATIR density in post-myocardial infarction in rat (48).
These studies suggested a vicious cycle of Ang Il-induced
myocardial cytokine production and cytokine-induced
increase in Ang II activity. This situation is further
demonstrated by a study of transgenic mice showing that
myocardium-specific overexpression of TNF-o promoted
cardiomyocyte apoptosis and led to fibrotic and dilated
hearts with decreased cardiac function, with increased
proinflammatory cytokine expression, whereas TNF-a
neutralizing antibody treatment rescued these features in
part (49). A myocardial infarction mouse model showed
that genetic deletion of TNF-a suppressed inflammatory
cell infiltration in the early phase and protected against
cardiac rupture, cardiac dysfunction and myocardial
apoptosis (50). Yamamoto et al. found that ARB treatment
ameliorated TNF-o—induced reduction in eNOS expression
and cell injury by inhibiting superoxide production or NF-
kB activation in human umbilical vein endothelial cells (6).
TNF-a exerts distinct biological effects through the TNF-a
R1 and R2 receptors. With a myocardium infarction model
of 2 strains of knockout mice (R17" and R2”"), TNF-a R1
signaling was found to be cardiotoxic by upregulating IL-
1B, IL-6 and MCP-1 production, whereas TNF-o R2
signaling was protective (51). However, the role of TNF-a
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R1/R2 in Ang II-induced cardiac injury and repair has not
been well investigated.

IL-1B signaling promotes the development of
cardiac remodeling, exclusively through IL-1 receptor (IL-
IR). IL-1R-null mice exhibited less infiltration of leukocytes
and low expression of chemokines and cytokines. Reduced
inflammation in IL-IR” mice was followed by reduced
collagen deposition, less myofibroblast formation, and
attenuated fibrotic response after myocardial infarction (52).

IL-6 acts via a receptor complex consisting of the
cognate IL-6R (IL-6R) or the soluble IL-6R (sIL-6R) and
glycoprotein 130 (gp130). Administration of the inhibitor of
gp130 did not induce hypertension in response to Ang II
infusion, and Ang II infusion did not lead to hypertension or
cardiac hypertrophy in IL-6"" mice (53), indicating that IL-6 is
required for mediating Ang Il-induced vascular inflammation
and remodeling.

Osteopontin  (OPN), a key component of
recruitment of macrophages and ECM, was found increased in
cardiac hypertrophy, and its knockout attenuated fibrosis
(54,55,56). Ang 1II infusion stimulated OPN expression in
VSMCs, and knockout of OPN gene suppressed CD68"
macrophage infiltration, CCR2 production and VCAM
expression. Knockout of OPN finally attenuated the
formation of atherosclerosis and aneurysm in Apo E”" mice
(55,57). Recombinant IL-18 treatment stimulated OPN
expression in cultured cardiac fibroblasts, whereas IL-18
neutralizing antibody abolished the increase in OPN
expression. A mutation in the transcriptional factor IFN
regulator factor 1 blocked the upregulation of IL-18 and
OPN in cardiac fibroblasts. In addition, IFN regulator
factor 1 mutant mice showed a reduced response to
pressure-overload—induced expression of IL-18 and OPN,
cardiac fibrosis and diastolic dysfunction (58).
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IL-10 is secreted predominantly by activated
Th2 lymphocytes, M2 macrophages and Treg lymphocytes,
with potent anti-inflammatory properties. IL-10 suppressed
the inflammatory response by inhibiting the production of
IL-1B, TNF-a and IL-6. Administration of ARB increased
the urinary levels of the anti-inflammatory cytokine IL-10
(59). Zemse et al. reported that IL-10 counteracted
impaired endothelium-dependent relaxation induced by
Ang II by decreasing NADPH oxidase expression in
cultured aortic rings in vitro (60). In IL-10-deficient mice,
systemic administration of Ang II produced marked
oxidative stress and modest damage of endothelial function
(61).

In conclusion, Ang II initiates an imbalance of
cytokines, increases the level of pro-inflammatory
cytokines such as TNF-a and IL-1P and correspondingly
decreases that of the anti-inflammatory cytokine IL-10,
which magnifies inflammation and leads to left ventricular
remodeling (62).

7. ANG II AND PRO-INFLAMMATORY SIGNALING
PATHWAY

Ang II binds to the ATIR, which activates a
series of signaling cascades involved in pro-inflammation.
Ang II elicits an inflammatory response that appears to
depend on the production of oxidant stress and activation of
transcriptional factors (e.g., NF-xB, Ets-1 and Egr-1)
(55,63,64). Several studies have suggested that ROS and
reactive nitrogen species (RNS) play important roles in the
regulation of Ang II signaling. In cardiac fibroblasts,
stimulation with cytokines induces ATIR up-regulation,
while nitric oxide (NO) decreases AT1R through cysteine
modification of a NF-xB. The difference between the
effects of ROS and NO on AT1R expression may be caused
by the difference between intracellular location of ROS
signaling and that of NO signaling (65). Oxidative stress is
implicated in cardiovascular function by regulating the
unbalanced expression of inflammatory genes, endothelial
dysfunction and ECM formation. Ang II infusion is
accompanied by an increase in oxidative stress via AT1R
(4,66). In renin-overexpressed rats, Ang Il-mediated
cardiac oxidative stress, which promoted myocardial tissue
remodeling, was inhibited by ATIR blockade and
superoxide dismutase/catalase (67). Oudit ef al. found that
Ang Il-mediated oxidative stress, neutrophil infiltration,
and pathological hypertrophy were responsible for the age-
dependent cardiomyopathy in ACE2"" mice (68). ACEI or
ARB treatment attenuated oxidative stress, thereby
preventing cardiac remodeling (6,69). Ang II activated
NAPDH oxidase in ECs and VSMCs to generate ROS such
as superoxide and hydrogen peroxide in mitochondria
(70,71,72). C-Src, epidermal growth factor receptor
(EGFR) transactivation and phosphatidylinositol-3-kinase,
were upstream mediators in the Ang II-induced activation
of NADPH oxidase. A recent study identified that Ang II
via activation its receptor AT1R, stimulated an assembly of
a CARMA3-Bcll10-MALT1 signalosome and led to
activation of NF-kB. Knockout Bcll0 protected from
developing Ang Il-dependent atherosclerosis (73).
Activation of NF-kB led to coordinated increases in the
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expression of many genes whose production mediates
inflammatory responses, including pro-inflammatory
cytokines, chemokines (MCP-1 and IL-8), adhesion
molecules (ICAM-1, VCAM-1), E-selectin and iNOS,
which initiates and sustains the ongoing inflammation (55).
Several stimuli such as high shear stress, oxidative stress,
and the pro-inflammatory cytokines IL-1f and TNF-o,
related to cardiovascular diseases, were shown to activate
NF-kB. Ang II activated NF-xB through AT1R, and Ang II
stimulated proinflammatory factors via NF-«B activation
(74,75,76). Inactivation of p65 by inhibiting IKK and
ribosomal kinase blocked Ang II-induced vascular
inflammation (12). NF-xB inhibition by pyrrolidine
dithiocarbamate (PDTC) ameliorated Ang Il-induced
increase in cardiomyocyte apoptosis, type I collagen
expression, interstitial fibrosis and LV wall thickness (77).

8. ANG II AND MYOFIBROBLASTS

Activation of fibroblasts to myofibroblasts,
which can express o-smooth muscle actin (a-SMA) and
produce ECM components, is a key event in connective
tissue remodeling. Myofibroblasts are a dominant source of
collagen in cardiac remodeling. Residential fibroblasts can
proliferate and differentiate into myofibroblasts in response
to injuries and may be responsible for wound repair or
pathological organ remodeling (78). However recently,
Haudek et al. indicated that bone-marrow—derived
CD34"/CD45" fibroblast precursors, which traffic to
fibrotic tissue and the site of injury, can differentiate to
myofibroblasts, whereas the structural fibroblasts are
CD34/CD45" cells (18). The recruitment of bone-marrow—
derived fibroblast precursors was mediated through a
chemokine-dependent mechanism. Ang II infusion resulted
in the appearance of spindle-shaped, bone-marrow—derived
CD34'CD45" cells that express type I collagen (18).
Genetic deficiency of MCP-1 prevented the Ang II-
infusion—induced appearance of a CD34°CD45" fibroblast
precursor population and suppressed cardiac fibrosis (79).
Emerging experimental evidence also suggested that the
ECs could transdifferentiate into mesenchymal cells, which
can express a-SMA and could be another contributor to
cardiac and vascular development, as well as
pathophysiological vascular remodeling (18,80). Sopel et al
recently found that Ang Il-infusion stimulated the
expression of the SDF-1a, and infiltration of CD133" cells.
These data again suggest that mesenchymal progenitor cells
are recruited, and may have a primary role, in the initiation
of myocardial fibrosis (81).

Ang II stimulated cardiac and lung fibroblast
proliferation in vitro via activation of the ATIR (82,83,84).
As well, Ang II increased the expression of collagen type I
in a concentration- and time-dependent manner in cardiac
fibroblasts (5,85). Treating cardiac fibroblasts with Ang II
increased a-SMA expression and collagen synthesis (86).
Ang II protected cardiac fibroblasts against IL-1B-induced
apoptosis by downregulating iNOS expression and
phosphorylation of Akt/PKB (87). Ang II pre-treatment
reduced fibroblast-like synoviocyte apoptosis in response to
serum starvation and NO exposure through the activation of
NF-kB and the blockage of a caspase cascade via ATIR;
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Figure 2. Angiotensin stimulated inflammation and cardiac fibrosis. Elevated angiotensin II causes endothelial cells injuries and
platelets deposition. These initial events leads to expression of cytokines, chemokines secretion, and infiltration of inflammatory

cells followed by myofibroblasts formation, leading to cardiac remodeling.

while a specific ATIR blockade reverted this protective protect against cardiovascular events. Multiple studies
effect (88). demonstrated that cardiac remodeling is now accepted as
chronic inflammation that has “gone out of control” in
Evidence suggests that Ang II may have a response to “injuries”, whereas elevated Ang II causes
direct effect on myofibroblasts. Both ACEI and ARB these injuries summarized in Figure 2. However, there are
treatment inhibited the local proliferation of macrophages several important questions remain. For example, what are
and myofibroblasts (89). ACE2 was expressed carly events to mediate hypertension-induced cardiac
constitutively in human cardiac myofibroblasts but was not remodeling? How interaction between different leukocytes
detected in VSMCs or ECs (90). Myocardin-related contributes to cardiac remodeling? How does the network
transcription factors (MRTFs) are serum response factor interplay of different cytokines contribute to cardiac
(SRF) cofactors that promote a smooth muscle phenotype, remodeling? What is the mechanism for resolving and
Small et al recently proposed a mechanism for nonresolving of inflammation in the process of cardiac
myofibroblast activation, which showed that MRTF-A remodeling? What are the genetic variations attribute to these
controls the expression of a fibrotic gene and smooth inflammatory pathways?  Answering these question will
muscle cell differentiation in the heart. They found that certainly useful to develop novel diagnosis and therapeutic
knockout of MRTF-A prevent Ang Il-induced cardiac targets for complication of hypertension.
fibrosis and this protective effect is associated with a
reduction in expression of fibrosis-associated genes, 10. ACKNOWLEDGEMENT
including collagen lo2, a direct transcriptional target of
SRF/MRTF-A. These results established a role for MRTF- This work was supported by grants from the National
A in Ang Il-induced myofibroblast activation and fibrosis Science Foundation of China (30888004 and 81070090).
91).
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