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1. ABSTRACT

Osteoarthritis (OA) is a degenerative joint
disease particularly affecting the elderly population.
Although several genetic features have been characterized
as risk factors for OA susceptibility, a growing body of
evidence indicates that epigenetic effectors may also
modulate gene expression and thus contribute to OA
pathology. One such epigenetic regulator of particular
relevance to OA is Silent Information Regulator 2 type 1
(SirT1) which has been linked to aging and caloric intake,
Consistently, SirT1 has been also connected with various
age-associated diseases such as diabetes type II,
Alzheimers and osteoporosis. Recent reports show that OA
is linked to changes in SirT1 activity or levels within
cartilage. In human chondrocytes, SirT1 plays a role in
cartilage extracellular matrix (ECM) synthesis and
promotes cell survival, even under proinflammatory stress.
It appears that SirT1 fine tunes many cellular biochemical
processes through its capacity to interact and modify
various histone and non-histone proteins. Taken together
these investigations demonstrate that SirT1 is involved in
cartilage biology and could potentially serve as novel drug
target in treating OA even at its premature stages, thereby
possibly reversing mechanical-stress induced cartilage
degeneration.

2. INTRODUCTION

Osteoarthritis (OA) is a degenerative joint
disease particularly affecting the elderly population. It
causes severe joint pain and malfunction, leading to
major impairment in quality of life. The precise etiology
of OA remains obscure and no satisfactory
chondroprotective therapy has been yet offered to OA
patients. The impact of OA on health systems
worldwide is expected to be further accentuated by the
continuous increase in life expectancy. OA commonly
appears in joints such as the knee and hip, is often the
consequence of excessive loading which compromises
the resilience of the articular cartilage (AC), and thus is
common in overweight individuals. As OA progresses,
AC is severely degraded leading to restricted mobility
and inflicting severe pain.

The prevalence of symptomatic OA increases
with age and has been reported to affect approximately
10% of men and 20% of women over 60 years of age,
worldwide (1-5).  This disease impacts not only the
individual, but also the entire society, since these patients
are unable to work and require long-term expenditure
including pain-control drugs, surgical procedures and
lengthy physical therapy.
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The unique structure of the AC extracellular
matrix (ECM) plays a key role in its load bearing capacity.
It is composed of collagen fibers, the most prominent of
which is collagen type II, which provide tensile force to the
tissue (3,5). In addition, proteoglycans predominantly
aggrecan, provide a hydrated gel-like medium enabling AC
resilience to load-induced deformation (6,7,8). Aggrecan is
composed of a large protein core with branched and
charged glycosaminoglycans which enable the AC to draw
water molecules thus providing the tissue with its capacity
to deform (7,8). In OA, aggrecan and other ECM
constituents are degraded thereby reducing cartilage
lubrication and ability to withstand compressive loads (6).

Although several genetic features have been
characterized as risk factors for OA susceptibility (9-12), a
growing body of evidence indicates that epigenetic
effectors may also modulate gene expression and thus
contribute to OA pathology (13-19). These observations
turned the spotlight towards novel regulatory epigenetic
mechanisms in OA, cartilage biology and development. In
fact, recent emerging discoveries link OA pathology with
various epigenetic regulatory paths mediated by
microRNAs, DNA methylation and histone modifications
(20,21). This intriguing aspect insinuates that joint tissues
such as cartilage are responsive to environmental
conditions and subsequently undergo nuclear
reprogramming. Evidently these nuclear alterations lead to
changes in gene expression patterns and may thus lead to
cartilage degeneration as seen in OA.

One such epigenetic regulator of particular
relevance to OA is Silent Information Regulator 2 type 1
(SirT1) which has been linked to aging and caloric intake.
Given that obesity and ageing are known risk factors for
OA development, SirT1 could be related to OA
development and possibly constitute a potential therapeutic
target for the disease. This is especially true since levels of
SirT1 are altered during OA progression, as discussed in
detail below.

This review will explore the various attributes of
SirT1 in the physiology, biology and degeneration of
cartilage , with a special emphasis on OA. The review will
first introduce the basic biochemical theory of epigenetic
regulation via histone acetylation/deacetylation and the
relevant chromatin modifying enzymes involved in these
processes, including the class III histone deacetylases also
referred to as sirtuins. The latest discoveries linking SirT1,
a sirtuin member, to cartilage biology will be discussed
with respect to its potential implications in basic research,
diagnostics and therapy of cartilage degeneration and OA.

2.1. Introduction to epigenetics and sirtuins
Epigenetic regulation is defined as changes that

govern gene expression  patterns and cellular phenotype,
which are not dependent on the gene sequence. The
epigenome is a superior instance controlling the genome in
that it can determine which information within a given
region of the genome is induced or suppressed. Epigenetic-
mediated modifications include DNA methylation, micro-
RNA regulation and histone modifications (22-27).

Enzymes responsible for histone modifications are termed
“histone-modifying enzymes” and are responsible for post-
translational variations of histone tails that regulate the
degree of chromatin compaction and subsequently gene
transcription (22-27) (Figure 1). Histone modifications
include acetylation, methylation, ubiquitination and
phosphorylation, which mostly involve the N-terminal
histone tails perturbing from the nucleosomal unit. In
general, histone modifying enzymes are unable to bind to
chromatic regions without their association to transcription
factors (23-27). Therefore, these enzymes often form
complexes with various coactivators and transcription
factors to modulate the expression of their gene targets (23-
27), as illustrated in Figure 1.

The nucleosomal unit is a histone octamer
consisting of four dimers (H2A, H2B, H3, and H4), and
147 base pairs of DNA coiled around it (Figure 1).  The
most common and dynamic modification of histones is
acetylation, which is carried out by histone acetyl
transferases (HATs) and encourages DNA relaxation (i.e
euchromatin) by reducing the electrostatic binding of
histones to DNA. This leads to loosening of DNA and
subsequently to enhanced gene transcription through
recruitment of the transcriptional machinery (23-27). On
the other hand, histone deacetylation, carried out by histone
deacetylase enzymes (HDACs), promotes chromatin
condensation (i.e heterochromton), rendering the DNA less
accessible to associate with the transcriptional machinery,
leading to repressed gene expression (Figure 1).

Histone deacetylases are classified into four
classes; class I (HDACs 1, 2, 3 & 8 ), class II (HDACs 4, 5,
6, 7, 9 & 10), Class III which are also referred to as sirtuins
(SirT1-7), and Class IV (HDAC11). HDACs are classified
according to homology of their enzymatic domain with
yeast HDAC orthologs. Sirtuins are classified as class III
HDACs, perform deacetylation through an NAD-dependent
mechanism (27) and are characterized by their highly
conserved NAD+ binding and catalytic domain (22).
Sirtuins range in size from <40kD to more than 100 kD and
share a 300 amino-acid long conserved catalytic domain.
Depending on the isoforms, the cellular localization differs
from mainly nuclear for SirT1, 6 and 7, while SirT2 is
cytoplasmic, and SirT 3, 4 & 5 mitochondrial (22).  A
growing body of evidence shows that the predominantly
nuclear SirT1 can localize to the cell cytoplasm in various
cells or under stress conditions. As summarized in Table 1,
SirT1 transport could target various cytoplasmic proteins
and facilitate various cellular activities such as survival
under stress conditions (28-33).

SirT1, as other enzymatically active sirtuins,
binds acetyl-lysine to its catalytic groove only in the
presence of NAD (14,34). Following lysine deacetylation
and cleavage of NAD, O-acetyl-ADP-ribose and NAM are
produced. The resulting NAM molecule inhibits SirT1
activity in a noncompetitive manner, possibly via its
association with a different binding region then that of
NAD within the SirT1 protein (22). Thus, while abundance
of NAD drives SirT1 activity, accumulation of NAM
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Figure 1. Regulation of gene expression via histone acetylation. The nucleosomal octamer composed of 147bp DNA wrapped
around 8 histones (i.e H3, H4, H2A, H2B dimers) forms a barrel like structure, wherein the N-terminal histone tails are
perturbing and subject to post-translational modifications. This scheme illustrates acetylation (Ac) of histone tails. (A) According
to the accepted dogma, enhanced acetylation is facilitated by enrichment of HATS/TF complex rendering a relaxed state of
chromatin which exhibits augmented gene expression. (B) Moderate gene expression levels, due to complex formation of
HAT/HDAC/TFs which promote reduced acetylation of histone tails as compared to (A). (C) Local enrichment of HDAC/TFs on
regulatory gene sites which significantly reduce histone tail acetylation, thereby condensing chromatin and shutting off gene
expression. HAT- Histone aceytl transferase, HDAC histone deacetylase, TF transcription factor.

through enhanced deacetylation, acts as a negative
feedback loop by preventing SirT1 activity (Figure 2A).

3. BIOCHEMICAL ATTRIBUTES OF SIRT1

Since the enzymatic activity of SirT1 is
modulated by the bioavailability of its cofactor NAD
(Figure 2), many studies have aimed to elucidate the
dynamics between SirT1 and the salvage pathway enzymes
nicotinamide phosphoribosyltransferase (NAMPT) and
nicotinamide mononucleotide adenylyltransferase
(NMNAT), which are known to generate the intracellular
NAD depot (14,35,36). The importance of the salvage
pathway enzymes is especially relevant in cartilage biology
since oxidative phosphorylation is limited under the
hypoxic conditions of avascularized cartilage tissue.
Salvage pathway enzymes are highly expressed in
chondrocytes and most probably the key source of the
NAD depot within cartilage tissue, enabling the enzymatic
activity of SirT1 (14,37). Since chondrocytes are long-
lived and seldom replicate in adult articular surfaces,
cumulative biochemical attributes of aging could be

manifested through reduced bioavailability of NAD,
resulting in an enzymatic impairment of SirT1 (see Figure
2A) and possibly altered ECM expression.

Yet, not only NAD bio-availability is crucial for
SirT1 activity, but recent evidence shows that SirT1
enzymatic activity may be regulated by its post-
translational modification (Figure 2B).  For example,
phosphorylated SirT1 is enzymatically inactive (38).
Similarly, desumoylation on lysine 743 of SirT1 by SENP1
(SUMO/Sentrin-specific protease 1) causes a reduction in
SirT1’s activity (39). Additional reports identified protein
DBC1 (deleted in breast cancer 1) (40) as a repressor of
SirT1, whereas AROS (active regulator of SirT1) enhances
SirT1 activity (41). On a post-transcriptional level, recent
data demonstrate that the SirT1 RNA transcript can
undergo alternate splicing on exon 8, rendering a minor
effect in its deacetylase capacity (42).

Overall, cumulative data presented in this section
and summarized in Figure 2 indicate that as well as the
availability of NAD, SirT1 activity depends on various
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Figure 2. SirT1 activity and its influencing factors. (A). schematic illustration depicting the catalytic lysine deacaetylase activity
of SirT1. (B) The effect of various chemical, pharmaceutical agents and biochemical processes on SirT1 activity. Association of
proteins as DBC1 and AROS are known to modulate SirT1 activity. Post-translational modifications as cleavage,
phosphorylation, desumoylation are known regulators of SirT1 activity. In chondrocytes (32,44,78) SirT1 is cleaved by cathepsin
B to form a 75kD inactive fragment during proinflamatory stimuli. Biochemical and pharmaceutical agents (i.e. NAM, NAD,
resveratrol, SRT1720) may affect SirT1 activity in a dose dependent manner. NAM is generated following sirtuin lysine
deacetylation and transformed into NAD by the salvage pathway enzymes (i.e. NAMPT and NMNAT). Therefore active
NAMPT and NMNAT render increased NAD levels and enhanced SirT1 activity.

post-transcriptional and post-translational modifications.
Thus, the activity of SirT1 could be fine-tuned through
various extracellular circuits and regulators, including
biochemical and pharmacological factors as resveratrol and
SRT1720, respectively.

4. SIRT1 BIOLOGY IN HEALTHY AND OA
CARTILAGE

Figure 3 presents a model for SirT1 involvement
in OA, based on the evidence obtained from the literature.
During normal loading and non-inflammatory conditions
SirT1 is expressed and healthy cartilage homeostasis

maintained. As abnormal loading conditions develop in
articular surfaces, short-term exposure of chondrocytes to
inflammatory cytokines renders SirT1 a protective effect
which enhances chondrocyte survival and reduces
cartilage-specific ECM expression, possibly through
enhanced export of SirT1 to the cytoplasm (32). Long-term,
low-dose exposure to proinflammatory cytokines confers
severe OA, wherein SirT1 is barely detected (14,32,43),
and correlates with reduced collagen type II and aggrecan
expression as well as augmented chondrocyte death
(14,44). Additional increased Collagen type X (Col-X)
expression insinuates that chondrocyte hypertrophy occurs
under these conditions (43). The enzyme NAMPT (or
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Figure 3. Model for SirT1 involvement in OA. Lower left joint scheme illustrates non-inflammatory conditions wherein Full-
length SirT1 (FLSirT1) levels are elevated and correlate with enhanced collagen type II (Col-II) and aggrecan (Agg) expression
as well as chondrocyte viability. CE denotes catabolic enzymes, which are reduced when FLSirT1 is elevated.  Middle scheme
illustrates occurrences in early OA, wherein cartilage is exposed to increasing loads and short-term low-grade inflammation and
adipokines. Under these conditions FLSirT1 is cleaved to form 75SirT1 which promotes chondrocyte survival at the expense of
collagen type II and aggrecan expression. Upper right scheme illustrates severe OA, wherein articular cartilage has been exposed
to increased loads and low-grade inflammation for long-term periods. Under these conditions FLSirT1 is barely detected (14, 78,
32), causing enhanced CE, reduced collagen type II and aggrecan expression. The significant reduction of FLSirT1 is
concomitant with reduced 75SirT1, leading to augmented chondrocyte death and characteristic morphologic features of OA.
Additional increased Collagen type X (Col-X) expression insinuates chondrocyte hypertrophy occurs under these conditions. The
scheme is based on reports from references 14,32,43,54,71,70,78. * Adipokines have not been linked to SirT1 levels in cartilage,
but have been shown to be increased in OA and correlate with matrix degradation (50-55).

visfatin) is one adipokine (i.e. cell signaling protein
secreted by adipose tissue) which has been linked to SirT1
activity in cartilage (14,37), however so far other
adipokines have not been shown to modulate SirT1 activity
in cartilage. In this section, relevant data will be discussed
in detail with respect to the model proposed in Figure  3.

The first work correlating SirT1 to human OA
through its capacity to regulate chondrocyte-specific gene
expression was reported by Dvir-Ginzberg et al., (2008).
Stable and transient overexpression of SirT1 in human OA
chondrocytes resulted in increased RNA levels of aggrecan
and collagen type II, dependent on the activity of NAMPT
and NAD availability (14). A further mechanistic insight
regarding SirT1’s capacity to enhance collagen type II, was
found by chromatin immunoprecipitation assays, revealing
that SirT1 is able to recruit various coactivators and HATs
to regulatory gene sites, which is also consistent with

Furumatsu et al., (2005) and Kawakami et al., (2005),
(45,46). Sox9 was shown to be a deacetylase target for
SirT1, although this action did not enhance Sox9 binding
capacity to collagen type II chromatic enhancer region.
Consistent with these observations, Fujita et al. also
established a link between OA and reduced SirT1, and
correlated impaired SirT1 levels with reduced aggrecan
expression, as well as increased Col-X and ADAMTS5
expression (43). Fujita and colleagues indicated that
impaired SirT1 levels could contribute to cartilage
hypertrophy and loss of ECM.

Despite these observations, IL1-induced rabbit-
derived articular chondrocytes showed reduced collagen
type II expression while NAMPT expression and SirT1
activity were enhanced (37). Additional observations in
nucleus pulpus (NP) chondrocytes derived from
intervertebral disc (IVD) of human subjects, showed that
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Figure 4. The influence of the adipokine visfatin (i.e. NAMPT) on cartilage homeostasis. (A) hypothetical scheme which depicts
increased adipokine secretion into synovium, with increased weight. "IFD" denotes infrapatellar fat pad. One such adipokine
relevant to SirT1 activity (Figure 2B) is NAMPT/visfatin. Ectopic exposure to NAMPT/visfatin correlates with reduced
proteoglycan production. (B) Chondrocytes exposed to proinflammatory cytokines may posses enhanced NAMPT/visfatin levels,
which correlate with enhanced levels of catabolic enzymes (CE) and reduced aggrecan and collagen type II (Col-II) levels.

SirT1 levels were elevated in early stages of IVD
degeneration (47). These results demonstrated that SirT1
reduced anabolic gene expression (i.e. for aggrecan and
collagen type 2), while increasing NP proliferative
capacity. Contradicting data regarding regulation of ECM-
encoding cartilage genes by SirT1 possibly derive from the
variations in chondrocyte sources. Such variations in gene
expression profiles are also possible due to altered SirT1
enzymatic activity (Figure 2B) or variations in the capacity
of SirT1 to associate with other contributing coactivators
such as p300, GCN5, PGC and Sox9 (14,45,46,34). In
fact when SirT1 is cleaved and inactivated during
TNFdependent stimuli of human chondrocytes, SirT1,
Sox9 and PGC1 exhibit reduced association to the
enhancer of collagen type II, resulting in an abrogated
expression of collagen type II (44). More detailed
mechanistic insight as to SirT1s association with regulatory
gene loci of repressed or activated cartilage ECM genes
could provide informative insight as to the diverse mode of
SirT1-mediated regulation in anabolic and catabolic gene
expression. The use of sophisticated molecular techniques
as chromatin immunoprecipitation protocol (ChIP) and
sequential-ChIP will shed new light onto the exact
regulatory mechanisms and protein complexes controlling
gene expression, which might be dependent or independent
on SirT1.

Under hypoxic stress SirT1 promotes hypoxia-
inducible factor 2 (HIF2 transcriptional activity in cells
other then chondrocytes (48). The finding that HIF2
encourages cartilage catabolic gene expression in human
chondrocytes (49), implies that an indirect SirT1/HIF2
regulatory axis may cause augmented catabolic gene
expression in chondrocytes. Still, the mechanism by which

SirT1 may regulate catabolic gene expression during
inflammation and whether this mode of regulation is
directly upon the gene loci or indirect via association with
other regulatory factors remains to be determined.

It is also known that adipokines as well as
cytokines play a significant role in OA and cartilage
homeostasis (Figure 4A) (50). This is especially relevant
since obesity is a major risk factor in OA development. In
obese or overweight individuals cartilage is subjected to
increased load as well as enhanced exposure to adipose-
derived adipokines or cytokines, either systemically or
locally through the joint infrapatellar fat pad (51, 52).
Enhanced adipokine levels may regulate SirT1 activity in
the surrounding articular surfaces. Of particular interest in
connection with SirT1 regulation is the adipokine visfatin
(i.e NAMPT), an NAD salvage pathway enzyme which is
released from the infrapatellar fat pad into the synovium
where it correlates with augmented biomarkers of cartilage
degradation (52,53). However, it remains to be determined
whether enhanced NAMPT/visfatin in the joint milieu is
capable of entering chondrocytes and thus potentially
modulating SirT1 activity through enhanced NAD levels.

Recently Yammani and Loeser reported that
NAMPT/visfatin inhibits Insulin-like growth factor 1
function by activating an independent ERK/MAPK
pathway, which correlates with reduced proteoglycan
production (54). In line with these observations IL1-
stimulated articular chondrocytes displayed enhanced
NAMPT/visfatin expression and SirT1 activity which
results in reduced collagen type II expression (37).
Interestingly, it appears that intracellular levels of
NAMPT/visfatin could be modulated by external
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inflammatory cues as illustrated for human chondrocytes
by Gosset et al., (55) and additionally supported by Hong et
al., (37). Gosset and colleagues reported that IL1
increased intracellular NAMPT/visfatin levels in
chondrocyte cultures together with an elevation in catabolic
gene expression and a reduction in aggrecan expression
(55). Elevated NAMPT/visfatin levels may not necessarily
elicit enhanced intracellular NAD levels since these also
depend on NMNAT levels, which is another member of the
NAD salvage pathway (see Figure 2B). Further,
modulation of SirT1 activity is not only dependent on NAD
availability but also on post-translational modifications of
SirT1, as previously summarized in Figure 2B.
Notwithstanding, the recent advances in the field of
adipokines provide promise in understanding the
pathogenesis of OA. With respect to SirT1 activity and its
role in OA, the adipokine NAMPT/visfatin is of particular
interest since it elicits cartilage degeneration (Figure 4A)
even under pro-inflammatory stimuli (Figure 4B).
Therefore future evidence regarding SirT1 and NAMPT,
should confirm that enhanced NAMPT/visfatin levels are
accompanied with enhanced SirT1 activity due to
increasing NAD levels and not as a result of post-
translational modifications (Figure 2B).

5.  LINKING SIRT1 AND CARTILAGE
BIOMECHANICS

Even though it is well recognized that OA is a
multifactorial disease in which mechanical factors play an
important role, the nature of the complex biomechanical
interactions with epigenetic changes are largely unknown.
Mechanical factors are involved in maintaining a healthy
cartilage as well as triggering OA by for instance abnormal
patterns of mechanical loading (Figure 3). Regardless, the
specific mechanisms by which chondrocytes sense
mechanical signals and convert them to an intracellular
biochemical response is poorly understood. Yet, the final
metabolic response of mechanically stimulated
chondrocytes appears to be the result of signals received by
several signal transduction pathways including integrin-
mediated pathways, stretch activated or inactivated ion
channels, involvement of the cytoskeleton, decreased pH,
electrical streaming potential, nitric oxide or second
messenger systems (56-58).

Further evidence pointing to the role of
epigenetic changes in OA stems from human OA
chondrocytes presenting higher levels of HDAC1, HDAC2
and HDAC7 (17,59) as well as decreased levels of SirT1
(illustrated in Figure 3). Recent in vitro and in vivo studies
using cartilage from rats, rabbits and steers revealed that
certain mechanical stimuli are able to antagonize both the
IL-1 induced increased expression of iNOS, COX-2,
MMP-9 and MMP-13 as well as the IL-1 induced
decreased aggrecan production (59-63). This anti-
inflammatory effect of certain mechanical stimuli seems to
be mediated by the NF-κB-pathway (63,64). This pathway
is also modulated by SirT1 since its overexpression results
not only in an inhibition of p53 but also in reduced
transcription of the p65 NF-κB subunit by promoting its
acetylated state and thereby preventing expression of

inflammatory-responsive genes (65,66). However, in the
biomechanical studies mentioned above cartilage from
young animals was used, making the extrapolation to the
pathophysiology of elder human patients quite difficult.
Along this line, several studies already showed that age,
species, severity of disease and even the joint sample
investigated have a tremendous impact on the signal
transduction pathways used and thus on the resulting
metabolic response (67-70). Therefore, evaluation of any
possible interactions between biomechanical factors and
epigenetic changes should finally also include human OA
cartilage, if possibly from elderly or obese subjects.

6.  SIRT1, CELL SURVIVAL AND INFLAMMATION

It is well established that SirT1 regulates cell
survival and gene expression under stress through its
capacity to interact with various non-histone proteins such
as p53, forkhead transcription factor, Ku70 and RelA/p65
(22). In the joint, SirT1 seems to play a role in promoting
chondrocyte survival, especially under inflammatory
conditions. Takayama et al., suggested that in
chondrocytes, SirT1 possesses the capacity to modulate
mitochondrial levels of Bax and Bcl2 in nitric oxide (NO)-
induced apoptosis (71). In addition, Gagarina et al.,
reported that the proapoptotic Protein Tyrosine Phosphatase
1B (PTP1B) is elevated in OA cartilage and that SirT1 is
capable of downregulating its level to achieve enhanced
chondrocyte survival (72). Also Lei et al. showed that in rat
articular chondrocytes resveratrol, a chemical activator of
SirT1, inhibits IL-1-induced nitric oxide synthase
expression via impaired NF-B transcriptional activity, and
thus further supports its role in promoting chondrocyte
survival under proinflammatory conditions (73).
Additional studies using Rheumatoid Arthritis (RA)-
derived synovial cells show that TNF enhances SirT1
expression, which in turn promotes cytokine production
while inhibiting apoptosis (74). Overall, these studies
strongly demonstrate that SirT1 promotes cell survival in
the joint, even under pro-inflammatory conditions.

Human chondrocytes stimulated with TNF
present a moderate increase in SirT1 protein levels,
however a portion of endogenous SirT1 is cleaved by
Cathepsin B to generate an inactive 75kD fragment
(75SirT1) (44). This fragment is partially translocated to
the cytoplasm and mitochondria (44,32; Table 1 and Figure
5), where it inhibits apoptosis. Similar observations were
made in TNF stimulated HeLa cells, showing that
caspases cleave SirT1, induce its transport to the
cytoplasm, enhancing apoptosis (33; Table 1). In
endothelial progenitors, Cathepsin B was also shown to
cleave SirT1 and generate a 75kDa fragment during stress
conditions, although its enzymatic activity and cellular
trafficking were not reported (75).  In chondrocytes,
Oppenheimer et al., found that 75SirT1 fragment is capable
to interact with the mitochondrial membrane and to block
Cytochrome C release from the mitochondria and
subsequent assembly with the apoptosome complex,
resulting in enhanced chondrocyte survival under
proinflammatory stress (32). Figure 5 illustrates the cellular
occurrences involving endogenous SirT1 cleavage and
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Figure 5. Intracellular trafficking  of 75SirT1 in chondrocytes and its role in survival. Following TNF stimulation, caspase -8
dependent lysosomal permeability occurs, releasing cathepsin B into the cell cytoplasm and nucleus. Active cathepsin B cleaves
nuclear FLSirT1 to generate an inactive stable 75SirT1 fragment, which is exported via CRM1 to the cytoplasm (broken arrows).
While in the cytoplasm, 75SirT1 interacts with cytochrome C on the mitochondrial membrane to prevent downstream
apoptosome assembly (broken arrows). Solid arrows indicate the TNF–cathepsin B pathways generated through activation of
truncated Bid (tBid). ALLN, a cathepsin B inhibitor, will block both Bid cleavage and 75SirT1 generation. The model may be
relevant in vivo for articular chondrocytes prone to OA development. Reproduced with permission from John Wiley & Sons (32).

trafficking of the cleaved 75SirT1 fragment under TNF
induction of human articular chondrocytes (32). Intact
cartilage of OA patients exhibited elevated levels of
75SirT1 and no full-length SirT1 (FLSirT1), whereas
normal cartilage showed only FLSirT1 (32). This raised the
question whether in the cytoplasm SirT1 is present only in
its cleaved form, and whether this enzymatically inactive
C-terminally truncated SirT1 form (i.e 75SirT1) carries out
an additional unknown regulatory role. Kang et al., (2011)
reported that a special region within the C-terminus of
SirT1 (76) is necessary for the catalytic activity. This result
is similar to our own study reporting that 75SirT1 lacks the
C-terminal end and is thus enzymatically inactive (44). In
light of these observations, it has yet to be determined
whether SirT1 possesses regulatory capacities that are
independent of its enzymatic aptitude.

7. SIRT1 AND “INFLAMM-AGING”

Aging increases susceptibility to a variety of
diseases such as OA, cardiovascular and neurodegenerative
diseases, cancer, diabetes and inflammation (22). Many
age-related diseases resulting in tissue degeneration are

caused by chronic inflammation and are thus termed
“Inflamm-aging”. Age-related diseases may also involve
regulation by SirT1. It may be that part of the anti-aging
function of SirT1 resides in its ability to inhibit
inflammation and its devastating effects (73, 77,65).
However, little is known about the effects of long-term
chronic inflammation on the expression and activity of
SirT1.  When examined in a cartilage context,
proinflammatory cytokines attenuate the functions of
SirT1, resulting in a decreased cartilage specific gene
expression in-vitro and in-vivo (32,44,78).  Our in-vitro
study indicates that 75SirT1 plays a role in prolonging
chondrocyte survival under proinflammatory conditions
(Figure 5), which was further verified in an animal model
using 129/J mice (32, 77). Gabay and colleagues found that
9-month old 129/J mice develop mild OA, which was
enhanced in severity in haploinsufficient SirT1 129/J mice
compared to age-matched wildtype (w.t.) controls (78).
Interestingly, a lesser extent of chondrocyte death was
observed in w.t. 129/J mice, which positively correlates
with enhanced 75SirT1 in w.t. vs. haploinsufficient SirT1
mice (77). These in-vivo data indicate that SirT1 could play
multiple roles in various conditions involving “inflamm-
aging” as seen in OA, by regulating various cellular
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Table 1. Role of cytoplasmic SirT1 in cell physiology
SirT1 protein Cell target Role in cytoplasm Culture conditions Reference
Full-length SirT1 PC12 (pheochromocytoma) cells Enhanced

Neurite outgrowth
NGF induction 28

Full-length SirT1,
SirT1 with truncated NLS

HeLa Enhanced apoptosis in
cytoplasm

H2O2 induction 29

Full-length murine SirT1 Cardiomyocytes from adult heart,
murine tissues and C2C12 myoblast
lines

Enhanced differentiation
and inhibited cell death.

*     LY294002
¶ Leptomycin B
# Antimycin A

30
* LY294002 inhibited nuclear

SirT1   localization. ¶
Leptomycin B inhibited
nuclear export by CRM1.
# Nuclear SirT1 suppressed
Antimycin A-induced
apoptosis.

Full-length SirT1 Prostate cancer cells, normal
prostate and cell lines

Elevated mitotic activity
and PI3K/IGF-1R
signaling in cancer cells

Normal vs. cancer
cells

31

75kDa-SirT1‡ Primary Chondrocytes Enhanced chondrocyte
survival via mitochondrial
association

TNF stimuli 32
‡ 75kDa SirT1 generated by

Cathepsin B cleavage.

Cleaved SirT1† Hela Cells Enhanced cell death TNF stimuli 33
† Caspase mediated cleavage of
SirT1

processes affecting gene expression and survival,
depending on the inflammatory, biomechanical and even
pharmacological environment.

8. CONCLUDING REMARKS

To conclude, recent data indicate that SirT1 is
necessary for healthy cartilage homeostasis and is reduced or
inactivated during systemic occurrences involving OA like
aging, adipokine release and inflammation. The reduction or
inactivation of SirT1 is correlated with reduced ECM
expression, enhanced expression of cartilage degrading
enzymes and even cartilage hypertrophy. More pronounced
proinflammatory cues that arise later in the pathophysiology of
OA, render SirT1 inactivation via cathepsin B specific
cleavage of the C-terminal end of SirT1 (Figure 3,5), causing
its export from the nucleus to the cytoplasm, where it acts as a
pro-survival factor (Figure 5). This process appears to correlate
with loss of cartilage ECM and with maturation (44,77).

As we progress towards the post-genomic era, we
find increasing evidence for the potential of nuclear
reprogramming in cellular phenotypes and its relevance in
disease. Age-related diseases such as OA are in the focus of
epigenetic research initiatives since their prevalence due to the
general aging of human population increase and thus have an
enormous impact on both the individual patient as well as the
health systems of our societies. The involvement of SirT1 in a
myriad of age-related diseases and its regulation by controlled
caloric intake lead several research avenues to examine its role
in OA. This review focused on recent advances in
understanding the role of SirT1 in OA, which is one of many
regulators that may contribute to joint destruction. So far,
reports support that SirT1 is required for normal cartilage
phenotype and is altered during OA and other pathologies
involving cartilage degeneration (summarized in Figures
3,4,5).

In future, more detailed molecular observations
could lead to a better understanding of the regulatory functions
of SirT1, either locally within cartilage-specific gene loci or

systemically affecting intracellular biochemical
processes of chondrocytes under various stress
conditions. Additional evaluations of in-vivo models
involving SirT1 in aging and chronic inflammatory
diseases will provide insight as to its involvement in OA
on a whole-organism level. OA can be triggered by
prolonged increased loads, and cartilage destruction is
further enhanced by abnormal stress. However, we have
yet to determine how these phenomena affect SirT1 and
understand how it in turn disrupts cartilage homeostasis
and chondrocyte survival. Elucidating the role of SirT1
in OA will expectedly provide novel biomarkers to
monitor OA susceptibility as well as identify potential
drug targets e.g. sirtuin activators to combat cartilage
destruction in OA, which is a debilitating degenerative
joint disease with increasing prevalence in the general
population.
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