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1. ABSTRACT 
 

Atherosclerosis is due to inflammation and 
endothelial dysfunction and damage caused by a variety of 
factors. Dysfunction of endothelial progenitor cells (EPCs) 
that differentiate into mature endothelial cell contributes to 
the development of atherosclerosis. Both the number and 
functionality of EPCs are regulated, particularly in vascular 
repair. Further elucidation of the role of EPCs in 
atherosclerosis could potentially enable the development of 
novel strategies for prevention and treatment of 
pathological changes in atherosclerosis. 
 
2. INTRODUCTION 
 

Atherosclerosis is a pathological inflammation of 
the arteries characterized by mononuclear cell infiltration, 
smooth muscle proliferation, and matrix protein 
accumulation in the intima; it is accompanied by 
endothelial dysfunction. Following endothelial injury, the 
arterial wall becomes lipid-laden and undergoes 
characteristic morphologic changes through a process 
similar to wound-healing (1-3). Although therapies 
targeting inflammation and cholesterol homeostasis have 
proven effective in preventing thromboembolic sequelae of 
atherosclerosis, atherosclerosis remains a serious health

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

problem worldwide. Vascular endothelial dysfunction or 
loss is a crucial event in the formation of atherosclerosis 
(4). Endothelial damage may be induced by oxidized lipids, 
free radicals, cytokines, haemodynamic stress, and high 
concentrations of blood cholesterol, resulting in native 
atherosclerosis. All of these events lead to acute stress 
injury, which results in apoptosis or necrosis of the 
endothelial cellular layer accompanied by a loss of 
antithrombotic properties (5). Because endothelial 
dyfunction and damage plays a key role in the 
atherosclerosis, a greater understanding of endothelial 
reparation is needed and could potentially aid in the 
development of novel strategies for the prevention and 
therapy of atherosclerosis. 

 
Following injury, adequate endothelial 

regeneration is crucial for diminishing arterial stenosis. 
Although mature endothelial cells repair the endothelium 
by migration and proliferation from surrounding areas, they 
are terminally differentiated and exhibit a low proliferative 
potential; thus, their capacity is limited. Therefore, stem 
cells are important in enabling endothelial regeneration. 
Endothelial progenitor cells (EPCs) exhibit the potential to 
differentiate into mature endothelial cells, a unique subtype 
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of bone marrow-derived cells with properties similar to 
embryonic angioblasts (6-8). Generally, EPCs are 
identified by flow cytometric characteristics, namely 
expression of CD34, CD133, or VEGFR2. Importantly, 
CD34+KDR+ combination is the only putative EPC 
phenotype that has been demonstrated repeatedly and 
convincingly to be an independent predictor of 
cardiovascular outcomes (9, 10). Accumulating evidence 
indicates that blood EPCs are able to repair injured 
vessels of dying endothelial cells in animal models (11, 
12). EPCs counteract ongoing risk-factor induced 
endothelial cell injury and participate in endothelial cell 
repair and regeneration (13). In this review, we will 
focus on the changes of EPCs in atherosclerosis.  
 
3. EPC AND ATHEROSCLEROSIS 
 

A deficit of EPCs potentially contributes to 
the development of atherosclerosis. It has been 
previously reported that chronic treatment with bone 
marrow-derived progenitor cells from young non-
atherosclerotic apolipoprotein E-deficient (ApoE-/-) 
mice prevents atherosclerosis progression in ApoE-/- 
recipients despite persistent hypercholesterolemia (14). 
During the development of atherosclerosis in ApoE-/- 
mice, endothelial turnover and repair by progenitor cells 
could potentially be derived from bone marrow (15). 
 

Population-based studies demonstrate the 
relationship between EPCs and atherosclerosis. In the 
population-based Bruneck Study, a significant inverse 
association was found between EPC number and extent 
of carotid atherosclerosis (16). In a middle-aged, general 
population, peripheral blood CD34+KDR+ EPCs were 
found to be determinants of subclinical atherosclerosis 
(17). This relationship has also been studied in different 
ethnicities; the number of EPCs are reduced in European 
and South Asian men with atherosclerosis independent 
of other risk factors (18).  
 

In the elderly, the relationship between EPCs 
and atherosclerosis is more obvious, particularly in 
patients with hypercholesterolaemia or cardiovascular 
disease. In patients with hypercholesterolaemia, the 
number of EPCs is inversely correlated with total 
cholesterol. The functional activities of isolated EPCs, 
such as proliferative, migratory, adhesive, and in vitro 
vasculogenesis capacity, were also impaired (19). In 
patients with stable coronary artery disease and patients 
with acute coronary syndrome, reduced levels of 
circulating EPCs independently predicts atherosclerotic 
disease progression, thus supporting an important role 
for endogenous vascular repair to modulate the clinical 
course of coronary artery disease (20). Patients 
undergoing percutaneous coronary intervention to the 
subsequent development of in-stent restenosis exhibit a 
higher number of subpopulations of EPCs that play a 
role in arteriogenesis compared with controls and patients 
with either progression of coronary atherosclerosis or stable 
disease (21). In summary, the number and functionality of 
EPCs is associated with the development of atherosclerosis 
both in the general population and in high-risk groups.  

4. MODULATION OF EPC IN ATHEROSCLEROSIS 
 

EPCs are modulated via several paths in 
atherosclerosis. The phosphoinositide 3-kinase (PI3K)/Akt 
pathway plays a key role in the modulation of EPCs. 
Atherothrombosis and its risk factors are associated with 
endothelial dysfunction (22), one manifestation of which is 
inadequate production of bioactive endothelial nitric oxide 
(NO). Remnant like particles (RLPs) inhibit nitric oxide 
synthase (eNOS) and telomerase activity, thus inducing 
atherosclerosis by promoting EPC senescence via focal 
adhesion kinase (FAK) and its downstream PI3K/Akt 
pathway via an oxidative mechanism (23). Meanwhile, the 
activation of the PI3K/Akt pathway promotes the 
protection of hypoxia against apoptosis in EPCs (24). The 
apoptosis of EPCs via PI3K/Akt pathway is down-
regulated by stromal cell-derived factor-1alfa (SDF-
1alfa)/CXCR4 (25) (Figure 1).  

 
EPCs shed increased microparticles, which 

reduce circulating EPC levels and thus contribute to 
increased aortic stiffness in addition to traditional risk 
factors (26). The semi-essential amino acid L-arginine is 
the principal substrate of the NO synthases. The 
modulation of EPC levels potentially leads to the beneficial 
effects of L-arginine in the prevention of atherosclerosis in 
hypercholesterolemic rabbits (27).  

 
5. EPC AND VASCULAR DAMAGE  

 
EPCs are involved in vascular damage; 

circulating EPCs potentially represent biological markers of 
occult vascular damage in offspring with hereditary risk of 
coronary artery disease (CAD) (28). Paracrine factors 
secreted by EPCs prevent oxidative stress-induced 
apoptosis of mature endothelial cells. Thus, EPCs also 
release angiogenic factors; when EPCs are infused into 
ischaemic limbs of immuno-compromised mice a 
remarkable improvement in perfusion and recovery from 
injury is observed (29-32). This supportive function of 
EPCs may be crucial to ensure the survival of tissue-
residing cells during vascular damage.  

 
Furthermore, EPCs express proinflammatory 

paracrine factors and adhesion molecules that are involved 
in atherosclerosis (33). Soluble factors secreted by EPC, 
potentially via broad synergistic action, exert strong cyto-
protective properties on differentiated endothelium through 
modulation of intracellular antioxidant defensive 
mechanisms and pro-survival signals (34). However, in 
patients with early coronary atherosclerosis retention of 
osteoblastic marker osteocalcin (OCN) (+) EPCs within the 
coronary circulation potentially lead to progressive 
coronary calcification rather than normal repair (35). 
OCN+ EPCs do not appear to lead to ideal reparation 
following vascular damage. Thus, the mechanisms 
underlying EPCs during vascular damage in 
atherosclerosis are complex; proinflammatory molecules 
are expressed on the one hand and protective factors are 
secreted on the other hand. We hypothesize that the 
expression of proinflammatory molecules is the response to 
damage, 
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Figure 1. Inadequate production of bioactive endothelial nitric oxide (NO) in endothelial dysfunction. Remnant like particles 
(RLPs) inhibit nitric oxide synthase (eNOS) and telomerase activity, thus inducing atherosclerosis by promoting EPC senescence 
via focal adhesion kinase (FAK) and its downstream PI3K/Akt pathway through an oxidative mechanism. Meanwhile, activation 
of PI3K/Akt pathway participates in the protection of hypoxia against apoptosis in EPCs. The apoptosis of EPCs via PI3K/Akt 
pathway is down-regulated by stromal cell-derived factor-1alfa (SDF-1alfa)/CXCR4. 

 
whereas secretion of protective factors is one of the 
primary functions of EPCs.  
 
6. REGULATION OF EPC IN VASCULAR REPAIR  
 

EPC number and functionality are considered to 
reflect the endogenous vascular repair capacity in 
atherosclerosis. During the process of vascular reparation, 
EPCs are regulated by several factors. Following ischemia, 
EPCs migrate from bone marrow to repair damaged sites 
either through direct incorporation of EPCs or by 
repopulating mature endothelial cells. Aging is associated 
with an increased risk for atherosclerosis. Age-dependent 
impairment of EPCs is corrected by a growth-hormone 
mediated increase of insulin-like growth factor 1 (36). 
Plasma cholesterol directly increases endothelial damage, 
and reduces endothelium repair capacity by endothelial 
progenitors in patients with hypercholesterolemia-related 
aortic stiffness (37). High-density lipoproteins enhance 
progenitor-mediated endothelium repair in mice (38). 

 
Homocysteine (Hcy) is a risk factor for vascular 

dysfunction. High levels of Hcy may result in vascular injury, 

accelerating atherosclerosis and leading to ischemia. Alam and 
colleagues found that increased Hcy leads to a decrease in EPC 
numbers. This decrease in EPC by Hcy potentially occurs via 
increased apoptosis, and B vitamin (B(6), B(9)) intervention 
can attenuate such effects (39).  
 

Aside from risk factors for atherosclerosis, 
protective factors are also involved in the regulation of EPCs in 
vascular reparation. Adiponectin protects against 
atherosclerosis and decreases risk in myocardial infarction. 
Lavoie and colleagues found that adiponectin protects certain 
EPC sub-populations against apoptosis, and therefore could 
potentially modulate the ability of EPCs to induce repair of 
vascular damage. (40) 
 
7. REGULATION OF CIRCULATING EPC LEVELS 
 

Atherosclerosis develops in an environment of 
endothelial injury and inflammation. Griese and colleagues 
(41) demonstrated that peripheral blood monocyte-derived 
EPCs home to bioprosthetic grafts and balloon-injured 
carotid arteries; the latter is associated with a significant 
reduction in neointima deposition. Likewise, infusion of 
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bone marrow-derived CD34-/ CD14+ mononuclear cells 
contributes to endothelial regeneration (42). Direct 
incorporation of circulating EPCs into the vessel wall has 
been reported in mice. In a model of transplant 
atherosclerosis, regenerated endothelial cells from arterial 
grafts have been found to originate from recipient 
circulating blood but not from the remaining endothelial 
cells of the donor vessels (43). Similarly, it has been 
reported that the endothelial monolayer in a vein graft three 
days post-surgery was completely lost and subsequently 
replaced by circulating endothelial progenitors (44). Taken 
together, these findings suggest that circulating EPCs 
contribute significantly to re-endothelialization. When 
released from bone marrow, EPCs are mobilized via 
cytokines such as stromal cell-derived factor (SDF)-1, 
nitric oxide, and VEGF, and then they are retained on the 
vascular surface by binding to adhesion molecules such as 
P/E-selectin and ICAM-1 (45). Once attached to the surface 
of the injured endothelium/vessel, EPCs differentiate into 
ECs. Next, the injured endothelial monolayer is regenerated 
by these circulating bone marrow derived EPCs that 
accelerate re-endothelialization and limit atherosclerotic 
lesion formation; the level of circulating EPCs potentially 
determines the capacity to repair.  

 
The level of circulating EPCs can be determined 

by the number of precursors EPCs in the bone marrow. The 
maintenance and mobilization of the precursors of EPCs in 
the bone marrow is determined by the local 
microenvironment, the “stem cell niche”, which consists of 
stromal cells (46). The direct influence of the overall risk 
factors for coronary artery disease on the bone marrow 
microenvironment remains unclear. However, the effect of 
aging has been extensively studied. The capacity to react to 
stress-induced mobilization gradually declines with 
increased age, whereas basal hematopoiesis is maintained 
during aging. (47). 

 
In addition to the number of precursors of EPCs 

in the bone marrow, many factors directly impact the level 
of circulating EPCs. Classical risk factors for 
atherosclerosis such as age are associated with reduced 
numbers of circulating CD34/KDR+ and CD133/KDR cells 
(48). Likewise, elderly patients exhibit a limited response 
toward EPC mobilization/differentiation stimuli and 
therefore exhibit a reduced number of circulating EPCs 
(49). Population-based data have served to confirm the 
decline of EPC number with advancing age (16). A lower 
increase in circulating EPCs has also been found in elderly 
patients following surgery (50); circulating EPC levels are 
higher during childhood compared to adult life (51). 
Studies in ApoE-/- mice (52) as well as in patients with 
coronary artery disease (53) have demonstrated that age 
significantly reduces circulating EPCs whereas the overall 
number of hematopoietic stem cells or mature endothelial 
cells remains unchanged. Thus, age itself potentially 
interferes with the functional activity of stem cells and 
progenitor cells.  

 
In addition to age, several factors are involved in 

the regulation of circulating EPC levels. A common feature 
of the characterization of various EPC subtypes is 

endothelial nitric oxide synthase (eNOS) expression. 
Deficiency for eNOS can cause impairment of VEGF-
induced mobilization of EPCs and blunt hematopoietic 
recovery following myelosuppression (54). Reduction in 
exercise-induced EPC mobilization has been observed in 
eNOS-/- mice (55). In addition, hyperhomocysteinemia 
(HHcy) contributes to atherosclerosis and coronary artery 
disease by inducing endothelial cell injury and dysfunction. 
Though EPC number and functional capacity has been 
found to be impaired in patients with Hhcy (56), the 
peripheral EPC population was not significantly altered in 
HHcy mice (57). Low-density lipoprotein apheresis also 
influences circulating EPCs in familial 
hypercholesterolemia. Hypercholesterolemic patients 
exhibit a lower percentage of EPCs compared to controls 
(58), whereas low dose endotoxemia in humans leads to a 
significant decrease in peripheral EPCs (59).  

 
The chromosome 9p21 locus was discovered in 

2007 by independent genome-wide association studies for 
coronary artery disease. This genomic region contains a 
gene encoding cyclin-dependent kinase 2A, a regulator of 
proliferation and differentiation of EPCs that has been 
implicated in vascular repair and protection against 
cardiovascular disease (60). However, the chromosome 
9p21 variant does not influence the risk of coronary heart 
disease and stroke via circulating EPCs (61). 

 
Angiotensin II receptor antagonism and aspirin 

exhibit an effect on the level of circulating EPCs. Pelliccia 
and colleagues (62) found that Angiotensin II receptor 
antagonism with telmisartan increases the number of 
regenerative EPCs and improves endothelial function in 
normotensive patients with coronary artery disease (CAD). 
In addition, aspirin has been found to exert a time-
dependent effect on circulating EPCs; however, the short-
term exposure to differing doses of aspirin exhibits an 
indeterminate effect on EPC levels (63). The regulation of 
circulating EPC levels is complex, and the precise 
underlying mechanism remains unclear. Erythropoietin has 
been shown to be correlated to vasculoprotective effects, 
such as enhanced nitric oxide production in endothelial 
cells and mobilization of EPCs. Darbepoetin, administered 
in addition to optimal medical treatment, can result in 
significantly improved endothelial function in patients with 
coronary artery disease, indicating that it could serve as a 
promising new atheroprotective treatment option (64). 
 
8. THERAPEUTIC POTENTIAL OF EPC 
 

EPCs have been extensively studied in 
atherosclerosis, and accumulating evidence indicates their 
importance in vascular repair and tissue remodelling. 
Researchers have investigated EPC therapy for 
atherosclerosis. The EPC therapy for atherosclerosis has 
been discussed for the aging population, and EPC therapy 
could potentially increase life expectancy in this population 
(65). In vivo and in vitro studies have demonstrated the 
effect of EPC therapy for atherosclerosis. Intravenous 
transfusion of spleen-derived mononuclear cells improves 
endothelium-dependent vasodilation in atherosclerotic 
ApoE-/- mic, which indicates the important role played by 
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circulating progenitor cells for ongoing vascular injury 
repair (66). The beneficial therapeutic effect on 
atherosclerosis following only EPC transplantation has 
been demonstrated by transplantation of bone endothelial 
progenitor cells that over-express paraoxonase-1 gene by 
recombinant adeno-associated virus in rats (67); this 
finding suggests that recombinant adeno-associated virus 
(rAAV)-mediated paraoxonase-1 (PON1) gene-transfected 
endothelial progenitor cells (EPCs) could serve as a potentially 
valuable new tool in the treatment of atherosclerosis.  

 
Furthermore, therapies that address EPC 

impairment would be helpful in atherosclerosis treatment. A 
greater understanding of the mechanisms in diseases that drive 
EPC senescence and apoptosis could potentially result in new 
treatment approaches for atherosclerosis. For instance, the 
therapy based on the PI3K/Akt/eNOS pathway may regulate 
senescence in EPCs. Physical exercise and other factors that 
increase EPC levels are well established activators of the 
PI3K/Akt pathway (55), suggesting that this may be a common 
pathway to support EPC survival. Although this clearly does 
not rule out the possible importance of other signaling 
pathways, such as Janus kinase/signal transducer and 
activator of transcription; activation of Akt may be useful 
in improving stem/progenitor cell therapy. Interestingly, 
overexpression of Akt recently has been shown to 
increase the efficiency of mesenchymal stem cell 
therapy after myocardial ischemia in mice (68). In 
addition, the use of NOS3 knockout mice has 
demonstrated that the beneficial effects were dependent 
on a functional eNOS. Interestingly, while transient 
statin therapy exhibits a positive effect on EPC 
numbers, chronic continuous treatment with a high 
amount of statins inversely correlates with the EPC 
number in patients with coronary artery disease (69). 
 
9. CONCLUSION 
 

Atherosclerosis is a progressive disease caused 
by endothelial dysfunction and damage by various risk 
factors. EPC deficit contributes to the development of 
atherosclerosis. In atherosclerosis, EPC number and 
functionality are regulated, particularly during the process 
of vascular reparation. Further elucidation of the role of 
EPCs in atherosclerosis could potentially permit the 
development of novel strategies for prevention and therapy 
of pathological and vascular changes in atherosclerosis. 
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