
[Frontiers in Bioscience 18, 1384-1391, June 1, 2013] 

1384 

The canonical Wnt-beta-catenin pathway in development and chemotherapy of osteosarcoma 
 
Chengjun Li1, Xin Shi1, Guangxin Zhou1, Xiaozhou Liu1, Sujia Wu1, Jianning Zhao1 
 
1Jinling Hospital, Dept Orthopedics, Nanjing Univ, Sch Med ,Nanjing 210002, Peoples R China 
 
TABLE OF CONTENTS 
 
1. Abstract  
2. Introduction 
3. Wnt-β-catenin pathway in development of osteosarcoma 
4. Wnt-β-catenin pathway in metastatic osteosarcoma 
5. Regulation of Wnt-β-catenin pathway in osteosarcoma 
6. Wnt-β-catenin pathway in resistant chemotherapy of osteosarcoma 

6.1. Doxorubicin 
6.2. Cisplatin 
6.3. Methotrexate 
6.4. COX-2 inhibitor 

7. Conclusion 
8. Acknowledgments 
9. References 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. ABSTRACT  
 

 The canonical Wnt-beta -catenin signaling 
pathway is a key component of normal skeletal 
development and disease. Alterations within this signaling 
pathway have been described in human and canine 
osteosarcoma (OS); however, debate exists as to whether or 
not alterations in this pathway contribute to OS 
development in humans. In metastatic OS, the Wnt-β-
catenin pathway promotes the invasion and migration of 
OS cells and β-catenin acts as a biological marker of OS 
with the potential to metastasize to the lung. The 
participation of the Wnt-β-catenin pathway in OS 
development and metastasis is regulated by several factors, 
including hormones and alkaline phosphatase (ALP). This 
pathway is also involved in the resistance of OS to 
chemotherapy, especially in resistance to all three drugs 
used in standard chemotherapy, i.e. doxorubicin, cisplatin 
and methotrexate (MTX). In this review, we will 
summarize recent findings regarding the Wnt-β-catenin 
pathway in OS development and chemotherapy.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 

 The canonical Wnt-β-catenin signaling pathway 
passes signals from extracellular receptors through the 
cytoplasm and ultimately to the cell’s nucleus, resulting in 
expression of target genes. The pathway is activated by 
binding of a Wnt ligand to a receptor complex which 
includes a member of the Frizzled protein family. The 
phosphoprotein dishevelled (Dsh) inhibits the activity of 
this multiprotein complex which also contains the proteins 
Axin, Adenomatous Polyposis Coli (APC), and glycogen 
synthase kinase-3β (GSK3β), transmitting the ligand–
receptor interaction intracellularly. In the absence of a 
suitable ligand, this complex promotes the proteolytic 
degradation of the intracellular signaling molecule β-
catenin. β-catenin is an obligatory, and the only 
nonredundant, component of the canonical Wnt pathway, 
involved in the control of stem cell pluripotency, cell 
proliferation, differentiation and migration. In normal cells, 
β-catenin is a tumor suppressor gene encoded by CTNNB1, 
which is present on the cytoplasmic side of the cell 
membrane and functions to support cell-cell adhesion (1,2). 



Wnt-β-catenin pathway in osteosarcoma 

1385 

 In bone development, the canonical Wnt-β-
catenin signaling pathway is required for osteoblast 
differentiation from a precursor, and for regulation of 
osteoblast maturation and activity (3), negatively regulating 
the differentiation of mesenchymal cells into a common 
skeletal precursor (1). Consequently, β-catenin activity is 
required for bone formation in both endochondral and 
membranous bones (4-6). In mature osteoblasts, β-
catenin also regulates osteoclastogenesis and osteoclast 
function (7). Excessive and inadequate Wnt pathway 
activities are associated with the pathologic bone 
conditions osteopetrosis and osteoporosis, respectively 
(8).  

 
 Osteosarcoma (OS) is the most common 

primary malignant bone tumor, with a yearly incidence 
of approximately 6 per million children and 2 per million 
adults (9). OS predominantly occurs in children and 
adolescents, having a peak incidence in late puberty, 
with 50% of patients being between 10 and 20 years of 
age, and 60% younger than 25 years (10,11). The overall 
relapse-free survival rate over 5 years is approximately 
65% (12). That the canonical Wnt-β-catenin signaling 
pathway contributes to OS has been a more recent 
discovery. This review will provide a summary of the 
canonical Wnt-β-catenin pathway and its role in the 
development and chemotherapy of osteosarcoma. Since 
β-catenin is an obligatory, and the only nonredundant, 
component of the canonical Wnt pathway, we will 
particularly stress the role of β-catenin in OS.  
 
3. THE WNT-Β-CATENIN PATHWAY IN THE 
DEVELOPMENT OF OSTEOSARCOMA 
 

 Alterations in the canonical Wnt-β-catenin 
pathway, especially involving β-catenin, have been 
reported in human OS primary tissues and cell lines. In 
human OS tissues, the expression of β-catenin is 
significantly higher than in normal tissues (13) or in 
osteoid osteoma, osteoblastoma or newly formed bone 
(14). In human OS cell lines, the major components of 
the Wnt-β-catenin pathway, including Wnt3a, β-catenin 
and Lef1, are upregulated compared to human fetal 
osteoblasts (15). This abnormal expression of 
components of the canonical Wnt-β-catenin pathway 
suggests a role of canonical Wnt-β-catenin signaling in 
OS development.  

 
 Based on a canine OS model, the intracellular 

location of β-catenin was identified within the cytoplasm 
of neoplastic cells (16). The β-catenin gene consists of 
16 exons and importantly, the third exon encodes the 
NH2 domain, which contains Ser33, Ser37, Ser45, and 
Thr41. These residues are sites at which β-catenin is 
phosphorylated by GSK3β. The GSK-3β-binding domain 
of β-catenin corresponds to its degradation targeting box 
and is encoded by exon 3 of CTNNB1. Activating 
mutations within this region, which have been described 
for the adamantinomatous subtype but not the papillary 
subtype of OS, promote β-catenin accumulation by 
inhibiting its degradation, thus leading to activation of 
WNT signaling. Stein and colleagues further found that no 

mutations in exon 3 of β-catenin were detected, which is 
similar to human OS (16). In contrast, Bongiovanni and 
colleagues (17) observed nuclear β-catenin immunostaining 
in normal osteoblasts but absent or low expression in most 
canine models of OS. Cai and colleagues (18) reported 
similar findings in human OS tissues and cell lines. They 
observed the absence of nuclear β-catenin staining in about 
90% of the human OS biopsies and human OS cell lines 
tested.  

 
 Among several histological subtypes of OS, 

conventional high-grade central or intramedullary 
osteosarcoma is the most common (75%) (19). Cai and 
colleagues suggested that the canonical Wnt-β-catenin 
pathway was inactive in conventional high-grade OS, 
while activation of this pathway inhibited cell 
proliferation or promoted osteogenic differentiation at 
this OS stage (18). Molecular studies on osteosarcoma 
are greatly hampered by the enormous genetic instability 
that obscures the identification of genetic loci involved 
in OS genesis (20). Cleton-Jansen and colleagues (21) 
found that the canonical Wnt-β-catenin pathway was 
downregulated in OS genesis of high-grade central 
osteosarcomas, and this difference in gene expression 
involved cell cycle regulation. One inhibitor of the 
canonical Wnt-β-catenin signaling pathway, namely 
dickkopf-1, was found to be required for reentry into the 
cell cycle of human adult stem cells from bone marrow 
(22). Thus, the canonical Wnt-β-catenin pathway would 
participate in cell cycle regulation at an early stage 
during OS development from stem cells. Targeting the 
canonical Wnt-β-catenin pathway may thus lead to 
promising new modalities for early prevention or therapy 
of OS. However, β-catenin cannot induce the malignant 
features and tumorigenicity conveyed by oncogenic H-
RAS when introduced into partly transformed 
mesenchymal stem cells, even though it can foster 
osteogenic differentiation (23). 
 
4. THE WNT-Β-CATENIN PATHWAY IN 
METASTATIC OSTEOSARCOMA 
 

 Studies on the prognosis of OS found that the 
Wnt-β-catenin pathway can act as a biological marker of 
metastasis. Relapse and/or metastasis of OS occurs in 80% 
of cases (24). Five-year survival rates are approximately 
80% with localized disease, but drop to roughly 30% if 
metastatic lesions are present (25). Pulmonary metastasis is 
the predominant site of osteosarcoma recurrence and the 
most common cause of death. Thus, metastatic prediction is 
significant in designing a therapeutic strategy. Since 
moderate/high cytoplasmic β-catenin expression (≥10% 
positive cells) is significantly associated with the 
development of metastasis (17), β-catenin is used as a 
biological marker of the metastatic potential of OS to the 
lung (26).  

 
 Abnormalities of the Wnt-β-catenin pathway are 

involved in the mechanism of metastatic OS. Expression of 
the Wnt receptor LRP5 is associated with metastatic 
disease in OS (27) and inhibition of LRP5 using a 
dominant-negative form of this receptor also inhibits tumor
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Figure 1. Abnormalities of Wnt-β-catenin signaling in 
metastatic OS. Overexpression of Dickkopf 3 can 
effectively reduce motility and invasion of OS cells by 
affecting intracellular β-catenin levels. Inhibition of LRP5 
also inhibits tumor cell motility and invasion. 
 

 
 
Figure 2. Abnormalities of Wnt-β-catenin signaling affect 
the activity of ALP. Activation of differentiation-inducing 
factor-1 (DIF-1) inhibits Wnt-β-catenin signaling, resulting 
in suppression of ALP promoter activity. Mitochondria are 
key in this regulation; Wnt-β-catenin signaling upregulates 
mitochondrial biogenesis, which in turn positively regulates 
β-catenin levels. 

 
cell motility and invasion (28). Thus, LRP5 plays an 
important role in promoting OS metastasis. Moreover, in 
OS progression, intracellular β-catenin is reduced by 
overexpression of Dickkopf 3, a member of the gene family 
encoding secreted proteins that control cell fate during 
embryonic development (29,30), and this leads to 
decreased motility and invasion of OS cells (28) (Figure 1). 
Thus, these findings support the role of the Wnt-β-catenin 
pathway in promotion of metastatic OS. Blockade of 
Wnt/LRP5 signaling inhibits met and metalloproteinase 
expression and reduces tumorigenicity and metastases in 
animal OS models (31,32). Knockdown of the β-catenin 
gene also reduces the invasive ability of OS cells by-
regulating MT1-MMP expression, suggestingn that β-
catenin could promote the invasion of OS by regulating 
MT1-MMP (33,34). Moreover, the role of the Wnt-β-
catenin pathway in OS metastasis is regulated by autocrine 
or paracrine mechanisms (35). 

5. REGULATION OF THE WNT-Β-CATENIN 
PATHWAY IN OSTEOSARCOMA 
 

 Several factors regulate promotion of the Wnt-β-
catenin pathway in OS through different mechanisms. In in 
vivo experiments with rat osteoblastic OS cells (UMR 106), 
the canonical Wnt-β-catenin signaling pathway was found 
to be regulated by parathyroid hormone, in part via the 
cAMP-PKA pathway through differential regulation of the 
receptor complex proteins (FZD-1/LRP5 or LRP6) and the 
antagonist (36). In primary human OS, β-catenin levels 
increased following silencing of WIF1 by promoter 
hypermethylation[0]. Although WIF1 was not required for 
normal skeletal development, loss of WIF1 increased 
susceptibility to radiation-induced OS in a mouse model (37). 
In addition, the effect of 1,25-dihydroxyvitamin D3 (1,25(OH)-
D3) was also associated with decreased β-catenin signaling due 
to inhibition of β-catenin gene activation by ligand-activated 
vitamin-D gene receptor signaling (38). 

 
 The etiology of high-grade central osteosarcoma in 

young patients is unknown. No benign or malignant precursor 
lesions are known. The expression of alkaline phosphatase 
(ALP) observed in OS recapitulates osteogenesis. In both 
canine and human OS, prognosis worsens with increased 
serum ALP concentration, correlating with shorter survival and 
disease-free intervals (39-42). The expression of ALP is 
generally used to identify cells of the osteoblastic lineage and 
is a hallmark of osteoblastic activity. ALP is also a 
transcriptional target of the Wnt-β-catenin signaling pathway, 
with activation of this pathway in osteoblasts being associated 
with increased ALP expression (43,44). Abnormalities of the 
Wnt-β-catenin signaling pathway could thus affect the activity 
of ALP. For instance, the activation of Differentiation-inducing 
factor-1 (DIF-1) could inhibit Wnt-β-catenin signaling, 
resulting in suppression of ALP promoter activity (45). DIF-1, 
a morphogen of Dictyostelium, inhibits cell proliferation and 
induces differentiation in several mammalian cells (46-48). 
Mitochondria play a key role in this regulation. An and 
colleagues (49) observed that in mouse mesenchymal 
C3H10T1/2 cells, Wnt-β-catenin signaling upregulates 
mitochondrial biogenesis, which in turn positively regulates β-
catenin levels (Figure 2). Furthermore, they found that both 
basal and Wnt-3-stimulated ALP activity was significantly 
suppressed in a human OS cell line devoid of mitochondrial 
DNA compared to that of mitochondria-intact cells (49). 
These findings further suggest that Wnt-β-catenin signaling 
participates in positive feedback with energy metabolism 
during Wnt-induced osteoblastic differentiation of stem 
cells. Even though expression of the canonical Wnt-β-
catenin pathway is abnormal in OS, Wnt-β-catenin 
expression does not correlate with serum ALP 
concentration in canine OS (50). 
 
6. THE ROLE OF THE WNT-Β-CATENIN 
PATHWAY IN CHEMOTHERAPY RESISTANCE OF 
OSTEOSARCOMA 
 

 Treatment with neoadjuvant and adjuvant 
chemotherapy in addition to radical surgery has been 
demonstrated to significantly improve the prognosis for 
osteosarcoma patients. An approximately 70% long-term 
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event-free survival rate for osteosarcoma patients can 
currently be achieved by using the standard three-drug 
chemotherapy protocol that includes doxorubicin, cisplatin 
and high-dose methotrexate (51). Nevertheless, multi-drug 
resistance and poor clinical outcome are the main problems 
in 50% of osteosarcoma patients (52). Therefore, 
identifying the mechanisms of action of chemotherapeutic 
agents could improve targeted therapy for OS patients. The 
Wnt-β-catenin pathway is involved in OS chemotherapy 
resistance, especially to standard three-drug chemotherapy.  

 
 Tumor stem cells possess characteristics 

associated with normal stem cells, specifically the ability to 
give rise to all cell types found in a particular cancer 
sample. Thus, tumor stem cells are tumorigenic compared 
to other non-tumorigenic cancer cells. By giving rise to 
new tumors, tumor stem cells can make tumors persist as a 
distinct population, and cause relapse and tumor metastasis. 
The poor prognosis of OS could be partly due to a failure to 
target these tumor stem cells, and development of specific 
therapies targeted at tumor stem cells therefore holds hope 
for improvement of survival and quality of life of cancer 
patients, especially for sufferers of metastatic disease. 
Salinomycin, which has been found to target tumor stem 
cells (53), inhibits OS by selectively targeting its stem cells 
both in vitro and in vivo without severe side effects (54). 
The canonical Wnt-β-catenin pathway is involved in the 
inhibitory mechanism of salinomycin (54), suggesting that 
the Wnt-β-catenin pathway may participate in tumor stem 
cell-targeting therapy for OS.  
 
6.1 Doxorubicin 

 Small interfering RNAs (siRNAs) are small 
double-stranded RNA molecules 20–25 base pairs in 
length, which interfere with the expression of specific 
genes with complementary nucleotide sequences. 
Integrative approaches coupling protein interaction maps to 
siRNA screening data have suggested that the components 
that constitute the Wnt-β-catenin signaling machinery in a 
given cell type are highly variable (55). Verkaar and 
colleagues (56) confirmed that small molecule-mediated 
cell-type-specific activation of Wnt-β-catenin signaling can 
be achieved. The siRNA-mediated silencing of β-catenin 
can suppress chemosensitivity of the human OS cell line 
MG-63 to doxorubicin, an anthracycline antibiotic which is 
widely used for the treatment of many different cancers 
including OS. Following knockdown of the β-catenin gene, 
chemoresistance to doxorubicin was reduced via the NF-κB 
pathway (33). Zhang and colleagues (34) reported similar 
findings in vitro with U2-OS cells. Wnt-β-catenin signaling 
targeting T-cell factor represses syndecan-2, a key 
modulator of apoptosis and chemosensitivity in OS cells, 
contributing to the resistance of OS to doxorubicin (57,58). 
 
6.2 Cisplatin 

 Cisplatin is widely used in the treatment of a 
variety of pediatric and adult solid tumors including OS, 
due to its therapeutic advantages such as high efficiency, 
mild side effects and easy administration. Cisplatin is a 
DNA-damaging agent that forms cisplatin-DNA adducts 
and kills cells via several mechanisms, including induction 
of apoptosis (59). Although high-grade OS can be 

considered as a cisplatin-responsive tumor, it may present 
an inherent or acquired resistance to this drug which 
severely limits its clinical efficacy (60). Thus, resistance to 
cisplatin leads to poor response to chemotherapy and 
treatment failure. Cisplatin resistance is multifactorial, with 
several different mechanisms that can be involved 
simultaneously. One of these mechanism involves Wnt-β-
catenin signaling. Overexpression of TWIST in human OS 
cells significantly reduces cell survival against cisplatin by 
reducing β-catenin levels via a phosphatidylinositol 3-
kinase (PI3K)-dependent pathway (61). The PI3K/Akt 
pathway regulates several apoptosis-related downstream 
targets (62-64), resulting in cell growth, survival and 
cisplatin resistance. The Wnt-β-catenin signaling pathway 
participates in cisplatin resistance through interactions with 
the PI3K/Akt pathway.  
 
6.3 Methotrexate 

 Methotrexate (MTX) is another common 
constituent of chemotherapeutic regimens for high-grade 
osteosarcoma, together with doxorubicin, cisplatin and 
ifosfamide (65,66). MTX is a potent inhibitor of 
dihydrofolate reductase (DHFR), an enzyme which plays a 
key role in intracellular folate metabolism and is essential 
for DNA synthesis and cell growth (67,68). However, 
MTX resistance is a problem in OS chemotherapy and one 
of the mechanisms underlying MTX resistance is 
associated with Wnt-β-catenin signaling. Ma and 
colleagues (15) found that knocking down β-catenin 
increased the sensitivity of Saos2 cells to MTX-induced 
cell death. Thus, Wnt-β-catenin signaling may contribute to 
MTX resistance.  
 
6.4 COX-2 inhibitors 

 Cyclo-oxygenase (COX)-2 inhibitors have been 
found to have anticancer effects that could reduce the 
occurrence of cancers and pre-cancerous growths (69-71). 
In particular, celecoxib has been shown to act as an 
inhibitor of proliferation in several tumor cell types (72,73). 
The antitumor effects of celecoxib depend on its COX-2-
inhibiting potency, especially its regulation of the 
prostaglandin pathways (74). COX-2-related mechanisms 
have been identified that several cell signaling pathways 
activate COX-2 expression, including the PI3K/Akt or 
Wnt-β-catenin pathways (75,76). In particular, the Wnt-β-
catenin pathway is a classical pathway that has been 
suggested as a COX-2-related target of nonsteroidal anti-
inflammatory drugs (NSAIDs) in cancer cells (77). Studies 
have established that high levels of β-catenin correlate with 
tumorigenesis in several tumour types, suggesting that it 
could be a downstream target of COX-2 inhibitors (78-80). 
In the human OS cell line MG-63, β-catenin was identified 
as a downstream target of COX-2 inhibitors, and celecoxib 
was found to inhibit β-catenin-dependent survival (81).  

 
 In summary, the Wnt-β-catenin signaling 

pathway contributes to resistance to all three drugs used in 
standard chemotherapy. Thus, in the mechanism of 
chemotherapy resistance, the Wnt-β-catenin signaling 
pathway provides a key interaction point with other 
pathways such as the PI3K/Akt pathway. Increased 
knowledge of Wnt-β-catenin signaling in chemotherapy 
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resistance of OS would significantly improve the efficiency 
of OS chemotherapy and the clinical outcome of OS 
patients.   
 
7. CONCLUSION 

 
 The Wnt-β-catenin signaling pathway is a key 

component of normal skeletal development and disease. 
Alterations in this signaling pathway have been described 
in both human and canine OS. However, debate exists as to 
whether such alterations actually contribute to human OS 
development. These conflicting reports indicate that 
additional research is necessary to clarify the role of Wnt 
signaling in OS development. In metastatic OS, the Wnt-β-
catenin pathway promotes invasion and migration of OS 
cells. In particular, β-catenin can act as a biological marker 
of the metastatic potential of OS to the lung. Thus, further 
studies on the prediction of OS metastasis by β-catenin 
would be promising. Participation of the Wnt-β-catenin 
pathway in OS development and metastasis is regulated by 
several factors, including hormones and ALP. This 
suggests that specific hormones and Wnt-β-catenin 
signaling form a network in OS regulation. The Wnt-β-
catenin pathway is involved in OS chemotherapy 
resistance, especially in resistance to all three drugs used in 
standard chemotherapy, i.e. doxorubicin, cisplatin and 
MTX. Taken together, these findings suggest that the Wnt-
β-catenin pathway is significant in OS development and 
chemotherapy response, since it can promote OS 
development, metastasis and resistance to chemotherapy. 
Therefore, inhibition or regulation of this pathway would 
be a promising target for new OS therapies.  
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