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1. ABSTRACT 
 
                Neuropathic pain is experienced as a result of 
disease or physical injury affecting the somatosensory 
system. It can be associated with abnormal sensations 
(dysesthesia) or evoked by normally nonpainful stimuli. 
Glia has emerged as key regulators of neuropathic pain 
perception and potential targets for drug development. Glia 
are activated upon peripheral nerve damage and secrete a 
number of proinflammatory factors. This process involves 
many mechanisms including neuroinflammation, ion 
channel activation, and ligand-receptor interactions. This 
review describes recent advances in the understanding of 
neuropathic pain, including the role of glia and their 
targeting by current treatment approaches. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. INTRODUCTION 
 
                Neuropathic pain is caused by a lesion or diseases 
of the peripheral nervous systems (PNS) or central nervous 
systems (CNS), and is clinically characterized by 
spontaneous and evoked types of pain, which have distinct 
pathophysiological mechanisms (1-3). In some cases, a 
nerve lesion can induce molecular changes in nociceptive 
neurons, rendering them exceedingly sensitive and prone to 
aberrant spontaneous activity. Inflammatory reactions 
within the damaged nerve trunk cause the sensation of pain 
by inducing secondary changes in processing neurons in the 
spinal cord and brain (1, 4, 5). Recent studies have 
implicated glia in this process (6-8). Upon peripheral nerve 
injury, microglia are activated by the release of cytokines 
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including ATP, chemokine (C-C motif) ligand 2 (CCL2), 
CCL3, as well as Na+, K+, and Ca2+ (9, 10). Activated 
microglia secrete proinflammatory factors, which in turn 
activate astrocytes (11); such changes in central pain 
modulatory systems can lead to further hyperexcitability. 
Treatment approaches for neuropathic pain are still 
unsatisfactory, and recently, the concept of analyzing pain 
based on underlying mechanisms—specifically by targeting 
glia—has begun to emerge (4, 11, 12). A deeper 
understanding of the general mechanisms that generate the 
sensation and symptoms of pain can enable the 
identification of the precise underlying cause of pain in a 
patient. Combining this clinical characterization with an 
appropriate selection of drugs should make it possible to 
provide personalized treatments tailored to each individual 
(10, 13, 14). 
 
3. CHARACTERISTICS OF NEUROPATHIC PAIN 
 
                Pain is an unpleasant feeling provoked by intense 
or damaging stimuli, which plays an important 
physiological role in reflexive self-defense (1, 3), 
motivating the avoidance or withdrawal from noxious 
surroundings, or protection of an injury during healing. 
Pain is also symptomatic of many medical conditions, and 
can significantly interfere with the quality of life and 
general functioning of an individual (15-18). Upon 
peripheral stimulation, pain information is transmitted by 
unmyelinated C fibers and thin myelinated Aδ fibers to the 
dorsal horn in the spinal cord (2, 12), where second order 
nociceptive neurons are activated by neurotransmitters 
released from primary afferents, such as glutamate and 
neuropeptides (e.g., substance P and calcitonin gene-related 
peptide) (19-21). This information is relayed to the 
thalamus and then to the parietal lobe of cerebral cortex 
where the sensation of pain is registered. This type of pain 
is usually transitory, lasting only as long as the noxious 
stimulus or injury/pathology lasts; however, the pain can 
continue beyond the stimulus duration, developing into a 
chronic problem (22-24). Chronic pain does not convey any 
useful information; in such cases, thermal stimuli and 
painful pressure are amplified, and even light touch can be 
perceived as painful (conditions known as hyperalgesia and 
allodynia, respectively). Persistent pain can be 
inflammatory pain or neuropathic pain (25-27). For the 
former, tissue inflammation lowers the nociceptive 
excitation threshold, while for the latter, pain is perceived 
as a result of central or peripheral nervous system damage 
(28, 29). 
 
                Neuropathic pain can be categorized as 
peripheral, central, or mixed (peripheral and central), 
depending on the region of the nervous system that is 
affected (29, 30). In general, any one of these types can 
occur as a result of trauma, viral infection, medications, 
metabolic insults, or stroke (31-33). More specifically, in 
the CNS, pain can arise from spinal cord injury, multiple 
sclerosis, and stroke; common causes in the PNS are herpes 
zoster or HIV infection, diabetes, nutritional deficiency, 
toxins, immune disorders, and physical trauma to a nerve 
trunk, and they can also be remote manifestations of 
malignancies (34, 35). Pain is a common symptom in 

diabetes and cancer patients; in the latter, the cause can be 
direct injury to peripheral nerves from tumor growth, or a 
side effect of surgery, chemo- or radiotherapy (36, 37). 
 
                Inflammation in any part of the body is coupled 
with pain sensation by the release of proinflammatory 
factors, including prostaglandin E2 (PGE2) (38-40), tumor 
necrosis factor α (TNF-α) (41) and interleukin 1β (IL-1β) 
(42), as well as nerve growth factor (NGF) (43, 44) by non-
neural and immune cells, which stimulates nociceptor 
terminals in the peripheral tissue and thereby increases pain 
sensitivity. Neuroinflammation in the CNS resulting from 
brain trauma, infection, and in neurodegenerative diseases 
is characterized by the activation of glial cells, specifically 
microglia and astrocytes, and can actually contribute to the 
development and progression of neurodegeneration (45, 
46). 
 
4. CHARACTERISTICS OF GLIA 
 
                Glia are the other major cell type in nervous 
system besides neurons, and comprise diverse, specialized 
cell types in the PNS (Schwann cells, satellite and 
perineural glia) and CNS (microglia, astrocytes, 
oligodendrocytes, and perivascular glia) (47, 48). Glia 
comprise ~70% of the total cell population in the nervous 
system, and can be broadly classified as micro- and 
macroglia. Microglia, which constitute 5–10% of the glial 
population, are macrophage-like cells. Macroglia can be 
neuroectoderm-derived oligodendrocytes, which produce 
myelin to enshealth neuronal axons, or astrocytes which are 
40–50% of all glia and are therefore the most abundant glia 
type in terms of number and volume. Under normal 
conditions, microglia and astrocytes are quiescent; they are 
activated in response to injury or in disease states, and 
contribute to the pathogenesis of neurological disorders 
(49). 
 
                It has become increasingly evident that glia 
provide indispensable protection and support for neurons in 
the CNS and PNS (50, 51). There are few connective 
tissues in the nervous system; instead, glia form a network 
that physically support neurons but also maintain 
homeostasis in the brain, by insulating neurons from 
harmful agents in the surroundings, destroying pathogens, 
removing dead neurons, and healing injuries (52). 
Microglia are constantly engaged in repairing minor insults, 
and a failure in this process can lead to disease. In addition 
to these functions, glia are known to play an important role 
in the development of neuropathic pain (53, 54). 
 
5. ROLE OF GLIA IN NEUROPATHIC PAIN 
 
                Neuropathic pain is a debilitating condition 
affecting millions of individuals worldwide. It has been 
nearly two decades since a role for glia in pain sensation 
was first proposed (55, 56); however, only recently has this 
relationship been conclusively demonstrated (57): 
peripheral nerve damage was followed by activation of 
microglia 24 h after nerve damage in the dorsal horn, while 
astrocyte activation was observed as late as 3 days after the 
injury. Microglia can remain activated for up to 3 months 
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Figure 1. Peripheral nerve damage was followed by activation of microglia. Microglia are activated by injury released cytokines 
and proinflammatory factors, which induce the activation of astrocytes, a process involving various downstream signaling 
pathways, such as neuroinflammation. 
 
before subsiding (3, 58), and have been associated with the 
onset of pain symptoms such as allodynia or hyperalgesia. 
 
                A mechanism underlying pain sensation is 
neuroinflammation at the site of injury (31, 46), which 
initiates a cascade of events including increased capillary 
permeability and local perfusion, the concentration and 
activation of innate immune cells at the site of injury, 
irritation, or infection (45). Neuroinflammation activates 
perivascular microglia and astrocytes located in the spinal 
cord and brain, which are important mediators of 
nociception (31, 59). Immunoactive substances released at 
the site of injury such as cytokines, chemokines, and 
cellular adhesion molecules act locally but also initiate a 
systemic immune response, by inducing the expression of 
surface antigens that enhance a CNS immune cascade, 
leading to the infiltration of immune cells at the site of 
injury (2, 60, 61); however, the glia-mediated release of 
inflammatory cytokines has been shown to promote 
neurodegeneration (62). Thus, early and delayed 
inflammatory responses mediated by microglia and 
astrocytes, respectively, can have both protective and 
adverse effects on the organism (60, 63). 
 
5.1 Neuropathic pain induced by glia activation 
5.1.1. Role of microglia in neuropathic pain 
                Microglia, which are derived from the 
transformation of macrophages or their monocyte 
precursors, are part of the immune system that protects the 
brain against infection and injury (64). Microglia have been 
implicated in diseases such as diabetic and post-herpetic 

neuropathy, viral infections, and autoimmune and 
neurodegenerative disorders (65). Microglia comprise as 
little as 5–20% of all glial cells under normal physiological 
conditions; they are the first cells to become activated by 
the release of ATP, CCL2 and 3, and Na+, K+, Ca2+ 
following peripheral nerve injury (Figure 1), and transmit 
the sensation of pain via unmyelinated C fibers and thin 
myelinated Aδ fibers to the dorsal horn of the spinal cord to 
astrocytes (12, 66). 
 
                Upon nerve injury, microglia are stimulated to 
proliferate and undergo profound morphological changes. 
New cell surface markers are expressed, and cells migrate 
to the site of injury, where they engage in phagocytosis and 
produce a variety of proinflammatory factors (67-69). 
Markers that are expressed include complement receptor 3, 
cluster of differentiation (CD) 11b, ionized calcium binding 
adaptor molecule 1, CD14, and Toll-like receptors, with 
concomitant activation of p38 mitogen-activated protein 
kinase (MAPK) (70-73). Activated microglia produce 
cytokines such as IL-1α and β, TNF-α, IL-6 and -12, 
fractalkine, and macrophage inflammatory protein 1α and 
β, as well as inducible nitric oxide synthase (iNOS) and 
free oxygen and nitrogen radicals. These factors, which can 
evoke allodynia and hyperalgesia, also play important roles 
in nociception (74, 75). 
 
                The P2 receptors expressed by microglia are 
divided into ionotropic (P2X) and metabotropic (P2Y) 
receptor subfamilies. P2X receptors (of which there are 
seven types, P2X1–7) are ATP-binding ion channels, while 
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P2Y receptors (of which there are eight types: P2Y1, 2, 4, 
6, 11, 12, 13, and 14) are coupled to intracellular second 
messenger systems through heteromeric G proteins (76-78). 
Accumulating evidence points to P2 receptors of microglia 
as mediators of the pain response. P2X4R expression was 
significantly upregulated in microglia in the spinal cord 
upon peripheral nerve injury; the ensuing tactile allodynia 
was reversed by pharmacological blockade of P2X4R (70, 
79). The release of brain-derived neurotrophic factor 
(BDNF) by P2X4 activation is necessary for the sensation 
of pain: P2X4R null mice have reduced levels of microglial 
BDNF, impaired BDNF signaling in the spinal cord, and 
fail to develop mechanical allodynia following peripheral 
nerve injury [78]. P2X7R and P2Y12R expression is 
upregulated in spinal microglia after peripheral nerve 
injury, and their inhibition can suppress microglia-mediated 
pain (78, 80, 81). Moreover, systemic administration of the 
selective P2X7R inhibitors (A-740003 and A-438079) 
reduced tactile allodynia in three different rat models of 
neuropathic pain (82), and A-438079 treatment reduced 
activity induced by innocuous stimuli in dorsal horn 
neurons in these animals. IL-1β released from LPS-treated 
microglia in the dorsal horn following ATP stimulation was 
dependent on P2X7Rs, which stimulated the release of 
cathepsin S, a lysosomal cysteine protease that contributes 
to the transmission of pain information (78, 81). In 
summary, microglia respond to injury or pathology in a 
stimulus-specific manner, which contributes to the 
perception of pain by the organism. 
 
                While microglia are involved in the initial stages 
of pain development, the sensation is sustained by 
astrocytes. Unlike microglia and oligodendrocytes, 
astrocytes form networks that are closely associated with 
neurons and blood vessels (83). Activated astrocytes were 
initially discovered in rats on the damaged side of the 
spinal cord following sciatic nerve injury (84). Like 
microglia, astrocytes in the CNS, particularly those in the 
spinal cord, undergo various phenotypic changes including 
changes in gene expression in response to inflammation 
resulting from peripheral nerve injury or tumor invasion 
(Fig.1); this includes increased expression of the glial 
fibrillary acidic protein, an astrocyte marker, and 
production of cytokines such as TNF-α and IL-1β (85). 
Activated astrocytes also secrete factors such as nitric oxide 
(NO), excitatory amino acids, prostaglandins, and ATP that 
mediate pain hypersensitization. Intrathecal administration 
of TNF-α and IL-1β antagonists or IL-6-neutralizing 
antibody has been shown to alleviate pain-induced 
behaviors in animal models (86-88). 
 
                Multiple lines of evidence suggest that astrocyte 
activation is sufficient to produce pain symptoms. 
Implantation of neural stem cells into the injured spinal 
cord of rats resulted in allodynia in the forepaws (89, 90), 
attributable to the differentiation of the stem cells into 
astrocytes; indeed hypersensitivity was prevented by first 
transfecting the stem cells with a vector expressing the 
neurogenic gene neurogenin-2 in order to suppress the 
generation of astrocytes. Moreover, transplantation of glial 
restricted precursor-derived astrocytes induced mechanical 
allodynia (91, 92). Similarly, intrathecal injection of TNF-

α-activated astrocytes was sufficient to induce chronic pain 
in naïve animals through the stimulation of CCL2 release 
(93). 
 
                A major function of astrocytes is the uptake of 
extracellular glutamate and GABA in the synaptic region 
through astrocytic transporters such as glutamate 
transporter-1 and glutamate/aspartate transporter, along 
with cotransport of Na+/H+ and counter transport of K+. 
Reduction in the expression and uptake activity of 
glutamate transporters plays an essential role in both the 
induction and persistence of pain following peripheral 
nerve injury and in taxol-induced hyperalgesia (94, 95). 
Glutamate transporter expression is consistently 
downregulated in spinal models of pathological pain; 
conversely, their increased expression or function can 
prevent pain from developing (96, 97). For example, the 
drug propentofylline has protective effects against post-
ischemic damage in the CNS by potent dose-dependent 
induction of glutamate transporter-1 mRNA and protein 
expression, accompanied by inhibition of CCL2 release. 
Conversely, injection of the glutamate uptake blocker 
threo-beta-benzyloxyaspartate leads to the manifestation of 
spontaneous nociceptive behavior (96, 97). 
 
                Ca2+ signaling also plays an important role in the 
sensation of pain. In the gap junction-coupled networks 
formed by astrocytes, Ca2+ signals are transmitted in the 
form of oscillations. The major structural components of 
gap junctions are connexins (Cx); in the mammalian 
nervous system, at least six family members have been 
identified (Cx26, 29, 30, 32, 36, and 43) (98). Cx30 and 43 
are specifically expressed by astrocytes, and Cx43 
expression is significantly upregulated in response to facial 
nerve lesions, spinal cord injury, and inflammation induced 
by complete Freund’s adjuvant (99). Inhibiting gap junction 
function by application of the nonselective inhibitor 
carbenoxolone was shown to produce analgesia in different 
pain models (100). In addition, intrathecal injection of 
carbenoxolone in rats reduced mechanical allodynia caused 
by sciatic nerve inflammation in the contralateral paw, 
implicating gap junctions of the astrocyte network in the 
spread of pain beyond the injury site. 
 
5.2. Molecular basis of neuropathic pain by glia 
activation 
                Nociceptors are normally silent and respond to 
potentially noxious stimuli. These sensory neurons become 
abnormally sensitive and develop aberrant spontaneous 
activity upon peripheral nerve damage, resulting in changes 
at the molecular and cellular levels. Pain information is 
transmitted by unmyelinated C and thin myelinated Aδ 
fibers to the dorsal horn; microglia are then led to the site 
of injury by secreted CCL2 and CCL3 (71, 101), and in 
turn activate astrocytes. Both types of glia activate p38 
MAPK to induce the synthesis and release of PGE2, IL-1β, 
IL-6, TNF-α, and NO (102-104). Such proinflammatory 
factors stimulate nociceptor terminals in the peripheral 
tissue, thereby increasing pain sensitivity, neurotoxicity, 
and chronic inflammation (105); indeed, inhibition of p38 
in the spinal cord has been shown to attenuate 
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postoperative pain (102-104). Thus, glia provide the 
molecular link between inflammation and neuropathic pain. 
 
                Ectopic spontaneous activity following nerve 
injury is correlated with increased transcript expression of 
voltage-gated sodium channel genes in primary afferent 
neurons (106, 107). Genes encoding the voltage-gated 
sodium channels Nav1.8 and Nav1.9 are specifically 
expressed in nociceptive primary afferent neurons, 
indicating that sodium channels are an important mediator 
of pain responses; this is supported by the fact that 
lidocaine, a sodium channel blocker, produces pain relief 
(106, 107). The clustering of sodium channels in glia could 
be responsible for the lowering of the action potential 
threshold and the consequent hyperactivity that is observed. 
 
                The expression of other receptor types—some of 
which are expressed only at low levels under normal 
conditions—is also upregulated in glia upon damage to 
peripheral nerves. For example, vanilloid receptors 
(TRPV1) in nociceptive afferent fibers are activated by 
nerve injury (108, 109). TRPV1-deficient mice fail to 
develop hyperalgesia following tissue inflammation, 
providing evidence for the contribution of TRPV1 to the 
development of C-nociceptor sensitization and hyperalgesia 
(110). 
 
5.3. Glia-targeted treatments for neuropathic pain 
                The management of pain resulting from lesions 
or disease in the nervous system represents a significant 
clinical challenge. Until recently, the treatment of 
neuropathic pain has been largely neglected (111) and has 
aimed to provide general pain relief without addressing 
specific etiologies, which is the likely reason for the limited 
success in outcomes for patients. With the current 
understanding of the role of glia in pain transmission, 
attention is focused on the development of therapies that 
target activated glia. For example, studies have examined 
the role of purinergic P2XRs/P2YRs expressed by spinal 
microglia upon peripheral nerve injury. Since 
P2XRs/P2YRs-mediated activity contributes to the 
pathological enhancement of pain information processing 
in the dorsal horn, a predicted therapeutic benefit of 
interfering with microglial P2XRs and P2YRs is the 
recovery of normal pain sensitivity, since these molecules 
are only upregulated in activated microglia in the spinal 
cord that receives projections from damaged sensory fibers 
(68). 
 

In addition, recent studies have shown that glia-
specific inhibitors such as propentopfline and 
pentoxifylline suppress secretion of various cytokines, thus 
preventing the development of pain (112-114) in both 
animal models and clinical trials (115, 116). Minocycline is 
another potent inhibitor of microglial activation that 
suppresses proliferation as well as the activity of matrix 
metalloproteinases (MMP) 2 and MMP9 (117). Clinical 
data demonstrate that minocycline can penetrate the blood-
brain barrier and affords protection in neurodegenerative 
diseases that are associated with microglial activation, by 
reducing levels of proinflammatory factors, such as TNF-α, 
IL-1β, IL-6, iNOS, and cyclooxygenase-2 (118, 119). Both 

peripheral and intrathecal administration of minocycline 
have been shown to reduce pain symptoms as allodynia and 
hyperalgesia (119). 
 
6. CONCLUSIONS 
 
                Neuropathic pain syndromes are chronic pain 
disorders caused by lesions or disease in parts of the 
nervous system that normally transmit pain information. 
Recent research has focused on the role of glia in the 
development of pain. Microglia activated by injury release 
cytokines and proinflammatory factors, which induce the 
activation of astrocytes, a process involving various 
downstream signaling pathways. Therefore, interfering 
with the function of activated glia is a promising treatment 
strategy that affords many potential targets for drug 
development. To this end, glia inhibitors have been shown 
to slow the development of pain and facilitate the recovery 
of motor functions following nerve damage. However, 
more work needs to be done to elucidate the diverse 
molecular mechanisms underlying neuropathic pain so as to 
enable the development of individualized and clinically 
effective treatments. 
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