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1. ABSTRACT 
 

The understanding of how cancer stem cells 
(CSCs) or tumor-initiating cells (TICs) behave is important 
in understanding how tumors are initiated and how they 
recur following initial treatment. More specifically to 
understand how CSCs behave, the different signaling 
mechanisms orchestrating their growth, cell cycle 
dynamics, differentiation, trans-differentiation and survival 
following cytotoxic challenges need to be deciphered. 
Ultimately this will advance the ability to predict how these 
cells will behave in individual patients and under different 
therapeutic conditions. Second or next-generation 
sequencing (NGS) capabilities have provided researchers a 
window into the molecular and genetic clockwork of CSCs 
at an unprecedented resolution and depth, with throughput 
capabilities allowing sequencing of hundreds of samples in 
relatively short timeframes and at relatively modest costs. 
More specifically NGS gives us the ability to accurately 
determine the genomic & transcriptomic nature of CSCs. 
These technologies and the publicly available cancer 
genome databases, together with the ever increasing 
computing power available to researchers locally or via 
cloud-based servers, are changing the way biomedical 
cancer research is approached. 

 
 
 
 
 
2. INTRODUCTION 
 

This review will present the current knowledge 
and discuss the use of NGS technologies in understanding 
cancer stem cell (CSC) biology and explore the advantages 
and challenges of applying next generation sequencing 
(NGS) and bioinformatics techniques. Particular emphasis 
will be placed upon the use of these technologies to 
decipher the dynamic genomic changes of the 
transcriptome (see Table 1. Glossary of terms) and 
epigenome of CSCs. We discuss the important biological 
considerations relevant to CSC genomic analysis, as well as 
illustrate bioinformatic approaches and considerations 
when analyzing NGS data. The value of these approaches is 
finally considered and the ultimate therapeutic benefits 
arising are discussed. 
 
3. CANCER STEM CELLS 
 
3.1. Cancer stem cell identity and development 

It is important to note that the nature of CSCs or 
tumor -initiating cells (TICs) is like a set of moving goal 
posts; the moment a particular characteristic is discovered 
and attributed to these cells, it is not long before another 
perhaps competing view is presented. The earliest model of
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Table 1. Glossary of terms used in next generation sequencing and bioinformatics 
Term Definition 
Algorithm A precise set of instructions for performing a certain task. Often represented as a computer program to transform a given input into a 

desired output 
Alignment The process of mapping a DNA sequence back to a reference genome to identify the locus from which it originated from 
Cloud computing A loosely coupled network of computers usually housed off-site and administered by a separate entity. Often provided as a service for a 

fee 
Cluster computing A tightly coupled network of computers usually administered in house for the purposes of data storage and analysis 
De novo alignment The process of mapping a DNA sequence without a reference genome using only the DNA sequences themselves 
DNA-seq The process of using massively parallel sequencing to identify the precise order of nucleotides that comprise a pool of DNA fragments 
Epigenome The genome-wide catalogue of heritable, reversible chemical modifications to DNA and histones in a population of cells 
Gene expression 
signature  

A specific pattern of a given subset genes expressed by a population of cells that is characteristic of a given state such as cancer 

Machine learning The use of computer algorithms that learn from data such as gene expression to facilitate pattern recognition and classification to predict 
parameters such clinical response 

Multiplexing The use of molecular barcodes comprised of a short nucleotide sequence not present in the target genome, to uniquely label a sample. 
Multiple samples with distinct barcodes are then pooled and sequenced in a single reaction. Samples are then deconvoluted in the 
computational analysis 

Pair-end sequencing The process of sequencing both ends of a DNA fragment. Improves the performance of alignment algorithms. Post alignment, the 
presence of discordantly mapping coordinates for each end indicates mRNA splicing or an insertion/ deletion has occurred 

Personalized 
medicine 

A paradigm in clinical practice that advocates the tailoring of medical decisions and treatments based on an individual's specific genetic 
features such as being mutant or wildtype for an oncogene  

Pipeline The chaining together of distinct computer programs where the output of the previous program is the input of the next program. 
Facilitates the execution of non-dependent software in parallel to increase the speed of data analysis 

RNA-seq The process of sequencing a pool of cDNA fragments that have been generated by reverse transcription of RNA, typically mRNA 
Sequence 
deconvolution 

The computational procedure of sorting a pool of DNA fragments into sample-specific or species-specific reads based on the sequence 

Sequencing bias In the context of NGS, the presence of technical noise that obscures the biological signal. Can arise during the construction of the DNA/ 
cDNA library or the from sequencing technology utilized 

Sequencing read The linear sequence of nucleotides originating from a single DNA fragment 
Subtype In the context of genomics, a subset of all the instances of a disease in a population such as cancer. Defined by the a priori pattern of 

molecular features such as gene expression, epigenetic marks or somatic mutations 
Transcriptome The full complement of RNAs transcribed from the collective genome of a population of cells. Includes rRNA, tRNA, mRNA and 

miRNA 
Algorithm A precise set of instructions for performing a certain task. Often represented as a computer program to transform a given input into a 

desired output 
Alignment The process of mapping a DNA sequence back to a reference genome to identify the locus from which it originated from 
Cloud computing A loosely coupled network of computers usually housed off-site and administered by a separate entity. Often provided as a service for a 

fee 
Cluster computing A tightly coupled network of computers usually administered in house for the purposes of data storage and analysis 
De novo alignment The process of mapping a DNA sequence without a reference genome using only the DNA sequences themselves 
DNA-seq The process of using massively parallel sequencing to identify the precise order of nucleotides that comprise a pool of DNA fragments 
Epigenome The genome-wide catalogue of heritable, reversible chemical modifications to DNA and histones in a population of cells 
Gene expression 
signature  

A specific pattern of a given subset genes expressed by a population of cells that is characteristic of a given state such as cancer 

Machine learning The use of computer algorithms that learn from data such as gene expression to facilitate pattern recognition and classification to predict 
parameters such clinical response 

Multiplexing The use of molecular barcodes comprised of a short nucleotide sequence not present in the target genome, to uniquely label a sample. 
Multiple samples with distinct barcodes are then pooled and sequenced in a single reaction. Samples are then deconvoluted in the 
computational analysis 

Pair-end sequencing The process of sequencing both ends of a DNA fragment. Improves the performance of alignment algorithms. Post alignment, the 
presence of discordantly mapping coordinates for each end indicates mRNA splicing or an insertion/ deletion has occurred 

Personalized 
medicine 

A paradigm in clinical practice that advocates the tailoring of medical decisions and treatments based on an individual's specific genetic 
features such as being mutant or wildtype for an oncogene  

Pipeline The chaining together of distinct computer programs where the output of the previous program is the input of the next program. 
Facilitates the execution of non-dependent software in parallel to increase the speed of data analysis 

RNA-seq The process of sequencing a pool of cDNA fragments that have been generated by reverse transcription of RNA, typically mRNA 
Sequence 
deconvolution 

The computational procedure of sorting a pool of DNA fragments into sample-specific or species-specific reads based on the sequence 

Sequencing bias In the context of NGS, the presence of technical noise that obscures the biological signal. Can arise during the construction of the DNA/ 
cDNA library or the from sequencing technology utilized 

Sequencing read The linear sequence of nucleotides originating from a single DNA fragment 
Subtype In the context of genomics, a subset of all the instances of a disease in a population such as cancer. Defined by the a priori pattern of 

molecular features such as gene expression, epigenetic marks or somatic mutations 
Transcriptome The full complement of RNAs transcribed from the collective genome of a population of cells. Includes rRNA, tRNA, mRNA and 

miRNA 
 

CSCs presented a hierarchical model where a multipotent 
progenitor cell is able to both self renew and differentiate into 
more restricted progeny (1, 2). The implication of this model is 
that eliminating the stem cell fraction will lead to exhaustion of 
the regenerative capacity of the tumor and regression. 
However, genomic analysis of clinical tumor samples have 
uncovered substantial heterogeneity that cannot have been 
generated via the hierarchical CSC model (3-6). The 

 
ierarchical model also imposes the limitation that only the stem 
cell fraction is able to generate tumors. There are some tumors 
that can be initiated by injection of a few or even a single cell 
indicating tumorigenic potential is not rare for these cancers (5, 
7, 8). These studies were performed with more rigorous 
transplantation procedures, such as severely immunocompromised 
mice or syngeneic models, compared with the earlier studies that 
conceived the stem cell hypothesis (9-11)
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Figure 1. Models of cancer stem cell development. A) The 
hierarchical model claims the proliferative potential of a 
malignant tumor resides in a rare subpopulation (green) 
with a resemblance to normal stem cells. The CSC has the 
ability to self-renew and differentiate into the cell types that 
dominate the tumor mass. Upon treatment with an agent 
that targets the stem cell fraction, the bulk of the tumor 
ultimately exhausts its replicative ability. B) The plasticity 
model claims the stem-like subpopulation (green) arises 
through infrequent, stochastic dedifferention of cells in the 
tumor bulk. Upon treatment with an agent that targets the 
CSCs, the stem-like fraction can be regenerated by the 
remainder of the tumor bulk and recurrence occurs. 
 
3.2. Dedifferentiation model 

There is evidence of interconversion of non-
stem cells to stem cells. Human mammary epithelial 
stem cells (HMECs) grow adherently in culture but a 
small sub population grow in suspension (12). Flow 
cytometry analysis of the cells in suspension revealed 
both a CSC (CD44+) and non-CSC fraction (CD44-). 
Single cell cloning and in vivo transplantation revealed 
that the non-stem cell and stem cells can readily inter-
convert, albeit at a low rate (12). The shuttling between 
non-CSC and CSC had parallels with epithelial to 
mesenchymal transition (EMT) and was regulated by 
TGF beta and the epigenetic configuration at the ZEB1 
promoter. Both proteins have a well described role in 
EMT (13). 

 
The cancerous state has been proposed to 

increase the probability of dedifferentiation from non-
stem cells to stem cells which naturally occurs in vivo 
(14). This de-differentiation mechanism has been shown 

to occur for the aggressive brain tumor glioblastoma 
multiforme (GBM) in vivo (15, 16). Using GFAP-Cre 
mice, the tumor supressors PTEN and p53 were 
specifically knocked down in mature glial cells using 
lentiviruses stereotaxically injected directly into the 
hippocampus, generating gliomas of varying grades 
(15). Synapsin I-Cre mice were also injected with 
lentiviruses targeting H- Ras V12 and shp53 or shNF1 
and shp53, into the cortex demonstrating that fully 
mature neural cells can give rise to tumors (16). Tumor 
cells were isolated and had phenotypic characteristics of 
stem cells when cultured in vitro. Immunofluorescence 
analysis of tumors taken from mice at different time 
points showed an increase of stem cell markers and a 
decrease of differentiation markers over time (16). 
Therefore it is still not clear if the cell of origin for 
CSC-driven tumors is a normal stem cell that 
subsequently differentiates when initiated to generate 
the multiple cell types present in a tumor, or a mature 
cell type that dedifferentiates to a stem-like state (Figure 
1). 
 
4. NEXT GENERATION SEQUENCING 
TECHNOLOGY 
 

Second generation or next-generation sequencing 
(NGS) is the massively paralleled determination of short reads 
of DNA sequence from a pool of DNA fragments (17). It 
has been used to detect rearrangements in cancer 
genomes (18), somatic mutations (19) and germ-line 
mutations (20). By using an individual’s own germline 
sequence as a baseline, deviations from this baseline, ie. 
somatic mutations, can be identified at an accuracy 
comparable to Sanger sequencing at vastly reduced cost 
by economies of scale (2, 21, 22). RNA sequencing 
(RNA-seq) enables unbiased digital measurement of 
transcription from cells and tissues at a higher resolution 
and dynamic range than for array-based techniques. (23-
27). RNA-seq demonstrates high reproducibility 
between technical replicates and consistency with 
microarray results (25, 28). However, RNA-seq 
outcomes may be inaccurate due to biases arising from 
gene length (25, 29) and first-strand synthesis 
efficiency/errors (26, 30). Statistical analysis of RNA-
seq data is currently an ongoing area of research (26, 
31). The analysis pipeline for RNA-seq data is more 
complex than that for microarray. Short reads are first 
aligned to a reference genome and/or transcriptome, 
although de novo methods for transcript assembly exist 
(27, 32). Aligned reads are then summarized to discrete 
genomic locations, such as genes for differential expression 
testing (4, 6, 33). 
 

There are various sequencing-based technologies to 
analyze the epigenome. For classic epigenetic analysis of 
modified DNA by methylation there are two widely used 
approaches: bisulfite-based methods (BS-Seq) and methylated 
DNA immunoprecipitation sequencing (MeDIP-Seq) 
Bisulfite-based methods provide single base pair resolution but 
because of the reduced complexity of the sequence introduced 
by the bisulfite conversion, alignment is more difficult than 
MeDIP-seq (27, 34). Conversely MeDIP-Seq enriches for 
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methylated DNA and therefore suffers from lower resolution 
as the recovered fragment is typically 150 – 200bp (27, 35). 

 
4.1. Advantages of NGS RNA-seq over microarray and 
tiling arrays 

In the late 1990s the thorough analysis of cell 
transcriptomes was made possible by the development of 
techniques such as microarray and serial analysis of gene 
expression (SAGE) (36, 37). These techniques enabled 
the analysis of transcriptomes of tumor tissue or defined 
stem cell populations (38, 39) and led to the 
identification of genes involved in the specific cell 
behaviors in normal and pathological states. In less than 
a decade, the development of NGS has gradually become 
the genomic analysis tool of choice. NGS analysis is 
equally applicable to DNA sequencing as well as RNA 
sequencing. Unlike microarrays, and similar to SAGE, 
RNA-seq does not require knowledge of predetermined 
expressed sequences, thus provides an unbiased approach 
to transcript discovery, and because of the sensitivity of the 
technique it provides the ability to not only discover novel 
transcripts but to also reveal novel isoforms or fusions that 
would be missed on an array. Compared with SAGE, NGS 
offers much higher throughputs and therefore provides 
increased coverage of the genome. 

 
4.2. Deciphering CSC transcriptomes by RNA-seq 

The sensitivity of NGS is especially useful in the 
analysis of stem cell transcriptomes. Stem cells often 
express very low levels of many genes indicating a 
transcriptional state that keeps the cell ready to initiate a 
variety of differentiation programs. Such low level gene 
expression is difficult to detect by microarray-based 
methods, but with the sensitivity and ability to perform 
deep sequencing with RNA-seq, low level transcript 
identification is feasible, even at the single cell level (1, 
40-42). Because of the relatively short time that RNA-
seq has been implemented and the limitations of 
identifying cancer-specific stem/-initiating cells, there 
are only limited examples of transcriptome analyses.  
Most applications have focused on embryonic stem cells 
and non-stem tumor cells. Transcriptome analysis using 
RNA-seq has revealed regulatory networks in 
embryonic stem cells.RNA-seq technology has also been 
used to study the transcriptomes of liver CSCs and 
breast CSCs (3, 5, 40). A combination of methodologies 
using NGS and microarray-based gene expression 
profiling of CD44+ breast CSCs isolated from primary 
ER-alpha+ breast cancer showed that CSCs exhibited 
the expected overexpression of genes involved in stem 
cell maintenance, but also showed higher level 
expression of numerous genes driving the PI3K pathway 
suggesting that ERα+ breast cancer CSCs require an 
active PI3K pathway and revealing a possible PI3K-
dependent mechanism for the endocrine resistance of 
this tumor subtype (5, 41). Different stages of tumor cell 
differentiation correlating with disease progression have 
been identified using RNA-seq. Jiang and colleagues 
showed that during blast crisis, the final phase of 
chronic myeloid leukemia (CML), progenitors have an 
increased IFN-gamma pathway gene expression as well 
as BCR-ABL amplification. Furthermore, during CML 

progression there was an upregulation in the expression of 
the IFN-responsive adenosine deaminase acting on RNA 
enzyme (ADAR1) isoform which correlated with the 
expression of a mis-spliced form of GSK3-beta which in 
turn is implicated in leukemia stem cell self-renewal (9, 
43). 
 
4.3. NGS analysis of stem cell transcriptomes 

In addition to studying the genome and mRNA 
transcriptome of stem cells, NGS has also been used to 
study the broader RNA transcriptome. Post-
transcriptional regulation especially through microRNA 
(miRNA) and long noncoding RNA is an important 
regulator of gene expression and cellular function. In 
humans the majority of transcribed RNA, aside from 
ribosomal RNA, is involved in regulation of the coding 
genes; these are the ncRNAs (non-coding RNAs), such as 
microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and 
circular RNAs. MicroRNAs have diverse roles in regulating 
gene expression and controlling development and disease (7, 8, 
44). Many miRNAs are located in genomic regions that are 
deleted or amplified in various cancer types, suggesting they 
might play an important role in cancer progression. RNA-seq 
is well suited to ncRNA analysis since techniques to enrich for 
small transcripts can be applied which exclude mRNA 
transcripts and rRNA. Although not specifically a study on 
CSCs, work investigating the role of Dicer in endothelial 
precursor cells (EPCs) in an orthotopic breast tumor mouse 
model revealed, through NGS analysis, two EPC intrinsic 
VEGF-responsive miRNAs, miR-10b and miR-196b, which 
led to a decrease in circulating EPCs and a significant defect in 
angiogenesis-mediated tumor growth in mice (10, 11, 45). 

 
A study comparing the differences between 

normal neural stem cells and glioblastoma stem cells 
uncovered 10 differentially expressed microRNAs that 
predominately act on the p53 pathway facilitating the 
tumorigenic phenotype of the glioblastoma (12, 46). 
Because of their small size, microRNAs are unable to be 
sequenced in a traditional RNA-seq protocol and must 
be size-selected and prepared separately. However, the 
relatively low number of microRNAs, approximately 
2,500 at present, lends itself to multiplexed sequencing 
of many samples in a single sequencing reaction (12, 
47). Unfortunately early studies were confounded by 
sequencing bias introduced by nucleotide barcodes in 
the multiplexing step (13, 48). This bias has since been 
resolved but it underlies the importance of inspecting 
the raw data and appropriate quality control measures in 
NGC experiments. 

 
A further layer of regulation in the mRNA – 

miRNA axis was added by the discovery of circular 
RNAs (14, 49-51). Having previously been described as 
rare in mammalian cells, thousands of circular RNAs 
were identified as alignments with a non-linear sequence 
of exons generated by a “backsplicing” mechanism (15, 
16, 50, 51). Computational analysis of the circular 
RNAs revealed tens of miRNA-binding sites within the 
circular molecule and in-vitro-binding experiments 
confirmed an association of miRNA with circular RNA 
(15, 49, 52). 
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4.4. Challenges in applying NGS to CSC biology  
Although NGS can help us better understand the 

biology of stem cells, there are significant challenges that 
need to be overcome to adopt the widespread use of this 
technology for studying stem cells. The first hurdle is the 
cost of the technology. Although the cost per base for 
sequencing is rapidly declining, the technology is still 
expensive compared with medium throughput technologies 
like microarray. Moreover, the high throughput sequencing 
instruments are expensive and require specialized training 
to operate. The large amount of data generated by these 
machines also requires a sizable investment in 
infrastructure, such as storage servers and computing 
clusters. However, the advent of smaller bench top 
sequencers (MiSeq and Ion proton) with lower throughput, 
but reduced running costs, should make the technology 
affordable to an individual laboratory. Also the rise of core 
facilities and private companies that can sequence samples 
with a rapid turnaround time and a small fee will eventually 
make sequencing affordable to small labs. 
 

Another challenge when using these technologies 
for stem cell analysis is the amount of genetic material 
required. Most stem cells are extremely rare populations 
and it is difficult or often impossible to get large numbers 
of stem cells without significantly altering their properties. 
This poses a major technological hurdle to using NGS 
technology for studying rare stem cell populations. 
However it is now possible to sequence single cells and this 
opens up exciting possibilities for stem cell research (16, 
53-55). Many stem cells are clonal in origin and analysis of 
genome, transcriptome and epigenome of such single stem 
cells can yield valuable information about the heterogeneity 
of these cells (16, 56). 

 
The third hurdle for the widespread use of NGS 

technologies for studying stem cells is the relatively immature 
data analysis pipeline for NGS platforms (Figure 2).  Unlike 
microarrays the technology and therefore the approach to data 
analysis itself is constantly changing, e.g. the adoption of read 
lengths in excess of 100 bases and pair-end sequencing. Such 
technological developments have influenced the way aligners 
work, as modern aligners incorporate more traditional BLAST 
like algorithms after seeding to a locus (17, 57). Such 
differences also make it difficult to compare studies between 
different data analysis pipelines. 

 
In spite of these challenges, the use of NGS 

technology promises to further our understanding of stem 
cell function. The scope, sensitivity and specificity of this 
technology offer unparalleled exciting tools to study stem 
cell function, differentiation and behavior under different 
conditions. We can get a glimpse of the power of this 
technology in studying stem cells by looking at the extent 
to which microarray has been routinely used in 
understanding stem cell biology. As the technology 
platform matures, it becomes easier to use and the hurdles 
in the widespread adoption of the platform are overcome. 
Eventually NGS will be as common as microarray to 
interrogate stem cell function. The advent of low cost third 
generation sequencing technology like the Oxford 
NanoporeTM will certainly help promote this trend (18, 58). 

5. CURRENT KNOWLEDGE OF THE CSC 
GENOMIC LANDSCAPE 
 
5.1. Transcriptome of CSCs by microarray 

A number of studies have examined gene 
expression profiles of GBM stem cells to gain insight in the 
differences between CSCs and normal stem cells and to sub 
classify GBM stem cells into clinically meaningful 
subtypes (23, 25-27, 41). The gene expression profiles of a 
panel of GBM stem cell lines grown from human tumors 
were compared to profiles obtained from normal neural 
cells of various origins including astrocytic stem cells, 
adult neural stem cells and fetal neural stem cells (25, 42). 
The normal neural stem cells broadly clustered into 3 
categories, whilst the GBM specific stem cells were 
exclusively grouped into 2 of these clusters. GBM stem 
cells that had low expression of CD133 clustered with adult 
neural stem cells, and, in contrast, GBM stem cells with a 
high expression of CD133 clustered with fetal neural stem 
cells. A 24 gene signature was able to differentiate between 
adult-like and fetal-like GSCs ex vivo (25, 42). 

 
Genes differentially expressed between CD133+ 

and CD133− glioblastoma-initiating cells were also used to 
generate a clinically useful gene expression signature that 
could more accurately predict patient outcome compared to 
histological or molecular classification (26, 59, 60). The 
CD133+ overexpressed genes corresponded to genes 
involved in proliferation, whereas genes with decreased 
expression corresponded to immune regulation. The 
candidate signature corresponded to higher grade proneural 
subtype gliomas and was also associated with poorer 
survival in The Cancer Genome Atlas dataset (TCGA). 
Interestingly, glioma samples enriched for the CD133 
positive signature contained 3 times as many mutations 
compared with other samples. However, the genes mutated 
in the CD133-enriched samples were randomly distributed 
and no pattern could be discerned (26, 61). 

 
Tag-seq, a precursor technique to RNA-seq, was 

used in a similar study to profile a panel of normal and 
glioma CSCs (27, 62). Similar to SAGE, a 17-base pair 
sequence downstream of the NlaIII restriction site was 
sequenced in a massively parallel fashion. A panel of 
glioma-initiating cells were compared with fetal-derived 
neural stem cells (27, 62-64). The differentially expressed 
list of genes had high predictive power for survival and 
tumor grade and was correlated with age. The glioblastoma 
stem signature was more predictive than IDH status, a 
biomarker that is entering clinical use (27, 62). Therefore 
there is potential for a signature of cancer and ‘stemness’ 
being informative in the clinic. 

 
5.2. Clinical significance of a CSC signature 

The clinical significance of a single stem cell 
marker such as CD133 is controversial. 
Immunohistochemical screening of GBM CSCs or breast 
tumors does not indicate a statistically significant link 
between CD133 or CD15 expression and survival (36, 65). 
This is in contrast to studies at the mRNA level 
demonstrating that CD133 expression is a significant 
negative prognostic factor for both progression-free and
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Figure 2. Typical NGS analysis pipeline. Bioinformatic analysis of NGS data can be broken down into discrete steps which 
involves capturing an input and emitting an output (parallelogram). Both free and commercial software are available to perform 
analysis with free software, usually requiring more computational and statistical expertise (rectangle). The most frequent types of 
NGS experiments: DNA-seq, RNA-seq and ChIP-seq share upstream and downstream steps. Frequent manual quality control 
(ellipse) is employed to ensure systematic technical, and biological errors are accounted for. A common goal for NGS 
experiments when studying CSCs is the generation of hypotheses for further functional research. 

 
overall survival in GBM (27, 38, 66, 67). More success has 
been derived from using a subset of genes termed a ‘gene 
signature’, to define the CSC phenotype (40-42, 68, 69). In 
one study, the EphB2 surface marker was used to enrich for 
murine intestinal stem cells. A variety of gene signatures 
were derived including a gene signature characteristic of 
intestinal stem cells. This gene signature correlated with 
tumor grade and was able to predict recurrence after 
therapy in humans with colorectal cancer (40, 70). A 
similar strategy was used in the generation of a stem cell 
signature predictive for Her2+ breast tumors (41, 71). In 

this study, mammary tumor-initiating cells were collected 
from MMTV-Her2/Neu transgenic mice and compared by 
microarray to the initiating-cell-depleted (non-stem cell) 
population. Using a machine learning approach on a human 
dataset to retain stem cell genes predictive in a human 
Her2+ breast cancer cohort, a 17 gene signature was able to 
classify Her2+ patient tumors into a ‘good’ and ‘poor’ 
survival group. The signature was also predictive of a 
response to standard chemotherapy and the Her2-specific 
neutralizing antibody TrastuzumabTM. The signature 
performed better than the currently available generic 



Understanding cancer stem cells using next generation sequencing 

1021 

MammaprintTM signature which tests for 70 genes and 
predicts recurrence (43, 72), although it was not predictive 
for other subtypes of breast cancer (41, 72). These types of 
approaches using stem cell gene signatures are showing 
promise in many tumor types. A stem cell signature derived 
from adult cancer and embryonic stem cell transcriptomes 
was used in a classification analysis on an ovarian cancer 
dataset (42). Expression of stem cell genes were 
characteristic of type II ovarian cancer, which is typically 
the serous subtype and is more aggressive compared to low 
grade, heterogeneous type I ovarian cancer (42). 

 
5.3. Molecular subtyping by high throughput 
experiments 

Although gene expression profiling in cancer 
research is well developed, the usefulness in general cancer 
diagnosis and prediction is still coming to the fore. Already 
molecular pathology gene expression profiling 
complements breast cancer diagnosis and prediction for 
subtype classification (59, 60). Gene expression 
(transcriptome) profiling was able to predict relapse, 
treatment response and metastatic potential. A similar 
approach was applied to GBM, with the aim of assisting in 
the classification of different grades of gliomas. 
Quantification of gene expression by microarray combined 
with unsupervised machine learning techniques was able to 
differentiate between aggressive GBM, low grade 
astrocytoma and oligodendrogliomas (61). Clustering of the 
GBM subset of gliomas based on gene expression revealed 
4 previously unrecognized subtypes (62). These 4 groups 
were found to resemble specific stages in neuronal 
development. The proneural subtype resembled a 
differentiated neural cell type and displayed the best 
prognosis. Conversely, the mesenchymal subtype 
resembled a primitive cell type and was associated with 
shortest survival (62-64). Adding to the expression profile, 
traditional DNA sequencing of 601 genes identified 
mutations characteristic to each subtype (62).The number 
of tumor subtypes one can define seems to be limited only 
by the size of the training set (number of specimens), with 
one of the last major microarray studies finding 10 breast 
cancer subgroups by integrating copy number and gene 
expression from 2,000 tumors (65). NGS with its greater 
resolution and accuracy has the potential to define further 
patient subgroups, ultimately paving the way for 
personalized medicine. This is the premise behind the large 
cancer genomics projects of TCGA and International 
Cancer Genome Consortium (ICGC). 
 
5.4. Cancer genome consortia and publicly available 
cancer genomic data 

The field of cancer genomics has been rapidly 
accelerated by the advent of NGS. Enormous consortia 
consisting of clinicians, biologists and bioinformaticians 
have combined to profile hundreds of tumors to identify 
driving events in tumor initiation and maintenance. TCGA 
and the ICGC have selected specific cancer types for broad 
sequencing projects. DNA, methylated DNA, RNA and 
microRNA data have been generated and are available to 
researchers. Although these large projects have focused on 
characterization of heterogeneous tumor tissue, subtypes of 
tumors exist that have a CSC signature (27, 66, 67). 

Internet-based tools, such as cBio, are making the results of 
these analyses accessible to biologists and clinicians (68, 
69). Similar tools exist for genome-wide experiments 
relating to stem cell research (70). 

 
After completion of the human genome project, 

the next logical step was characterization of the functional 
elements of the genome. The encyclopedia of DNA 
elements (ENCODE) project set out to catalog the 
sequences in the genome that were transcribed and regions 
involved in transcriptional and epigenetic regulation (71). 
The project initially started with microarray technology and 
later utilized NGS. Samples were split into 3 tiers of 
different coverage. ‘Tier 1’ is the most thoroughly 
interrogated set of samples that includes H1 hESC, which is 
one of the most common human stem cell lines used in 
biomedical research (72). Several different induced 
pluripotent stem cells (iPSCs) are represented in ‘Tier 2’. 
The key findings from this large study were that 62% of the 
genome was represented in RNA sequencing reads, 8.1% of 
the genome is capable of binding proteins and 3.9% of the 
genome contains chromatin accessible to proteins, implying 
that these regions are regulated. Overall 84.4% of the 
genome is covered by an experiment undertaken by the 
ENCODE consortium (72). This data are publically 
available and represent a rich resource for further analysis 
by researchers with specific cancer biology questions. 

 
6. FUTURE PERSPECTIVES 
 
6.1. Epigenetic contribution to CSC phenotype 

Recently the tumorigenic properties imparted by 
the epigenetic status of CSCs was investigated (19, 73). 
The epigenome of glioblastoma CSCs was reset to an 
embroyonic state by transduction of classical induced 
pluriopotency genes Oct4 and Klf4 (2 of the 4 so-called 
Yamanaka iPSC genes). A small proportion (2 out of 14 
lines) were successfully reprogrammed to a pluripotent 
state and were able to be maintained in culture, similar to 
reprogramming frequency in normal cells. These 
reprogrammed CSCs were more similar in gene expression 
profile to iPSCs than the parental cells, yet retained the 
genomic alterations (mutations) of the parent cell. 
Likewise, their epigenetic profile was similar to iPSCs and 
not to the parental tumor. These reprogrammed CSCs 
formed teratomas in mice, while the parental tumors 
formed gliomas. The majority of the resulting teratomas 
were neural-like, with a mixture of other cell lineages 
present at low frequency. This indicates that there is some 
genomic memory retained in reprogrammed CSCs, 
independent of its epigenetic status (20, 73). This work was 
conducted with array technology and it is possible that the 
more unbiased nature of NGS can uncover epigenetic loci 
important in cancer developmental memory. 

 
6.2. Unraveling tumor heterogeneity 

Heterogeneity is a major complicating factor in 
the interpretation of cancer and stem cell genomics (74-76). 
It is well documented that analysis of genetic alterations of 
tumors is complicated by contamination of the tumor with 
normal stroma and immune cells (24, 77). A similar 
analogy can be applied for experiments involving stem 
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cells, as only a fraction of cells in vivo or in culture will 
occupy a stem cell state, being surrounded by its much 
more numerous differentiated progeny. NGS has been used 
to study the tumor — stromal interface in studies of human 
tumor cells xenografted into mice (28, 78). NGS is then 
used to deconvolute species specific gene expression by 
distinguishing human and mouse sequences during 
alignment, although this approach has its technical 
challenges (29, 79). With the ability of NGS to perform 
pair-end sequencing with longer reads than was previously 
available, it is likely that it will be possible to study 
complex interactions between various tumor 
microenvironments, including emerging research 
investigating interactions between stromal cells, immune 
cells and tumor cells in vivo. Models of stem cell driven 
tumors will benefit from such approaches, as it will be 
possible to investigate signaling in the tumor stem cell 
niche in vivo using xenograft models. 

 
6.3. Single-cell sequencing technologies 
 A relatively new technological development to 
study the prevalence and differences of a potential stem cell 
subpopulations in a tumor is single-cell sequencing (30, 
54). Microfluidic instruments combined with ‘single-tube’ 
protocols and multiple rounds of PCR are able to generate 
sufficient amounts of DNA and RNA that can be sequenced 
by NGS. For RNA-seq this technique can only be 
performed with a poly-A tail capture, resulting in a 3’-end 
bias dependent on the length of the transcript (31, 54). The 
extensive PCR steps also result in bias in the sequences 
amplified and propagation of PCR artifacts. The statistical 
analysis of single-cell RNA-seq is currently in the early 
stages, with the stochastic nature of gene expression at the 
single-cell level requiring to be modeled for the analysis 
(32, 80). Despite these issues, RNA-seq and single-cell 
resolution analysis of individual cell lineages derived from 
the embryonic inner cell mass has been applied and has 
revealed mechanisms regulating the epigenome of specific 
embryonic stem cells during early development (81, 82). 
 

Single nucleus sequencing of breast cancer 
tumors indicate the diversity in copy number profiles 
observed is consistent with the anatomical origin of the 
cells within the tumor bulk (34, 53). Phylogenetic 
reconstruction of the evolution of individual cells indicate 
divergence of the major subclones when the tumor was 
small. This suggests an initial aneuploid generating event 
followed by clonal expansion and divergence. No common 
ancestors cells were identified that link the emergent 
subclones together. Given that 100 individual nuclei were 
sequenced, these rare cells may have been missed. 
Complicating matters are the presence of multiple, distinct 
pseudodiploid cancer cells throughout the tumor with no 
obvious relationship to each other or the main tumor 
lineage. These cells may have arisen from the initial insult 
that generated the genomic instability in the first place and 
are continually being generated and selected against in the 
background (35, 53). 
 
6.4. Dynamic plasticity of CSC phenotype 

Most genomic experiments at present use a design 
that takes a snapshot of the population at a single point in 

time. The kinetics of the CSC state is of particular interest 
in the context of cancer development. It may be that the 
potential of tumor cells to dedifferentiate to a CSC state 
over time is more relevant to the clinical course of a cancer, 
rather than the number of CSCs at steady state (13, 37). 
Multipoint genome-wide ‘kinetic’ measurements will be 
expensive to perform and more complicated to analyze 
compared with a static experimental design, but have the 
potential to reveal much about the dynamic nature of CSCs. 
Coupled with single-cell sequencing one could track crucial 
intermediate states between non-CSCs and CSCs, such as 
those recently shown to be epigenetically modulated in 
iPSC reprogramming (39, 83, 84). 
 
6.5. How will NGS help improve the way patients are 
treated? 

For all the advances in the technology and the 
understanding of the biology of CSCs, the ultimate reason 
to be conducting this research, is to improve cancer patient 
treatment by providing a real improvement in both quality 
of life and survival. Having said this, the inevitable cost-
benefit calculations come into play, otherwise new 
therapies would simply be unaffordable to most patients. 
NGS seems to provide real hope that will enable cancer 
researchers to further delve into the subtleties of CSC 
biology, eg. the identity of the molecular features 
distinguishing CSCs from other cells.. NGS will also 
enable unprecedented disease-specific treatments to be 
delivered to patients quickly and affordably, by informing 
clinicians on how to intervene with new and existing 
combinations of drugs. 
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