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1. ABSTRACT

Macrophages play diverse roles in episodic
T cell-mediated inflammatory diseases such as
multiple sclerosis and rheumatoid arthritis, function
as accessory cells for T cell activation, as pro-
inflammatory cells, as effector cells which mediate
tissue damage, and as anti-inflammatory cells which
promote wound healing. In addition to the many roles
of T cell-derived cytokines in differentially
modulating these diverse macrophage activities,
research over the last few years has demonstrated that
contact-dependent signaling which occurs during T
cell-macrophage adhesion is a critical triggering event
in the activation of macrophage function. Substantial
research emphasis has been placed on CD40 as a
mediator of contact-dependent signaling. However,
other membrane-anchored receptor:ligand pairs may
also contribute to the stimulation of macrophage
function. This is a brief review of the rapidly
expanding, but still incomplete, knowledge of how T
cells, through both contact-dependent and cytokine
signals, regulate macrophage function during
inflammatory disease.

2. INTRODUCTION

Research over the past decade has only
begun to unravel the complex interactions between T
cells and macrophages that are involved in the
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pathogenesis of cell-mediated inflammatory diseases
such as multiple sclerosis. The cellular infiltrates of
active sclerotic lesions include CD4+ T cells (Th1
with some Th0 and Th2), CD8+ T cells, and
macrophages (microglia and monocytes) (1-8). The
types of cells present reflect the state of progression
of the inflammatory lesion. Macrophages play critical
accessory, inflammatory, and effector roles in this
non-septic T cell-mediated inflammatory disease
(5-9) and tend to be present throughout the
inflammatory process. The development of a cell-
mediated response is currently hypothesized to
depend on the differentiation of interferon (IFN)-
gamma producing Th1 cells from activated Th0
precursors (10,11). The production of interleukin
(IL)-12 by macrophages clearly plays an important
role in the maturation of Th1 cells (10). Upon
maturation, these Th1 cells, as well as inflammatory
CD8+ cells, both of which produce IFN-gamma and
tumor necrosis factor (TNF)-alpha/beta, play a
dominant role in macrophage activation and
pathogenesis of the inflammatory lesion (1,3,12-15).
In contrast, IL4/IL10-producing T cells are
hypothesized to play a role in down-regulation of the
inflammatory response (1,3,16). It is these “type 2”
CD8+ cells that appear to be active in the cellular
infiltrate of sclerotic lesions that are in remission
(1,3).

In addition to the many roles of T cell-
derived cytokines in stimulation and inhibition of
macrophage function (13), research over the last few
years has demonstrated that the critical triggering
event in activation of macrophage cytokine production
and effector function is contact-dependent signaling
during T cell:macrophage adhesion (17-24).
Substantial research emphasis was placed on CD40
as a mediator of contact-dependent
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Figure 1. The diverse functions of macrophages. Macrophages are capable of many functional activities and
contribute both to the initiation of cell-mediated immune response and to the effector limb of those responses. During
the course of the response, macrophages can display, at different times, both inflammatory and anti-inflammatory
activities.

signaling of macrophages. CD40 ligation has been
reported to contribute to the induction of accessory
molecules such as CD80 and CD86 (25-27), to the
induction of inflammatory cytokines and chemokines
(27-29), and to the induction of nitric oxide
generation (24) and metalloproteinase secretion (30).
However, the observation that T cells from CD40L-
deficient mice are capable of contact-dependent
signaling of macrophages (31) establishes that
membrane-anchored receptor:ligand pairs other than
CD40:CD40L can be involved in T cell signaling of
macrophages. In the following sections, we try to
provide a succinct account of T cell signaling of
macrophages which, although brief and simplified for
the sake of clarity, emphasizes the complexity of the
cascading cell-cell interactions involved in a
relapsing inflammatory autoimmune disease.

3. MULTIPLE ROLES OF MACROPHAGES IN
INFLAMMATORY DISEASES.

The cellular infiltrates of active sclerotic
lesions are dominated by cells of the monocytic
lineage (macrophages and microglial cells) (6-8).
These macrophages can display very diverse functions
in sclerotic lesions (Fig. 1). They can function as
accessory cells, presenting antigen and providing co-
stimulatory ligands (e.g., CD80, CD86, and CD48)
and co-stimulatory cytokines (e.g., IL-1 and IL-12) to
the infiltrating T cells (10,13,32-36). Macrophages

can be activated to produce prodigious amounts of
pro-inflammatory cytokines such as TNF-alpha, IL-1,
and IL-6, chemoattractant cytokines such as IL-8 and
macrophage inflammatory protein (MIP)-1 alpha/beta
(13,37), and pro-inflammatory products of
arachidonic acid metabolism (13,38).

TNF-alpha, in particular, appears to play a
critical role in the pathogenesis of experimental
allergic encephalomyelitis, the murine model of
multiple sclerosis, insofar as administration of anti-
TNF-alpha antibodies in vivo inhibits the
development of experimental allergic
encephalomyelitis (39).

Interestingly, in addition to the
inflammatory and destructive activities listed above,
macrophages have the potential to contribute to the
remission of the inflammatory episode, although the
degree to which they participate in remission has not
yet been directly assessed. Macrophages can be
induced to generate toxic reactive oxygen and
nitrogen intermediates(13,40-45) and to secrete
"tissue restructuring" metalloproteinases (13,46-48),
each of which have been hypothesized to directly
contribute to the demyelinization process (49-51).
Macrophages also can be induced to secrete cytokines
which inhibit macrophage accessory, inflammatory,
and effector functions. IL-10, which is produced by
both macrophages and T cells, down-regulates
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expression of costimulatory molecules such as CD86
(52,53), inhibits the production of IL-1 and TNF-
alpha and reduces generation of reactive oxygen and
nitrogen intermediates (54-57). Transforming growth
factor-beta (TGF-beta), which is produced by many
cell types including macrophages and T cells, also
inhibits generation of reactive oxygen and nitrogen
intermediates (58,59), especially in synergy with IL-
10 (43,57,60), and is hypothesized to play a critical
role in resolution of inflammatory lesions in
experimental allergic encephalomyelitis (61-63).

4. MECHANISMS OF T CELL-MEDIATED
INDUCTION OF MACROPHAGE FUNCTIONS.

 The induction of these diverse macrophage
functions is complex, differentially regulated, and
poorly understood. Cytokines can stimulate or inhibit
many of the macrophage functions described above
but the modulating effect of many of the cytokines
depends on the state of activation of the target
macrophage population, the triggering signal, and
timing (13,64,65). Although some exceptions have
been noted, T cell cytokines such as IFN-gamma, IL-
4, GM-CSF, and IL-3 generally can enhance
accessory and co-stimulatory activity (13,29,66-69)
and IFN-gamma, GM-CSF, and IL-3 can augment
oxidative burst capacity (70-73). The combination of
IL-2 plus IFN-gamma has been shown to induce TNF-
alpha production and the combination of TNF-alpha
and IFN-gamma have been shown to induce nitric
oxide production (74-79). Thus, cytokines, especially
the Th1 cytokines (IL2, TNF-alpha, IFN-gamma), can
stimulate inflammatory and tissue destructive
activities in macrophages.

In contrast, IL-10, TGF-beta, and, to a
lesser degree, IL-4 (Th2 cytokines) inhibit the
induction of oxidative burst and nitric oxide
generation (54,57-59,80) and inhibit inflammatory
cytokine production by macrophages (54-56,61,81),
but do not affect (or enhance) IL-1Ra (IL-1 Receptor
antagonist), IL-10 and TGF-beta production
(61,82,83). Thus activated macrophages modulated
by TGF-beta may display predominantly anti-
inflammatory activities, such as secretion of IL-1Ra,
IL-10, and TGF-beta.

Although these cytokines play an important
role in modulating macrophage function, it is now
clear that a critical mechanism by which T cells
trigger these macrophage functions involves
engagement of membrane-anchored receptor:ligand
pairs during heterotypic adhesion between T cells and
macrophages. Macrophage accessory, inflammatory,
effector, and inhibitory functions have all been shown
to be stimulated by paraformaldehyde fixed activated
T cells or plasma membranes isolated from activated
T cells (13,17-24,44,45,47). In each of these systems,
pre-activation of the T cells is a requirement for cell

contact-dependent signaling, suggesting the
involvement of activation-induced membrane-
anchored ligands on the T cells.

5. CONTACT-DEPENDENT SIGNALING OF
MACROPHAGE ACTIVATION.

CD40:CD40L is the receptor:ligand pair
that has received the most attention in the context of
contact-dependent signaling of B cells and
macrophages (34,84-87). CD40L is expressed
transiently upon activation of T cells, with maximum
expression usually observed at 5-10 hrs (88,89). Anti-
CD40L antibody interferes with T cell signaling of
macrophage accessory function, cytokine production
and nitric oxide generation (24,25,28). Conversely,
anti-CD40 antibody (28), CD40L-transfected cells
(29), or soluble trimeric CD40L (27) induce
expression of accessory molecules and production of a
full array of cytokines (IL-1, TNF-alpha, IL-6, IL-10,
IL-12) by macrophages. However, although anti-
CD40L antibody nearly completely blocks induction
of IL-1 release and CD80 expression by isolated T
cell membranes or fixed T cells (25,28), it only
partially blocks nitric oxide generation and CD86
expression (24,25). These observations suggested that
CD40 ligation is not solely responsible for T cell
contact-dependent signaling. This was confirmed by
the observation that T cells from CD40L-deficient
mice can activate macrophage nitric oxide generation
via contact-dependent signaling (31). Although
CD40L-deficient T cells, paraformaldehyde-fixed
after being activated for 5 hrs on anti-CD3, lacked the
ability to signal macrophage nitric oxide production,
CD40L-deficient T cells, fixed after being activated
for 24 hrs on anti-CD3, were able to signal
macrophage nitric oxide production as effectively as
similarly activated normal T cells (31). This indicates
that CD40 ligation may dominate signaling early in T
cell-macrophage interaction but that other receptors
may become involved later in the interaction.

Receptors other than CD40 that have been
reported to signal macrophage function include CD23
(90,91), CD31 (92), CD38 (93), CD44 (94), CD45
(45,94), CD69 (95,96), and LFA-3 (94). The most
abundant data is on CD23. CD23 is the low affinity
Fc RII and thus is capable of binding complexes of
antigen and IgE antibody. In addition, CD23 binds
CD21 (97) and, according to one report, also binds
CD11b and CD11c (98). Ligation of membrane CD23
on macrophages induces production of TNF-alpha, IL-
6, and nitric oxide (97,99,100). Interestingly, ligation
of CD21 on the macrophage membrane by soluble
CD23 also has been reported to induce the production
of TNF-alpha and IL-1 by macrophages (101,102).
CD21 (90) and, under more restricted conditions,
CD23 (103) have been reported to be expressed by
activated but not by resting T cells. It is therefore
possible that the CD23:CD21 receptor:ligand pair is
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Table 1
The Roles of CD40:CD40L Interactions in Cell-Mediated Inflammatory Disease
Interacting Cell Functions Induced Role in Inflammatory Response

Dendritic Cells CD80 Expression
IL-1 Production

Stimulation of Immune Response

Histiocytes, Monocytes IL-12 Production Development of Th1 Cells

Histiocytes, Monocytes Inflammatory Cytokine Production Enhancement of Inflammatory Response

Vascular Endothelial Cells Homing/Adhesion Molecule Expression
(e.g., VCAM)

Enhanced Recruitment of T Cells into
Inflamed Tissue

Monocytes/Macrophages Production of NO, O3
-, and

metalloproteinases
Tissue Destruction

Macrophages/fibroblasts Production of TGF-beta/Proliferation Tissue Repair/Remission

Ligation of CD40 on myeloid cells, endothelial cells, and fibroblasts can induce a wide range of functional activities
which could contribute to essentially every aspect of cell-mediated inflammatory responses.

involved in T cell-mediated signaling of some
inflammatory macrophage functions.

6. ROLE OF CONTACT-DEPENDENT
SIGNALING IN AUTOIMMUNE DISEASE.

The role of contact-dependent signaling in
the development of experimental allergic
encephalomyelitis has been shown dramatically using
transgenic B10.PL mice expressing the T cell
receptor reactive with the encephalitogenic peptide
(Ac1-11) of myelin basic protein. Transgenic CD40L-
deficient mice, unlike +/+ transgenic mice, do not
develop acute experimental allergic
encephalomyelitis upon immunization with Ac1-11
(104). This nonresponsiveness was ascribed to the
inability of CD40L-deficient T cells to induce CD80
expression on dendritic cells. The adoptive transfer of
CD80-positive accessory cells into CD40L-deficient
mice restored their ability to respond to antigen and
to develop experimental allergic encephalomyelitis.
This indicates that, unless an undiscovered second
ligand for CD40 exists, T cells are capable of driving
the inflammatory process by CD40-independent
receptor:ligand and/or cytokine signaling.

Although the above studies with transgenic
CD40L-deficient mice suggest that CD40 ligation is
not required for the development of sclerotic lesions
once the CD80 costimulus is provided, studies with
normal animals indicate that CD40:CD40L
interactions play a significant role throughout the
inflammatory process. Administration of anti-CD40L
antibody as late as 7-9 days after immunization of
SJL mice with encephalitogenic peptide reduced the
extent and severity of lesions by more than 50% (6).
This is not surprising because CD40:CD40L
interactions are known to play many roles in cell-
mediated inflammatory responses, including
stimulation of expression of adhesion and homing
molecules on vascular endothelium, stimulation of

chemokine and inflammatory cytokine production,
stimulation of the production of IL-12, which is
critical for maturation of the inflammatory Th1
subset, and stimulation of fibroblasts (105) (Table 1).
Several of the above activities are critical for the
development of experimental allergic
encephalomyelitis. VCAM-1 plays a critical role in
the inflammatory process of experimental allergic
encephalomyelitis (106); ligation of CD40 on
endothelial cells induces VCAM-1 expression (107).
Blockade of CD80 expression has been shown to
prevent clinical relapses and chronicity of
experimental allergic encephalomyelitis (108-110);
antibody blockade of CD40:CD40L interactions
completely blocks T cell contact-induction of CD80
expression (25). Since neither IL-10 nor TGF-beta
appear to down-regulate CD80 expression (52,53),
the down-regulation of CD40L, and hence CD40L
stimulation of CD80 expression, may therefore be a
pivotal event in the shift from inflammatory to anti-
inflammatory activities in the sclerotic lesion.

7. PERSPECTIVE.

The studies on experimenal allergic
encephalomyelitis to date strongly support critical
roles for CD40 and TNF-alpha (CD40-induced?) in
the pathogenesis of sclerotic lesions and for TGF-beta
in remission of the inflammatory episode. Although
receptors other than CD40 (e.g., CD23 and CD69)
have been shown to stimulate macrophage production
of inflammatory cytokines in vitro, their role in the
pathogenesis of inflammatory disease is still
unexplored. The studies on T cell receptor transgenic
and CD40L-deficient mice (105) indicate that CD40-
independent receptor:ligand pairs and/or cytokines
are sufficient to drive the development of disease
once the T cells are activated. This is supported by
the observation that administration of anti-CD40L
antibodies after immunization with encephalitogenic
peptide only partially interferes with the development



T Cell:Macrophage interactions

201

of disease. The identification of these CD40-
independent receptors and of their role in the
pathogenesis of inflammatory disease will be a major
area of research interest throughout the next decade.
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