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1. ABSTRACT

The aim of this review is to summarize  the
possible  mechanisms underlying the long-term impairment of
learning and memory resulting from chronic ethanol treatment
(CET) especially that involving decrements in long-term
potentiation (LTP) in hippocampus. CET for a  28-week
duration  affects the  rat hippocampal formation in such a way
as to decrease the magnitude of LTP; an effect  that can last
as long  as 7 months after ethanol withdrawal. It appears that
NMDA receptor number in hippocampus is unchanged after
CET whereas the data suggest a more pronounced role for
changes in GABAergic and cholinergic synaptic transmission
in determining  how CET influences the induction  of  LTP in
hippocampus. In particular, changes in presynaptic
modulation of neurotransmitter release in hippocampus may
be one mechanism by which CET inhibits LTP.  Thus,  the
mechanisms underlying the effect of CET on LTP are a result
of changes in a number of neurotransmitter systems in
hippocampus (GABAergic and cholinergic)  rather  than
based solely on changes in glutamate transmission.

2. CET-INDUCED CHANGES IN  MEMORY AND
HIPPOCAMPAL FUNCTION

Long-term, excessive exposure to ethanol disrupts
cognitive function as measured by a broad spectrum of
techniques (1-4).  The behavioral dysfunction can range from
relatively mild cognitive deficits (4, 5) to Korsakoff’s
syndrome or alcoholic dementia characterized by a profound
anterograde amnesia (1, 4).  The relative contribution of
nutritional deficiency and ethanol neurotoxicity to the
mnemonic deficit has not  been established (2, 6).  Further, a
relationship between  neuropathological alterations and
specific memory dysfunction has not been adequately
substantiated.
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Numerous animal studies have confirmed that CET
produces abnormal morphology and function in the rodent
hippocampus (7).  CET produces a progressive learning and
memory deficit across a variety of behavioral tests including
active avoidance (8-11), complex maze learning (12, 13), and
tests of temporal (14, 15) and spatial (15-19) memory.  The
memory deficits grow progressively more severe with
increasing exposure to CET and persist for prolonged periods
following abstinence  (8).  Morphological changes in
hippocampus associated with CET include a 10-40% loss of
principal cells (16, 20-26) and interneurons (27, 28).  The
extent of the cell loss depends upon the duration of CET, the
magnitude of exposure, genetic susceptibility to ethanol and
the length of ethanol abstinence.  For the purposes of this
review, CET will be defined as continuous ethanol exposure
for a sufficiently long period (e.g., 6 months)  to result in
lasting (or in some cases,  permanent) structural and
functional alterations of the hippocampus or its neural
connections (7).  At least 48 hrs withdrawal from ethanol is
required so that the lasting functional disturbances associated
with structural changes  can be separated from the transient
disturbances associated with ethanol tolerance and withdrawal
(7).  Periods of ethanol exposure that are not  sufficient  to
cause persistent behavioral changes after withdrawal  will be
referred to as subchronic.

Neurons which survive CET also exhibit structural
abnormalities (7).  However,  despite  profound and often
region-specific morphological changes (29-32), CET
produces surprisingly subtle changes in the function of the
hippocampus as directly assayed by electrophysiological
methods. These functional changes include a reduction in
intrinsic inhibitory processes (33-35) and a modification in the
distribution of synaptic connections using current-source
density analysis (36, 37).

3. CET-INDUCED CHANGES IN LONG-TERM
POTENTIATION (LTP)

A more profound effect of CET on hippocampal
function is that CET  appears to alter the capacity for synaptic
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plasticity such as LTP.  LTP is defined as a long-term increase
in synaptic efficacy induced  by exposure of neurons to
high-frequency stimulation of excitatory afferent pathways
(38, 39).  It is generally considered to be a synaptic model or
substrate  for learning and  memory (40, 41).  This enduring
change, which can last from hours to days (40, 42, 43), is
manifested by an increase in the amplitude and the slope of
the extracellular recorded EPSP.  LTP also results in an
increased amplitude and decreased latency of the population
spike.  LTP is ordinarily divided into three separate processes:
1) induction, 2) maintenance and 3) expression.  At the
physiological level, the induction of LTP requires
cooperativity of synaptic inputs resulting in a threshold
depolarization of the postsynaptic membrane.

  CET reduces the percentage of hippocampal slices
exhibiting LTP of the population spike in hippocampal area
CA1 (44).  Similar in vivo studies reveal a diminished
population spike amplitude after LTP conditioning trains in
the dentate gyrus (17).  CET reduces the synaptic component
of LTP in addition to its effects on the population spike (45).
While CET slices exhibit  a progressive increase in LTP with
successive conditioning trains, the magnitude of the LTP is
substantially reduced relative to control slices. This decrement
occurs regardless of whether a 48 hr or 5-7 month withdrawal
period is given.  When hippocampal tissue from CET and
sucrose-treated animals was exposed  to the GABAA

antagonist, bicuculline methiodide, the CET-produced
disruption of LTP is no longer observed (45).  These data
indicate that the mechanism for the CET-induced decrement
in LTP involves activation of GABAA receptors.

4. CET-INDUCED CHANGES IN GLUTAMATE
TRANSMISSION IN HIPPOCAMPUS

There is now more known  about the molecular
mechanisms important in the induction of the synaptic
component of LTP in the CA1 region although there is still
much controversy as to whether  presynaptic (46) or
postsynaptic (47) mechanisms are involved.  Both activation
of NMDA receptors  (see 48) as well as inactivation of
GABA receptors (49) appear to be  important in the
generation and maintenance of LTP although the interplay
between these two processes has not been well-defined. The
trigger for the induction of LTP is at the NMDA receptor/ion
channel complex (see 50).  The NMDA receptor can  be
composed of a mix of 7 splice variants of the NR1 protein
subunit with one of four NR2 subunits thereby providing the
possibility for functionally distinct receptor subtypes (see 51).
Mice lacking a particular subtype of one of the protein
subunits that comprise the NMDA receptor exhibit reduced
LTP (52). The NMDA receptor is coupled to a nonspecific
cation channel which can allow significant transmembrane
calcium ion (Ca2+) flux.  This transient  Ca2+  may trigger one
or more Ca2+-dependent enzymes such as  Ca2+/CAM kinase
II, protein kinase C or proteases.  One or all of these enzymes
may play a critical role in the mechanisms underlying the
enhancement of synaptic transmission.

Acute ethanol treatment has been shown to
completely block LTP via  a direct effect on NMDA-receptor
mediated currents (53).  Acute ethanol quite potently inhibits

NMDA receptor function thereby decreasing Ca2+ influx in
hippocampus as measured by electrophysiology, Ca2+

fluorescence and 45Ca2+ uptake  (54-56). The sensitivity of
NMDA receptors to ethanol depends on receptor composition
(57, 58).  Subchronic repeated exposure to ethanol increases
glutamate (59, 60) and NMDA binding sites (61-63) as well
as NR1 receptor subunit immunoreactivity in hippocampus
(64).  Functionally, NMDA-stimulated Ca2+ uptake is
increased after subchronic  repeated  ethanol treatment (65,
66) but there is no change in ethanol inhibition of NMDA
receptor function (67). Thus, following subchronic ethanol
exposure, there is an  up-regulation of  NMDA receptor
number but  no change in receptor  function.  It is important to
distinguish that these studies measured the effects of fairly
short-term ethanol exposure (days to weeks) and that after
withdrawal from ethanol,  NMDA receptors usually returned
to normal.

It is not clear whether similar changes in NMDA
receptor number and  function would occur  in hippocampus
following withdrawal after long-term CET (e.g.,  6 months).
There is no change  in the number or affinity of  [3H]MK-801
binding sites, nor is  enhancement of this specific binding by
glutamate affected by CET (68).  These data support the
hypothesis that  the  CET-induced decrease in LTP is not due
to a change  in NMDA receptor number.  In agreement with
these data, Northern blot analysis of NR1 mRNA levels in
hippocampus indicate  no effect of CET (69).  These results
suggest that although NMDA  receptor number  and mRNA
levels may be altered after short-term exposure to ethanol,
these changes do not occur  after withdrawal from long-term
CET.  It will also be important to determine whether the
functional status of the NMDA receptor is not altered after
CET as well as whether presynaptic indices of glutamate
transmission are altered by CET.

5.  CET-INDUCED CHANGES IN GABA
TRANSMISSION IN HIPPOCAMPUS

While the NMDA receptor serves as a critical
trigger in the induction of LTP, alterations in NMDA receptor
function appear to play little role in the expression of
established LTP.  Considerable controversy exists over the
mechanism and site involved in the expression of LTP (70-
72).  Presynaptic GABAB  receptors are also  proposed as a
mechanism affecting  LTP, since a decrease in  GABA release
may contribute to  an increased NMDA response (73-75).
During induction of LTP, GABAA-mediated inhibition is
decreased thereby allowing NMDA-mediated excitation to
increase (75). Blockade of GABAB receptors prevents the
reduction in GABA inhibition, the increase in NMDA
excitation and the induction of LTP (75).

It is possible that CET produces an enduring in-
crease in pre- and/or postsynaptic elements of GABAergic
synaptic transmission.  This increase in GABA transmission
could counteract the depolarizing effects of the LTP-induced
NMDA receptor activation.  This hypothesis is supported by
the fact that the difference in LTP between CET and sucrose-
control  groups is abolished by bicuculline blockade of
GABAergic synaptic transmission (45). These data indicate
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that an increase in postsynaptic GABAA receptor activation is
involved in  CET  inhibition of LTP.

The GABAA receptor/chloride (Cl-) ionophore is a
hetero-oligomer composed of a total of 4-5 polypeptide
subunits of at least thirteen different types (alpha1-6, beta1-3,
gamma1-3 and delta), each displaying a unique regional
expression even within hippocampal subregions (76, 77).  The
gamma2 subunit is necessary for benzodiazepine modulation
of function (78) and the alternatively spliced gamma2L form
of this subunit must be appropriately phosphorylated by
protein kinase C before ethanol sensitivity is conferred (79-
81).  In receptors that are sensitive to ethanol, there is an
enhancement of GABA-stimulated  Cl-  conductance (see 82).
Subchronic ethanol exposure (5-10 days) results in a loss of
in vitro enhancement of channel function by ethanol (83, 84).
Although there has not been any consistent evidence for a
change in the number or affinity of  the GABAA receptor as a
whole (85, 86), subchronic ethanol exposure decreases both
mRNA and peptide levels for alpha1, alpha2 and alpha3

subunits in cortex, increases alpha6 in cerebellum (87-92) and
causes long-term increases in both mRNA and peptides for
the beta2 and beta3 subunits in both regions (93). Thus,
subchronic ethanol exposure changes the subunit composition
and very likely, the functional status of the receptor.
However, most of the  changes described above are transient
in nature, returning  to control levels within 48 hrs  after
ethanol withdrawal.

CET appears to increase the number of
[3H]bicuculline binding sites in hippocampus (94) which may
indicate an increase in GABAA receptor number or an
alteration in receptor subunit composition.  However, CET
does not change the efficacy or potency of muscimol to
activate postsynaptic GABAA-controlled  Cl-  ionophores  nor
is there a difference in the efficacy or potency of bicuculline
to block this agonist stimulation (95). However, changes in
the number of binding sites may not always be accompanied
by a functional change if spare receptors are present.
Therefore, the functional significance of the increase in
[3H]bicuculline binding sites in hippocampal subregions of
CET rats remains to be determined.

On the other hand, CET significantly increases
electrically-stimulated [3H]GABA release from superfused
hippocampal slices (95) which could also explain why
bicuculline could abolish the effects of CET on LTP. It is not
likely that the increase in GABA release is due to hyper
innervation of pyramidal cells by  GABAergic interneurons
since previous studies have found that CET reduces functional
inhibition of CA1  pyramidal cells as well as the number of
GABAergic interneurons in CA1 (33-35).  Instead the
mechanism for an  increase in GABA release seems to
involve changes in  GABAB receptor-mediated presynaptic
inhibition  of GABA release  (94). The effects of maximally
effective doses of GABAB receptor agents  on  [3H]GABA
release are significantly decreased in CET rats  (94).  Results
from binding experiments in similarly-treated rats  suggest
that CET has no overt effect on the number of GABAB

receptors in hippocampus which are predominantly
postsynaptic in nature (94).  In support of this, CET decreases
the presynaptically-mediated hyperpolarizing responses of

CA1  pyramidal cells to bath-applied baclofen (96) without
affecting the postsynaptic effect of  baclofen to inhibit
EPSPs.  Similar effects of CET on baclofen-induced
inhibition of GABA release have been found in cortex (97)
although there is no effect of CET on baclofen-induced
inhibition of  isoproterenol-stimulated cAMP formation (98).

GABAB autoreceptors are capable of  regulating
induction of LTP via a decrease in GABA release thereby
permitting sufficient NMDA receptor activation (99).  On the
other hand,  postsynaptic GABAB receptors can cause
hyperpolarization of the postsynaptic membrane resulting in
an enhanced blockade of NMDA channels by Mg2+ thereby
inhibiting NMDA-mediated  EPSPs (100).  Thus, the
involvement of GABAB receptors in LTP may be quite
complex since presynaptic disinhibition of GABA neurons
would enhance LTP but postsynaptic activation of GABAB

receptors could diminish NMDA-mediated EPSPs and
decrease LTP.

6.  CET-INDUCED CHANGES IN CHOLINERGIC
TRANSMISSION IN HIPPOCAMPUS

Cholinergic innervation of hippocampus is also
important for mediation of events leading to LTP.  The
balance between cholinergic and GABAergic systems may
determine hippocampal theta activity (101) which has been
shown to modulate LTP in vivo (75).  The dentate gyrus is
innervated by GABAergic and cholinergic fibers from the
medial  septum and the nucleus of the diagonal band (see 102)
which  can influence dentate gyrus excitability. There is a
strong cholinergic influence on GABAergic and other neurons
in hippocampus (103, 104).  A vast majority of the GABA
neurons in CA1, CA3 and dentate gyrus of hippocampus
express  muscarinic acetylcholine receptors (101).  These
muscarinic receptors may presynaptically influence GABA
release in hippocampus and affect LTP.

Cholinergic influences also appear to be involved in
the effects of CET on LTP in hippocampus. There are
numerous reports that suggest that CET may induce a
permanent loss in cholinergic function in hippocampus.  CET
decreases high affinity choline uptake in hippocampus (105)
as well as ACh levels, choline acetyl transferase and
acetylcholinesterase activity (19, 106, 107).  Lesions of the
septohippocampal nucleus block the effects of acute  ethanol
on LTP (108).  Whether this effect is due to  a loss of altered
cholinergic influences on GABA neurons remains to be
answered.  CET decreases the effects of ACh on population
spike  amplitude but has no effects on carbachol-inhibition of
EPSPs  (109). Additionally, both  cholinergic disinhibition
and recurrent inhibition are decreased by CET.  Similar results
were found in response to application of carbachol (110).
These data suggest that ACh response properties in CA1
exhibit differential sensitivity to CET and may reflect a
distinct susceptibility of muscarinic receptor subtypes to the
neurotoxic effects of ethanol. However, the reductions in
cholinergic function produced by CET do not appear to be
due to receptor loss since muscarinic receptor subtype
densities were not found to be altered as determined by either
immunoprecipitation of m1-5 subtypes (111) or by  maximal
[3H]QNB binding  and  carbachol displacement of  specific
binding (112).  Thus it is possible that the effects of CET on
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cholinergic transmission involve changes in muscarinic
second messenger systems (e.g., PI metabolism) or very select
populations of muscarinic receptors. The  effect of carbachol
on the EPSP is thought to be due to the presence  of
presynaptic muscarinic cholinergic receptors on the terminals
of the stratum radiatum afferents.  When these receptors are
activated by carbachol, neurotransmitter release is reduced.
Thus, the effects of CET to decrease the activation of
muscarinic cholinergic receptors seem to be selective for
postsynaptic rather than presynaptic cholinergic receptors.

In terms of presynaptic receptors, it appears that
separate populations of presynaptic muscarinic  cholinergic
receptors may also be regulated differently by CET.  The
cholinergic agonist carbachol  increases  [3H]GABA release
from superfused hippocampal slices  and this effect is blocked
by atropine (113).  In CET rats, there is an increase in
carbachol enhancement of  [3H]GABA release compared to
that measured in sucrose-treated rats (113).  In contrast,  the
effect of atropine, a muscarinic antagonist, is significantly
decreased (113). Thus, in addition to a CET-induced down-
regulation of GABAB autoreceptor function, presynaptic
regulation of GABA release by ACh receptors in
hippocampus is affected in a manner so as to increase  GABA
release. However, muscarinic receptors have been previously
reported to decrease, not increase, GABA release in
hippocampus or other brain regions.  In contrast to these data,
there is no  effect of CET on the cholinergic control of
presynaptic release of ACh.  CET does not  produce any
reliable change in basal or stimulus-dependent [3H]ACh
release in hippocampal slices  (113).  In addition, exposure of
synaptosomes to the muscarinic cholinergic agonist
oxotremorine causes an equivalent attenuation of potassium-
evoked [3H]ACh release in both control and CET rats (113).
The effects of the specific muscarinic cholinergic antagonist
atropine are also similar (113).  Therefore, in view of these
findings, it appears that CET may be extremely selective in its
effects on hippocampal cholinergic transmission.
7.  Summary

LTP has been considered a significant
physiological model of memory formation.  In light of
converging evidence of a critical role for the hippocampus in
the formation of memory, LTP may be more than a model of
memory.  LTP may actually be a significant mechanism
utilized by the hippocampus for encoding or indexing
experiential representations of activity originating in cortical
association areas (114, 115).  Chronic alcohol abuse disrupts
long-term memory formation in a manner that has not been
adequately linked to gross neuropathological abnormalities.
CET produces significant changes in the structural and
functional properties of the hippocampus in rodents including
a profound reduction in LTP at synapses in CA1.  In addition
to the  NMDA receptor/ion channel complex, both GABA
and acetylcholine  receptors  appear especially sensitive to the
acute and chronic actions of ethanol.  When coupled with the
growing recognition of the role of the hippocampus and LTP
in normal memory formation; collectively, this evidence
provides a compelling rationale for studying CET and LTP.
A complete understanding of how CET affects LTP in a
persistent fashion will more than likely require an
understanding of the probable interactions of these three

neurotransmitter systems in hippocampus.  A similar "multi-
transmitter" approach has recently been successfully applied
to the understanding of ethanol tolerance and the mechanism
by which repeated exposure to ethanol may affect multiple
receptor classes via  changes in protein kinase C synthesis and
activity (see 116).  Thus, the mechanisms underlying the
effect of CET on LTP may very likely be a result of changes
in a number of neurotransmitter systems in hippocampus
including GABAergic, glutamatergic and cholinergic.  Even
though CET may induce a number of changes in NMDA,
GABA and cholinergic receptor number and function in
hippocampus, we do not know whether these changes are the
mechanism by which CET decreases LTP or to what extent
these changes can account for CET effects on LTP.  Thus, it is
imperative that we test the relationship of the functional status
of receptors affected by CET  and the induction, maintenance
and expression of LTP in CET rats.
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