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1. ABSTRACT

A large number of hormones, neurotransmitters
and other signal substances utilize cyclic adenosine 3’5’
cyclic monophosphate (cAMP) as an intracellular second
messenger. Cyclic AMP regulates a number of different
cellular processes such as cell growth and differentiation,
ion channel conductivity, synaptic release of
neurotransmitters, and gene transcription The principle
intracellular target for cAMP in mammalian cells is the
cAMP-dependent protein kinase (PKA). The fact that
this broad specificity protein kinase mediates a number
of discrete physiological responses following cAMP
engagement, has raised the question of how specificity is
maintained in the cAMP/PKA system. Here, we will
describe features of PKA signaling pathway that may
contribute to explain how differential effects of cAMP
may be maintained in this pathway.

2. CYCLIC AMP AND THE cAMP-DEPENDENT
PROTEIN KINASE (PKA) SIGNALING SYSTEM

Reversible protein phosphorylation is a key
regulatory mechanism in eukaryotic cells. Protein
phosphorylation was first demonstrated to regulate the
activity of glycogen phosphorylase in response to
glucagon (1,2). A heat-stable factor mediating the effect
of glucagon on the phosphorylation status of glycogen
phosphorylase was next identified as 3',5'-cyclic
adenosine monophosphate (cAMP) (3), and the concept
of cAMP as an intracellular second messenger to
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a wide range of hormones, neurotransmitters, and other
signaling substances was developed (4). The target for
cAMP was purified and identified as a cAMP regulated
protein kinase (5), termed cAMP-dependent protein
kinase (PKA; EC 2.7.1.37). In the absence of cAMP,
PKA is an enzymatically inactive tetrameric holoenzyme
consisting of two catalytic subunits (C) bound to a
regulatory subunit (R) dimer (Figure 1). Cyclic AMP
binds co-operatively to two sites on each R protomer [for
review, see (6,7)]. Upon binding of four molecules of
cAMP, the enzyme dissociates into an R subunit dimer
with four molecules of cAMP bound and two free, active
C subunits that phosphorylate serine and threonine
residues on specific substrate proteins.

At present, the cAMP/PKA signaling pathway
is known to be activated by a number of different
receptors that upon binding of their respective ligands,
transduce their signals over the cell membrane by
coupling to G-proteins. These G-proteins interact with
adenylyl cyclase on the inner membrane surface either to
activate or to inhibit the production of cAMP. Receptors
that activates PKA through generation of cAMP,
regulates a vast number of cellular processes such as
metabolism (8), gene regulation (9), cell growth and
division (10), cell differentiation (11,12), and sperm
motility (13), as well as ion channel conductivity (14).
Therefore, a major question for scientists working in the
field of the cAMP/PKA signaling system has been to
understand how specificity is maintained in this second
messenger system.

3. ISOZYMES OF PKA

Initially, two different isozymes of PKA,
termed type I and II (PKAI and PKAII, respectively),
were identified based on their pattern of elution from
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Figure 1. Cyclic AMP-dependent protein kinase (PKA)
is a holoenzyme consisting of a regulatory (R) subunit
dimer and two catalytic (C) subunits.  Activation of PKA
occurs when four molecules of cAMP bind to the R
subunit dimer, two to each subunit, in a positive
cooperative fashion. When both cAMP binding sites (A
and B) are occupied the R subunit adopt a confirmation
with low affinity for the C subunit and the holoenzyme
dissociate. The relation between free C subunits, the R
subunit dimer and the intact holoenzyme is an
equilibrium which is determined by several factors, that
include the relative concentration of PKA subunits,
cAMP in addition to salt concentration, pH and
temperature.

DEAE-cellulose columns (15,16). The PKAI and PKAII,
eluting at salt concentrations between 25 and 50 mM and
150 and 200 mM NaCl, respectively, were shown to
contain C subunits associated with two different R
subunits, termed RI and RII (6). However, over the last
10 years molecular cloning techniques have revealed a
great heterogeneity in both R and C subunits which
reveal the potential of multiple isozymes of PKA.

3.1. Multiple isoforms of regulatory and catalytic
subunits of PKA

Cloning of cDNAs for regulatory subunits have
identified two RI subunits termed RIα (17,18) and RIβ
(19,20) and two RII subunits termed RIIα (21,22) and
RIIβ (23,24) as separate gene products. The RIα and RIβ
subunits are dissimilar, but reveal high homology (81 %
identity at the amino acid level) as do the RIIα and RIIβ
subunits (68 % identity at the amino acid level).
Recently, alternative splice variants of the RIα subunit
has been demonstrated. RIα cDNAs with different leader
exons and differentially regulated initiation from two
promoters of the RIα gene was shown (25).

Furthermore, two distinct C subunits were
initially identified by molecular cloning, and were
designated Cα (26) and Cβ (27,28). The cloning of the
Cα and Cβ subunits from human testis by low homology
screening also revealed an additional C subunit,
designated Cγ (29). Recent work has also revealed the
existence of splice variants of the human form of Cα
(Cα2), which is catalytically inactive due to truncation of
the C-terminal region resulting in a 224 amino acid
protein (30). Furthermore, a splice variant of the bovine
form of Cβ (Cβ2) where the mRNA encodes a protein

with an additional amino terminal 47 amino acids (31) is
identified. Recently, three brain specific splice variants
of the mouse Cβ form (Cβ-1, Cβ-2 and Cβ-3) have also
been cloned (32). Cβ-1 correspond to the previously
described Cβ (27), whereas Cβ-2 and Cβ-3 represent N-
terminal truncated splice variants, expected to be
catalytically fully active.

3.2. Features of the regulatory and the catalytic
subunits of PKA

3.2.1. Structure of the regulatory subunits
The RI and RII subunits contain an amino

terminal dimerization domain, a region responsible for
interaction with the C subunit, and in the carboxy
terminus, two tandem cAMP binding sites, termed sites
A and B (33,34). Dimerization was initially discovered
by the fact that proteolytic cleavage in the hinge region
of the molecule would produce a monomeric R subunit
with cAMP binding activity (35). For the RI subunits,
dimerization involves two disulfide bridges (Cys16 and
Cys37) (36). Dimerization of the RII subunit does not
involve cysteines, but the domain responsible for
dimerization resides in the amino terminal part of the
protein (amino acids 1-30) (37). Despite that residues in
the amino terminus (amino acids 1-5) of the RII dimer
interact with anchoring proteins, it is assumed that
additional contact points within the region 1-82 may
exsist (37). The hinge region of the molecule, that has a
site sensitive to proteolysis, is involved in binding to the
substrate binding site of the C subunit. The RII subunits
serve as true substrates and are autophosphorylated by
the C subunit. In contrast, the RI subunits are not
phosphorylated and bind as pseudosubstrates. Of the two
tandem cAMP binding sites, only site B is exposed in the
inactive tetrameric PKA complex [reviewed in (7)].
Binding of cAMP to this site enhances binding of cAMP
to the A site in a positively co-operative fashion, as a
result of a conformational change in the molecule. The
characteristics of the two cAMP binding sites have been
described in detail elsewhere [reviewed in (6,7,38)] as
have the relative affinities and site selectivities of a wide
array of chemically modified cAMP analogs (39). The

crystal structure of a monomeric RI deletion mutant (�1-
91) has been reported (40), and provide a model for
cAMP- binding

3.2.2. Structure of the catalytic subunits
All the C subunits (Cα, Cβ, Cγ) have catalytic

core motifs that are common to all protein kinases
(41,42) and involve a MgATP binding site as well as a
peptide binding site. The crystal structure of the murine
Cα subunit was the first protein kinase crystal structure
available (43) and has served as a template for modeling
of all the other kinases. The catalytic subunit is a nearly
globular protein with two lobes. The small, amino
terminal lobe is involved in MgATP-binding, whereas
the larger carboxy terminal lobe is involved in peptide
binding and catalysis. Both MgATP and the peptide
come together for catalysis in the cleft between the two
lobes. The C subunits (except the inactive Cα2) contain a
domain that involves additional sites apart from the
peptide binding site (44). This site is capable of binding
the heat stable inhibitor of PKA, PKI. PKI, which
contains a NES (nuclear export signal), has the ability of
transporting the C subunit from the nucleus to the cytosol
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and serves as a major regulator of C subunit activity (45).
Interestingly, the Cγ subunit is mutated at amino acid
133 and does not bind PKI and may thus not be exported
from the nucleus (45b,46). Furthermore, all the C
subunits except bovine Cβ2 and mouse Cβ-2, have the
potential of being myristylated at the N-terminus, a
modification that may serve to stabilize the C subunit
secondary structure (44,47). Despite that the bovine Cβ2
lacks a myristylation site, the N-terminal extension
which is hydrophobic, may serve the same function (15).

4. REGULATION OF LEVELS AND EXPRESSION
OF THE REGULATORY AND CATALYTIC
SUBUNITS

In several cells and tissues extensive studies
have been performed in order to demonstrate differential
expression of R and C subunits. Levels of expression of
the different PKA subunits are subject to regulation by
hormones acting through G-protein coupled receptors
(48-50), mitogen signals through receptors associated
with protein tyrosine kinases (PTK) (51) as well as by
steroid hormones (52). Regulation of PKA by hormones
acting through cAMP may serve as an autologous
sensitization/-desensitization mechanism of the cAMP
effector system.

Cyclic AMP mediated regulation of PKA
subunits acts through gene transcription (53,54) and
mRNA stability (55), as well as altered stability of the R
and C proteins after dissociation of the holoenzyme by
cAMP (54,56). Protein kinase C represents another major
signaling pathway in cells and crosstalk between these
two signaling systems is seen beyond cAMP at the level
of PKA (57,58).

4.1. Developmental expression of regulatory and
catalytic subunits

Gonadal tissues have a high level of α subunits
as well as β subunits of PKA, and the rat testis has
proved to be a good model system for studies on
differential regulation of the various PKA subunits
during development. Age studies of whole rat testes
revealed distinct developmental changes in the
expression of PKA subunits (49,59,60). At prepubertal
stages, 10-15 days of age, the presence of RIα (2.8 and
3.2 kb), RIIα (6.0 kb), RIIβ (3.2 kb), and Cα (2.4 kb)
mRNAs was detected. These are the mRNA species seen
in somatic cells. During early puberty, 15-25 days of age,
germ cells increase exponentially and the first haploid
cells are observed between 21 and 24 days of age. At
later stages the large number of germ cells dominate the
testis and dilute signals from somatic cells in whole testis
studies. During this time period, the large RIα, RIIα, and
RIIβ mRNAs declined concomitantly with the
appearance of low molecular weight mRNAs of RIα (1.7
kb), RIIα (2.2 kb), and RIIβ (1.6 kb). These shorter
messages result from germ cell specific use of alternative
polyadenylation site signals (60). Small molecular
weight mRNAs for RIα and RIIα were observed
between 20 and 30 days of age and after day 40,
respectively. Together with the appearance of the short
RIα mRNA, expression of RIβ was also detected and the
levels of Cα mRNA (2.4 kb) increased. Differential
expression of PKA subunits in various germ cell
fractions has been demonstrated in that the short message

of RIα (1.7 kb) as well as RIβ (2.4 kb) are present in
pachytene spermatocytes (PS) and round spermatids
(RST) both at 32 and 44 days of age. A lower level of
expression that can be accounted for by contamination
from the RST fraction is observed in elongating
spermatids (ES). In contrast, mRNAs for the RII subunits
are not detected at 32 days whereas a high level
expression of RIIα mRNA (2.2 kb) can be detected at 44
days when the ES fraction can be purified. RIIβ (1.6 kb)
is also detected at 44 days, but appears stronger in the
RST fraction. The Cα message (2.4 kb) is observed at
high levels both in the PS and RST fractions. Studies of
mRNA expression in isolated seminiferous tubules at
different stages and in situ hybridization revealed a
similar pattern of expression (61). Similar regulation of
RIα, RIIα, RIIβ, and Cα protein has been reported
recently (49). Taken together, the RIα, RIβ, and Cα
subunits in germ cells are induced at premeiotic and
meiotic stages, whereas the RII subunits are induced only
during spermatid elongation. The Cβ mRNA was
detected in peritubular cells and Leydig tumor cells but
not in Sertoli cells or germ cells (60).

4.2. Hormonal regulation of PKA subunits in rat
Sertoli cells

Rat Sertoli cells serves as a good model system
for studies of hormone responsiveness in general and of
PKA regulation in particular. FSH and cAMP induce
messenger RNA for RIα, RIIα, RIIβ, and Cα with
similar kinetics. However, the responses differ greatly in
magnitude. Whereas cAMP-dependent stimulation of
RIα, RIIα, and Cα mRNAs are 2 to 4-fold, the increase
in RIIβ mRNA is approximately 50-fold (50,53). The up-
regulation of RIα, RIIβ, and Cα mRNAs after treatment
by cAMP is, at least partly, due to an increased
transcriptional activity (53), and in the case of RIIβ also
involves increased stability of the mRNA (55). In Sertoli
cells, similar regulatory changes are observed in RIα,
RIIα and RIIβ protein (62).

Different mechanisms are involved in the
regulation of the RIIβ and RIα genes. Whereas
transcriptional activity of the RIα gene is induced with
similar kinetics as that of the c-fos gene, the induction of
the RIIβ gene is increasing throughout the observation
period. Furthermore, the RIα gene is superinduced by
combined treatment with cAMP and a protein synthesis
inhibitor (cycloheximide). In contrast, inhibition of
protein synthesis almost completely blocks the cAMP-
mediated induction of the RIIβ gene (53). Regulation of
the RIIα gene appears to be qualitatively similar to that
of RIIβ, but is quantitatively less pronounced.

The RIα and RIIβ genes are also subject to
regulation by PKC (58). Again the mechanisms of
regulation appear to be different. PKC-dependent
activation of RIα is unaffected by cycloheximide
whereas induction of RIIβ is dependent of on-going
protein synthesis (58). Cyclic AMP and TPA have
additive effects on the regulation of the RIα message,
whereas TPA inhibits the cAMP-mediated induction of
the RIIβ gene.

Thus, there is extensive evidence showing
differential mechanisms of regulation of the R subunit
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genes. The RIα gene seems to be regulated by cAMP
with similar characteristics as the cAMP response
element (CRE) regulated c-fos gene. The 5'-flanking
sequence of the RIα gene also contains a consensus CRE
that is conserved between pig (63) and man (25).
Furthermore, cloning of an alternatively spliced mRNA
with a different leader exon led to the identification of
two alternatively initiated promoters in the RIα gene that
are differentially regulated (25). In contrast, the RIIβ
gene has a regulation by cAMP distinct from that of RIα
and c-fos, and belongs to a group of genes which respond
to cAMP with slower kinetics and have cAMP-
responsive regions distinct from the classical CRE, TRE,
and AP-2 elements (64-66). It has therefore been of great
interest to study the transcriptional regulation of the RIIβ
gene.

4.3.  Mitogen regulation of PKA subunits in lymphoid
cells

Lymphoid cells have proved to serve as good
model systems to study how exogenous signals regulate
the levels of PKA subunits. T lymphocytes are activated
to proliferation, differentiation and effector function
through the T cell antigen receptor CD3 (TCR/CD3)
complex (51). These cells were shown to express both
PKA I and II consisting of RIα2Cβ2 and RIIα2Cβ2,
respectively (67). During antigen stimulation, PKA
specific phosphotransferase activity decreased up to 40-
45% within 3 hours of stimulation. This coincided with a
decrease in the levels of immunoreactive C and a marked
decrease (50-80%) in Cβ but not Cα mRNA levels.
Furthermore, R subunit activity measured as specific [3H]-
cAMP-binding was only marginally influenced by
TCR/CD3 stimulation, as was the case with the level of
immunoreactive RIα and RIIα protein. In contrast, the
mRNA level for RIα but not RIIα revealed a transient
increase (3-5 fold) between 3 and 24 hours upon
stimulation. The regulatory effects of TCR/CD3 stimulation
on RIα and Cβ mRNAs was blocked by pre-treatment with
the PTK inhibitor herbimycin A (Herb A), and enhanced by
cross-linking the membrane associated protein tyrosine
phosphatase CD45. Furthermore, during TCR/CD3
stimulation a significant induction of cAMP and activation
of PKA was observed. Moreover, since PKC activation is
also associated with TCR/CD3 triggering (51), it was
interesting to observe that stimulation with 8-CPT-cAMP
or phorbol 12-myristate 13-acetate (PMA), respectively,
could mimic the TCR/CD3-mediated effects on the RIα
mRNA. This indicates that the observed regulatory effects
on PKA subunits by TCR/CD3 stimulation may involve
PKA and/or PKC activity.

Upon T cell receptor triggering, an initial peak of
cAMP and PKA activity (51,68) is observed that may serve
as an acute negative modulator and a negative feedback of
signaling through TCR. This is followed by regulatory
changes of R and C subunit levels within hours of
stimulation. The biological implication of this regulation
may be that the R/C ratio is transiently increased, leading to
a down-regulation of PKAI activity, which may be
important for the G/S transition of the cell cycle, following
TCR-induced mitogen stimulation (67) . Similar reciprocal
regulation of levels of RIα mRNA and protein was
observed in a panel of lymphoid cell lines investigated for
PKA regulation, levels of cAMP and cell growth rate (69).

 4.4. Transcriptional regulation of the genes for PKA
subunits.

Upstream regulatory sequences have been
reported for the genes encoding RIα (25,63), RIβ (70),
RIIα (71), RIIβ (72,73), Cα (74), and Cβ (74). All these
genes have GC-rich and TATA-less promoters which are
characteristics of highly regulated genes expressed at a
low level. Furthermore, the human gene for RIα has two
promoters directing expression of two alternate initiated
RIα mRNAs with different 5’ non-translated regions.
The two different promoters provide a more complex
regulation of the RIα mRNA and proteins (25,75).

Regulation of the RIIβ gene have been subject
to extensive studies. RIIβ was first isolated and cloned
from rat granulosa cells (23) where a 6 to 10-fold
induction of its mRNA by cAMP is seen (76). Studies of
the 5'-flanking region of the rat RIIβ gene in ovarian
granulosa cells revealed that the cAMP-responsiveness
resided within a distinct region (-395 to -293) upstream
of the translation initiation codon (72).

For transfection in Sertoli cells, 5'-deletions of
the RIIβ flanking region were inserted in front of a CAT
reporter gene. Basal CAT activity directed from the
different constructs was reduced to approximately 50 %
when the region -723 to -395 was included. The same
region conferred a 4-fold cAMP responsiveness to the
CAT reporter gene. In contrast, transfections of the same
constructs into rat testis peritubular cells revealed that the
cAMP-responsiveness as well as the inhibition of basal
activity that resided within the region -723 to -395 was
specific to Sertoli cells. Mapping of the cAMP-
responsive region by gel retardation and DNAse I
footprinting experiments identified several protected
regions that are candidates for novel cAMP responsive
elements (77).

5. PKA ISOZYME COMPOSITION AND
CHARACTERISTICS

It is generally assumed that the catalytic
subunits associate freely with homodimers of all the R
subunits. However, PKAI holoenzymes are more readily
dissociated by cAMP in vitro than PKAII holoenzymes
(6,78). Furthermore, when RII is overexpressed in 3T3
cells, the C subunit will preferably be bound to RII,
whereas RI will be present as free dimer (79). This
indicates that PKAII holoenzyme forms preferentially
compared to PKAI under physiological circumstances
either due to lower sensitivity to cAMP or due to kinetics
of association/dissociation influenced by salt and
MgATP [reviewed in (7)]. This observation is confirmed
in mice that are genetically null mutant for the RIIβ
subunit where RIα is induced and PKAI is formed, not as
result of increased transcription of the RIα gene, but
rather due to an increased half life (up to 5 fold) of the
RIα protein when associated with C (80). Furthermore,
the PKAI (RIα2C2 and RIβ2C2) and PKAII (RIIα2C2 and
RIIβ2C2) holoenzymes have been reported to have
distinct biochemical properties. RIβ holoenzymes are 2
to 7-fold more sensitive to cyclic nucleotides than RIα
holoenzymes (81-83). RIIα and RIIβ holoenzymes elute
from DEAE-cellulose columns at different positions in
the PKAII area, and RIIα expressed at high levels will
compete with RIIβ in binding the C subunit, indicating
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Figure 2. PKAI is redistributed from an apparently
cytoplasmic distribution to localize with the antigen
receptor in lymphoid cells upon lymphocyte activation
and capping. PKAI associated with components of the
antigen receptor or an associated A kinase anchoring
protein (AKAP) for PKAI (RI) serves as a negative
modulator of signals through these receptors. Anchored
PKAI is located in close proximity to relevant substrates
for PKAI phosphorylation, such as protein tyrosine
kinases, phospholipaseCγ-1 (PLCγ-1) and the
serine/threonine protein kinase Raf-1, all of which are
important mediators of signals associated with a
complete activation of lymphocytes leading to effector
function and clonal expansion.

either a higher affinity for the C subunit or a higher
threshold for cAMP induced dissociation (84).

Characterization of a cell line almost
completely devoid of PKAII, revealed the presence of an
isozyme consisting of an RIα-RIβ heterodimer with
associated phosphotransferase activity. This isozyme
elutes in the position of PKAII by DEAE-cellulose
chromatography (85). Formation of RIα-RIβ
heterodimeric complexes was also demonstrated in vitro
by coimmunoprecipitation, using recombinant proteins
(85). Furthermore, some experimental evidence support
the possible existence of RIIα-RIIβ heterodimeric
complexes that can be formed in vitro from recombinant
proteins, and such complexes may also be detected in
extracts from human testicular tissue (Taskén,
unpublished results).

6. SUBCELLULAR LOCALIZATION OF PKA

Compartmentalization of PKA is mediated
through binding of the R subunit to subcellular
components (86). In general, PKAI (RIα2C2, RIβ2C2) is
soluble and is preferentially located to the cytosol.
However, there are an increasing number of reports of
RIα association with subcellular components of the cell.
In T cells, RIα associates with the TCR/CD3 complex
under T cell activation and capping (87). Moreover, it
was recently demonstrated that RIα binds to the adapter
protein Grb2 an association which allow PKAI to interact
with the epidermal growth factor receptor in epithelial
MCF-10A cells (88). Furthermore, a recent report

demonstrated a dual-specificity A kinase anchoring
protein (AKAP) for both RIα and RIIα. This AKAP is
designated D-AKAP1 (89). In contrast to PKAI, PKAII
isozymes (RIIα2C2, RIIβ2C2) are generally associated
with the particulate fraction of the cell through the
hydrophobic interaction of AKAPs with the hinge region
of the RII (90). A number of different anchoring proteins
have been identified and serve to sequester PKAII with
the cytoskeletal elements such as microtubules (MAP2),
postsynaptic densities and cortical actin (AKAP79/75),
filopodia (Gravin/AKAP250), actin-binding proteins
(ezrin/AKAP78) and centrosomes (AKAP350) (91-95).
Also organelle associated AKAPs have been identified,
such as AKAP100 of the smooth sarcoplasmatic
reticulum, AKAP220 on peroxisomes, AKAP85 bound
to the Golgi and AKAP84/149 in mitochondria (96-101).
Furthermore, despite the absence of PKA R subunits
from the nucleus, nuclear AKAPs (AKAP95,
hAKAP150) have been identified, the biological
significance of these AKAP are still elusive as PKAII
holoenzyme complex is excluded from the nuclei in
interphase (102). As a further refinement of specificity in
binding of PKAII to AKAPs, it has been demonstrated
preferential association of AKAP95 with RIIα and not
RIIβ (102), and that RIIα but not RIIβ associate with the
Golgi apparatus where as RIIβ preferentially associate
with centrosomes (103). Interestingly, it has recently
been reported that some AKAPs (AKAP79, Gravin)
function as signaling scaffold proteins by binding and
assembly of different signaling proteins such as
phosphatase 2B (Calsineurin) and PKC in addition to
PKAII (104).

7. EFFECTS OF CAMP MEDIATED BY SPECIFIC
ISOZYMES OF PKA

Since the unrevealing of a multitude of PKA
isozymes, a key question has been to what extent
different effects of cAMP may be mediated by specific
isozymes. Approaches such as selective activation of one
PKA isozyme by the use of combinations of cAMP
analogs to complement each other in the preferential
activation of PKAI or PKAII has demonstrated isozyme-
specific effects of cAMP in cells. However, a major
break through in understanding the role of various
isozymes of PKA in vivo, was first made by creating
mice that are null mutant for PKA subunits.

7.1. Cyclic AMP effects mediated by PKAI
It is generally assumed that specific isozymes

of PKA localized to subcellular structures, mediates
distinct effects of cAMP. The PKAI isozymes (RIα2C2,
RIβ2C2) appears generally soluble and freely distributed
in the cytoplasm (105). Thus, it may appear that PKAI is
promiscuous in its phosphorylation of proteins and
regulates all activities that are triggered by cAMP.
However, lymphoid cells have proved to be good model
systems to demonstrate the specificity in cAMP
signaling. Cell growth of Reh cells which are practically
devoid of PKAII (85) are inhibited by cAMP. In Reh
cells, stable transfection with Cα proliferation was
specifically inhibited, an effect that could be
counteracted by cotransfection of a dominant negative
mutant of RIα, that does not bind cAMP (106). These
results testify to the role of the C subunit in mediating
cAMP-dependent inhibition of cell proliferation in
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Figure 3. Cyclic AMP-dependent protein kinase II
(PKAII) is targeted to different subcellular compartments
through binding to A kinase anchoring proteins
(AKAPs). At present more than 20 AKAPs have been
cloned and it has been suggested that some cells may
express as many as 10 to 15 different AKAPs located to
different compartments. These compartments may
include the nucleus (AKAP95/n150), cytoskeleton
(AKAP78, ezrin, MAP2), centrosome (AKAP350), ion
channels (AKAP15), peroxisomes (AKAP220), the
Golgi (AKAP85), mitochondria (AKAP84/149),
endoplasmatic reticulum (ER, AKAP100) and
membranes (AKAP79/75).

lymphoid cells, but do not define the PKA holoenzyme
responsible for mediating the cAMP effect. However,
since Reh contains almost exclusively PKAI, this result
strongly indicate that the inhibitory effect of cAMP on
lymphoid cell proliferation can be mediated via this
isozyme. The inhibitory effect of cAMP through PKAI
on cell proliferation of lymphoid cells have further been
verified in T and B cells. Both these cells contain PKAI
(RIα2Cβ2) and PKAII (RIIα2Cβ2) in a proportion of 3:1
(67,107). In resting T and B cells the PKAI is 75 %
soluble whereas 75-90 % of the PKAII is particulate.
Quiescent T and B cells can be activated to proliferate by
cross-linking antigen receptor complexes (TCR/CD3 and
BCR/Ig -complex, respectively). To test whether PKAI
or PKAII mediates the inhibitory effect on proliferation
of lymphoid cells, chemically modified cAMP analogs
selective for either site A or site B of PKAI and PKAII
(39,108) were used. The combination of 8-piperidino-
cAMP (8-pip) and 8-aminohexylamino-cAMP (8-AHA)
synergized in inhibiting incorporation of [3H]-thymidine
in proliferating T and B cells when compared to the
effect of 8-AHA alone. No such synergism was observed
when inhibition by 8-(4-chlorophenylthio) cAMP (8-
CPT) was examined in the absence and presence of a
small priming dose of N6-benzoyl-cAMP (N6-Bnz) that
by itself had no effect on T and B cell proliferation. The
combination 8-pip/8-AHA synergies strongly for T cells
and more slightly for B cells in the activation of PKAI
since 8-pip reveals high affinity for the A site of RI
whereas 8-AHA binds to the B site of both RI and RII
with equal affinity. This is contrary to activation of
PKAII where both 8-pip and 8-AHA compete for binding
to the B site. In contrast, the combination of N6-Bnz and
8-CPT tends primarily to activate PKAII. This is because
8-CPT binds to the B site of RII with much higher
affinity than to the PKAI B site and N6-Bnz binds to the
A site of both RI and RII. Thus, inhibition of T and B
cell proliferation by cAMP appears to be a PKAI-

mediated effect. Furthermore, using the same approach
on natural killer (NK) cells, it has been demonstrated that
cAMP-dependent inhibition of NK cell cytotoxizity is
mediated by PKAI (109). In conclusion, PKAI is
necessary and sufficient to mediate specific effects of
cAMP on antigen receptor signaling and has established
PKAI colocalized with the antigen receptor on lymphoid
cells as a key negative modulator of immune responses
that may be of clinical importance, e.g. in lupus patients
(110) (Figure 2). Furthermore, isozyme-specific effects
of PKAI has been demonstrated in that cAMP-induced
apoptosis of a myeloid leukemia cell line (IPC-81) is
mediated by PKAI (111).

Further evidence for specific roles of PKA in
vivo was first obtained when mice null mutant for the
RIβ subunit were generated. These animals appeared
healthy and fertile, but examination of brain slices
revealed that they had lost the ability to undergo long
term depression (LTD) in the Schaffer Collateral
pathway. RIα, RIIα and RIIβ are also expressed in the
hippocampus (112) but appears unable to compensate
functionally for the loss of RIβ (113). Thus,
holoenzymes containing RIβ appears to differ
functionally from both other isozymes of PKAI and
PKAII, strongly suggesting specific roles of PKAI
holoenzymes in vivo.

7.2. Cyclic AMP effects mediated by PKAII
Both RIIα and RIIβ have been reported to

localize to the Golgi-centrosomal area of different cell
types (114). Centrosomal localization is in agreement
with the observations in T cells and suggests
involvement of PKAII in cell cycle control and formation
of the spindle apparatus. Colocalization and
coimmunoprecipitation of RIIα of PKAII with p34cdc2

kinase has also been reported (115), whereas RIIβ has
recently been shown to serve as a substrate for cdc2
kinase in vitro (116). However, a specific function of
PKAII from these studies that can be ascribed to this
localization remains to be shown. Furthermore, a study
by Rosenmund et al. (1994) showed that PKAII activity
was associated with regulation of AMPA (alpha-amino-
3-hydroxy-5-methyl-4-isoxazole-propionic acid)/kainate
Ca2+-channels. Disruption of PKAII (RII) binding to the
AKAP associated with the AMPA receptor impairs the
PKAII-dependent regulatory effect on the Ca2+ flux in
cultured hippocampal neurons. Similarly, specific
anchoring of PKAII was necessary for cAMP-mediated
modulation of the L-type calcium channel in heart
skeletal muscle (117). Also, PKAII (RIIβ2C2) has been
shown to mediate cAMP-dependent activation of
lipolysis and glycerol release from adipocytes in vitro
(118). Interestingly, similar effects have been shown in
vivo in adipocytes of mice lacking the RIIβ subunit
(119). Disruption of the mouse RIIβ gene leads to a
profound change in PKA composition in both white and
brown adipose tissue (WAT, BAT), where RIIβ normally
is the principal R subunit. WAT was significantly
diminished in these animals despite normal food uptake
and the animals were protected against diet-induced
obesity and fatty liver. In mutant BAT, levels of RIα
were induced generating an isozyme switch from PKAII
to PKAI. Moreover, these studies also showed that the
RIα containing holoenzyme is more readily activated by
cAMP and causes an induction of uncoupling protein
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(UCP), increased metabolic rate and elevated body
temperature, which together contribute to a chronically
lean phenotype of RIIβ null mutant mice. These results
are the first to demonstrate a specific effect of PKAII
(RIIβ2C2) in vivo which was not compensated for by
upregulation of PKAII holoenzymes.

8. SUMMARY AND PERSPECTIVES

A large number of hormones,
neurotransmitters, and other signaling substances that
bind to G-protein coupled cell-surface receptors,
converge their signals at one sole second messenger,
cAMP. The question of how specificity can be
maintained in a signal transduction system where many
extracellular signals that lead to a vast array of
intracellular responses, all are mediated through one
second messenger system, has been subject to thorough
investigation and a great deal of speculation. An
increasing number of PKA isozymes consisting of homo-
or heterodimers of R subunits (RIα, RIβ, RIIα, RIIβ)
with associated catalytic subunits (Cα, Cβ, Cγ) may
contribute to the answer to this problem. Furthermore,
the various PKA isozymes display distinct biochemical
properties and the heterolous subunits of PKA reveal
cell-specific expression and differential regulation at the
level of gene transcription, mRNA stability and protein
stability in response to a wide range of hormones and
other signaling substances. Moreover, the existence of a
number of anchoring proteins specific to either RI or RII
subunits that localizes either PKAI or PKAII to distinct
subcellular loci, strongly supports the idea that specific
functions can be assigned to the various PKA isozymes.
This is further strengthened by the demonstration that
selective activation of PKAI is necessary and sufficient
for cAMP-mediated inhibition of T and B cell
proliferation and NK cell function which is compatible
with the notion of isozyme-specific effects of PKAI. The
observation that T and B cell activation is also associated
with redistribution and colocalization of PKAI with the
antigen receptor, strongly support the idea of anchoring
as a way of maintaining specificity of cAMP effects
mediated by PKAI (Figure 2). Thus, it is intriguing to
investigate if RI holoenzymes colocalize with other
receptors as well, such as activating NK cell receptors.
The molecular mechanisms by which PKAI eliminate the
signaling through antigen receptors is elusive. Also,
AKAPs specific for RI remains to be demonstrated.

In the case of RII, a large number of AKAPs
have been demonstrated that localize RII to different
subcellular compartments (Figure 3). However, with the
exception of cAMP-mediated modulation of
AMPA/kainate channels in neurons and the L-type
calcium channel in heart skeletal muscle no exact
functions of PKAII specifically localized to distinct
AKAPs have yet been demonstrated. The fact the PKAI
(RIα2C2) can not compensate for the loss of PKAII
(RIIβ2C2) in WAT in mice that are null mutant for the
RIIβ subunit, indicate that a number of different cAMP
effects yet to be characterized, are specifically mediated
through soluble and not anchored PKA isozymes and
vice versa.

Finally, a recent report demonstrate defects in
synaptic plasticity in neurons of mice that are null mutant

for the Cβ subunit. Interestingly, these effects could not
be compensated for by the Cα subunit which
quantitatively is expressed at a much higher level in the
same cells (120). Furthermore, Cγ does not bind PKI and
may not be exported from the nucleus via PKI containing
NES (46,121). In addition, a very recent report
demonstrate that Cα but not Cβ, Cγ nor any R subunit
bind specifically to the cytosolic NFκB inhibitor IκB,
which binds and sequester the transcription factor NFκB
to the cytosol. In this study it was also demonstrated that
Cα is activated through an cAMP-independent way
through degradation of IκB (122). Together these results
demonstrate distinct effects of a particular C subunits
that may be induced in an either cAMP-dependent or -
independent way. However, most importantly, these
results gives us further insight in to the complex way of
how specificity may be maintained in the cAMP and
PKA signaling pathway.
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