
[Frontiers in Bioscience, Landmark, 20, 728-742, January 1, 2015]

	 728�

1. ABSTRACT

Epigenetics is the study of long term and 
stable but not necessarily heritable alterations in 
transcriptional potential and gene expression profile 
of a cell that are not due to any alterations in the 
DNA sequence. Epigenetic modifications include 
DNA methylation, posttranslational modifications of 
histone proteins and expression of small regulatory 
RNAs. In recent years, the role of epigenetic 
modifications in the development of hematological 
malignancies and drug resistance has been studied 
in depth and has shed light on this important issue. 
Here, we review the major epigenetic mechanisms 
that contribute to the generation and evolution of 
hematological malignancies and development of 
resistance to chemotherapy. We will also discuss the 
development of epigenetic drugs that can overcome 
resistance to conventional chemotherapy.

2. INTRODUCTION

The concept of epigenetics was first 
introduced by Conrad H. Waddington in 1939 to 
describe “the causal interactions between genes 
and their products, which bring the phenotype 
into being” (1). It was later defined as heritable 
changes in gene expression that are not due to any 
alterations in the DNA sequence (2). This change 
usually occurs during somatic cell proliferation 

Epigenetic programming contributes to development of drug resistance in hematological 
malignancies

Qing-yuan Wang1, Hua Zhong1

1Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 
Shanghai, China

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. DNA methylation
4. Histone modifications

4.1. Histone methylation
4.2. Histone acetylation

5. MicoRNAs
6. Epigenetic therapy in clinic
7. Prospect
8. Acknowledgments
9. References

and development and can be passed on though 
mitosis. Since the Human Epigenetic Program 
was implemented by the American Association of 
Cancer Research in 2005, the role of epigenetic 
modifications in carcinogenesis and drug resistance 
has been increasingly appreciated. The generation 
and evolution of hematological malignancies have 
been studied in detail, but the role of epigenetics in 
their biological behavior is still blurred.

Epigenetic modifications include DNA 
methylation, posttranslational modifications of 
histone residues and expression of small regulatory 
RNAs (3) (Figure 1). In this review, we focus on the 
major epigenetic mechanisms that contribute to the 
generation, evolution and development of resistance 
to chemotherapy inhematological malignancies, as 
well as the role of epigenetic drugs in overcoming 
resistance to conventional chemotherapy.

3. DNA METHYLATION

DNA methylation occurs almost exclusively 
at the C5 position of cytosine–phosphate–guanine 
rich sequences (CpG islands). CpG islands, 
which are mainly located in promoter regions, 
can be demonstrated in approximately 70% of 
all human genes (4). Hypermethylation of CpG 
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islands generally represents repression of gene 
transcription. The corresponding silenced pathways 
are mechanistically linked to tumor suppressor 
genes (5). This process is mediated by DNA 
methyltransferases (DNMTs) which transfer a 
methyl-group from 5´-adenosylmethionine to the C5 
position within the CpG dinucleotide.

Under normal physiological circumstances, 
DNA methylation plays an important part in the 
regulation of genome imprinting and X-chromosome 
inactivation (6). Aberrant DNA methylation has been 
shown to participate in carcinogenesis, acting by 
silencing tumor suppressor genes in many tumor 

types including hematological malignancies (7). DNA 
hypermethylation can be commonly found in various 
types of hematological malignancy, including acute 
myeloid leukemia (AML) (8), acute lymphoblastic 
leukemia (9) and chronic lymphocytic leukemia (10). 
It has also been shown to predict the prognosis 
in some patients with myelodysplastic syndrome 
(MDS) (11). Moreover, detection of gene promoter 
hypermethylation can be regarded as a specific 
phenomenon in hematological malignancies (12).

Loss of methylation by active DNA 
demethylation processes is initiated by the ten–
eleven translocation (TET) family of dioxygenases, 

Figure  1. A  summary of epigenetic modifications. Epigenetic modifications include DNA methylation, posttranslational modifications of 
histone residues and expression of small regulatory RNAs.
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a class of proteins that convert 5-methylcytosine 
(5mC) by oxidation to 5-hydroxymethylcytosine 
(5hmC) and subsequently to 5-formylcytosine 
(5fC) and 5-carboxylcytosine (5caC) (2,3). TET2 (a 
member of the TET family) was later identified to be 
deleted or mutated in diverse myeloid malignancies, 
including AML, MDS, myeloproliferative neoplasm 
(MPN), chronic myelomonocytic leukemia (CMML), 
and systemic mastocytosis (6–8). The overall 
frequency of TET2 mutations is about 10–20% 
in AML (6) and as high as 50% in patients with 
CMML (8). The resulting TET2 inactivation was 
shown to induce clonal expansion of hemopoietic 
Stem cells (HSCs) in humans and is an early event 
in AML leukemogenesis (9). Another investigation 
uncovered frequent loss of the original TET2 
mutations at AML relapse (10).

The efficacy of chemotherapy can be 
adversely influenced by metabolic dysfunction. 
Methylation of CpG islands in the promoter region of 
the reduced folate carrier (RFC) gene (a predominant 
transporter of methotrexate (MTX) in most malignant 
cell types) can cause defective transportation of 
MTX, which eventually results in MTX resistance and 
treatment failure (13). Multidrug resistance (MDR) is 
the most well-known mechanism of acquired drug 
resistance. The MDR1 gene product P-gp functions 
as a transmembrane efflux pump for a variety of 
chemotherapeutic drugs, including anthracyclines. 
Overexpression of the MDR1 gene is a negative 
prognostic factor in acute myelogenous leukemias 
(AMLs). There is evidence that MDR1 expression 
is associated with demethylation of the MDR1 
promoter; this can be found not only in blood cell 
lines but also in patients with chronic lymphocytic 
leukemia (14, 15, 16).

Great success has been achieved since 
imatinib was introduced into treatment protocols 
for chronic myeloid leukemia (CML). However, the 
frequent acquisition of imatinib resistance has been 
an obstacle to long-term survival. Aberrant DNA 
methylation was found to be strongly associated with 
disease progression and resistance to imatinib in 
CML. Abnormal methylation of a Src suppressor gene 
PDZ and LIM domain 4 (PDLIM4) was associated 
with shortened survival, which was an independent 
negative prognostic impact factor of the resistance 
to imatinib (17). Protocadherin 10 (PCDH10), a 
protocadherin subfamily gene represented as a 
tumor suppressor in a variety of tumors, has also 
been shown to be a target of epigenetic silencing 
in CML and ALL. Hypermethylation of the PCDH10 

promoter serves as a biomarker of chemotherapy 
resistance in ALL and attenuated apoptosis in 
an imatinib-resistant CML cell line K562  (18, 19). 
Expression of the pro-apoptotic BCL-2-interacting 
mediator (BIM) was recently shown to be implicated 
in imatinib-induced apoptosis of BCR-ABL1+ cells. 
A recent paper revealed that BIM was epigenetically 
controlled by aberrant methylation in a percentage of 
patients with CML and had an unfavorable prognostic 
impact. Combination of imatinib with a demethylating 
agent may result in improved response in patients 
with decreased expression of BIM (20). Cancer-
testis (CT) antigens, especially PRAME (a family of 
CT antigens), represent attractive targets for tumor 
immunotherapy. The expression of PRAME can 
be increased by the application of demethylation 
agents such as 5’-aza-2’-deoxycytidine. Sustained 
expression of PRAME indicates that a concurrent 
immunotherapeutic approach may be able to 
eradicate residual CML cells during conventional 
tyrosine kinase inhibitor (TKI) therapy (21).

Administration of all-trans retinoic acid 
(ATRA) with chemotherapy is the standard of 
care for acute promyelocytic leukemia (APL), and 
results in cure rates exceeding 80%. Recognized 
as a retinoic acid-regulated tumor suppressor 
gene, RARβ2 is frequently silenced as a result 
of aberrant epigenetic interplay. This process is 
stimulated by AML1/ETO translocation recruiting 
DNA methyltransferase, histone deacetylase and 
DNA-methyl-CpG binding activities that promote 
a repressed chromatin conformation. Based on 
this evidence, resistance to retinoic acid can be 
reversed by 5-azacytidine through reactivation of 
the RA signaling pathway (22).

Bone marrow stromal cells are thought to 
contribute to the protection of leukemia cells from 
chemotherapy-induced death (23, 24). However, 
human bone marrow mesenchymal stem cells 
(BMMSCs) are usually resistant to chemotherapeutic 
drugs. A recent study revealed that methylation of the 
tumor suppressor gene p73 in human BMMSCs leads 
to lack of response to chemotherapy and inhibits the 
methylation process by 5-aza-2’-deoxycytidine that 
could sensitize BMMSCs to cisplatin (25).

4. HISTONE MODIFICATIONS

4.1. Histone methylation
Histone methylation occurs at lysine (K) or 

arginine (R) residues of the histone tails, in contrast to 
acetylation which is found exclusively at lysine residues. 
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It is under mutual control of methyltransferase and 
demethylase, which organize chromosomal events. 
Previous studies considered histone methylation to be 
an irreversible process and a stable epigenetic marker. 
However, the discovery of enzymes antagonizing 
histone methylation illuminated its reversibility in later 
studies (26). The methylation mediated by histone 
methyltransferase occurs mainly at H3 and H4. It can 
transfer the methyl group from S-adenosyl-methionine 
and form the products monomethyl-lysine and 
S-adenosyl-L-homocysteine (AdoHcy) (27). Histone 
methylation can mediate both gene transcriptional 
activation and repression. This seems to depend on 
proteins that can identify defined methylation marks, 
thereby eliciting functional effects on the surrounding 
chromatin. Generally speaking, lysine methylation at 
H3K9, H3K27 and H4K20 is related to transcriptionally 
silenced chromatin, whereas methylation at H3K4, 
H3K36 and H3K79 is associated with transcriptionally 
active regions (28, 29, 30). In addition to the site of 
lysine modification, the state of the modified lysine 
residue (mono-, di-  or trimethylation) also plays an 
important role in determining the functional outcome 
of this epigenetic modification. It is typically accepted 
that trimethylation of lysine residues at positions 9 and 
27 of histone H3 leads to a much denser packaging 
of histones and no accessibility of transcription 
factors to DNA (31). In contrast to acetylation and 
phosphorylation, histone methylation does not 
generally change the amino acid charge, but it does 
increase their hydrophobicity. Recent studies have 
revealed that arginine methylation plays an important 
role in mediating hematopoiesis and leukemogenesis. 
Balint et al. have suggested that histone methylation 
at H4R3 might affect the differentiation of leukemia 
cells (32). Protein arginine methyltransferase 1 
(PRMT1) was identified to be an essential component 
of the MLL-oncogenic fusion proteins which enhance 
self-renewal of primary hematopoietic cells (33). 
Targeted by oncogenic JAK2 kinases, PRMT5 (protein 
arginine methyltransferase 5) is downregulated 
in its methyltransferase activity, thus promoting 
myeloproliferation (34).

Poly-comb group (PcG) proteins are 
expressed at high levels in a variety of hematological 
malignancies. PRC2 (a subunit of the poly-comb 
group) has the ability to catalyze trimethylation 
of lysine 27 on histone H3 (H3K27Me3), which 
is involved in mediating gene transcriptional 
silencing (35). It is associated with the onset of 
acute promyelocytic leukemia (APL), mix-lineage 
leukemia (MLL) and chronic myelocytic leukemia 
(CML) (36, 37, 38).

The PML–RAR fusion protein exhibits 
much stronger transcriptional repression than 
natural RAR, owing to its ability to induce chromatin 
modifications and silencing of PML–RAR target 
genes. Aside from histone deacetylase and DNA 
methyltransferase, histone methyltransferase 
SUV39H1, which catalyzes trimethylation of histone 
H3 on lysine 9, was shown to exhibit a cancer-
promoting function in leukemia by contributing 
to the transcriptional repressive potential of 
PML–RAR (39). SUV39H1 was also previously 
reported to participate in silencing growth-promoting 
genes in lymphoma cells; the absence of SUV39H1 
inhibits activation of a senescence checkpoint which 
holds a tumor suppressive potential, indicating that 
H3K9 methylation is a decisive factor in lymphoma 
development (40). In a recent report, a small molecule 
that specifically inhibits DOTL1/KMT4 (another 
histone methyltransferase that catalyzes H3K79 
methylation) was shown selectively to eradicate 
leukemic cells bearing the MLL gene translocation. 
It acts through elective ablation of cellular H3K79 
methylation, thereby reducing transcription of key 
genes associated with leukemogenesis in MLL (41).

Enforced expression of H3K4me2/3 
and reduced expression of H3K27me3 genes 
may be found to be critical for the development 
of hematopoietic malignancies (42). MLL5, which 
serves as a mono-  and di-methyl transferase to 
H3K4, can be activated by nuclear GlcN acylation. 
Thereby, H3K4 methylation restores the retinoic acid 
response in the retinoic acid-resistant HL60-R2 cell 
line and facilitates RA-induced granulopoiesis (43).

4.2. Histone acetylation
Histone acetylation is dictated dynamically 

by histone acetyltansferase (HAT) and histone 
deacetylase (HDAC). Apart from histone, other 
proteins that exist in the cytoplasm, such as TP53, 
can be reversibly acetylated at the same time (44). 
HAT is recognized to catalyze histone acetylation. 
When an acetyl group combines with a lysine 
residue, it can neutralize the positive charge of 
lysine, resulting in a loose DNA–nucleosome that 
enhances DNA accessibility for sequence-specific 
transcription factors and subsequent transcriptional 
activation (45). Eighteen kinds of HDAC have been 
identified in the human genome. They are divided 
into four categories. The first, second and fourth 
categories include 11 HDACs which can be inhibited 
by histone acetyltansferase inhibitors (HDACis). 
The 11 classic HDACs bear a part in modulating 
vital biological activities of malignant cells, such as 
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proliferation, apoptosis, differentiation, angiogenesis, 
infiltration and drug resistance.

Aberrant modifications of histones are found 
in a variety of primary hematological malignance and 
cell lines (46). Researchers of histone acetylation 
suggest that overexpression of a certain family 
of HDAC is linked to cancer dedifferentiation, 
accelerated proliferation, infiltration, evolution and 
prognosis (47). Reduced expression of HDAC1, 
HDAC2 and HDAC3 leads to inhibition of cell 
proliferation, cell cycle arrest and resensitization of 
cancer cells to chemotherapy (48, 49). For example, 
vorinostat and other types of HDACi (HDAC 
inhibitor) can also induce tumor cell cycle arrest and 
cell differentiation (50). They were also reported to 
accelerate cell death by activating both endogenous 
and exogenous apoptosis pathways (51), and to 
be associated with mitosis failure, autophagy (52) 
and restoring the expression of tumor suppressor 
genes which are generally suppressed in malignant 
T cells, such as p21WAF1  (44, 53). Furthermore, 
it is intriguing that HDACis can also block tumor 
cell angiogenesis (54). Several HDACis were 
demonstrated to sensitize different leukemic T cell 
lines to apoptosis induction by TRAIL (tumor necrosis 
factor (TNF)-related apoptosis-inducing ligand). 
They are regulated by different anti-apoptotic factors 
and pro-apoptotic proteins which are involved in the 
mitochondrial apoptotic pathway (55).

Distinct chromosomal translocations can be 
commonly found in hematological malignancies. The 
fusion proteins encoded by gene translocation can 
recruit HDAC, which would lead to aberrant HDAC 
activity (56). Hematological malignancies such as 
AML and MLL were also identified with oncogenic 
translocations involving histone methyltransferases 
such as KAT3A and KAT3B (32).

Improved cure rate and disease-free 
survival have been observed in patients with 
CD20+ B-cell lymphoma since rituximab was 
introduced in combination with specific conventional 
chemotherapies. However, resistance to rituximab 
frequently occurs as a result of low expression of 
CD20 protein. Intriguingly, evidence has provided 
new insight into CD20 deregulation that CD20 
gene expression is epigenetically repressed. 
Reexpression of CD20 protein may occur after 
treatment with the HDAC inhibitor TSA (57).

Glucocorticoid resistance is another 
common reason for treatment failure in hematological 

malignancies. It exerts a curative effect by binding to 
functional GRα (glucocorticoid receptor α) rather than 
nonfunctional GRβ. 5-AzaC and HDAC inhibitors 
such as TSA have been proven to upregulate 
the expression of GRα. This may alter the protein 
expression profile responsible for GRα and GRβ 
transcript stabilization and translational regulation, 
and therefore sensitize cells to glucocorticoid (58).

According to work by Maria et al., the 
HDACi TSA and SAHA can downregulate the 
expression of endogenous P-gp in the murine 
leukemia drug resistant cell line L1210/R, thereby 
restoring sensitivity to daunorubicin (59). Another 
HDACi, AN-9, also exhibits a reversing effect on the 
drug resistant cell line HL-60/ADR (60). Vorinostat 
(an HDACi) was shown to inhibit HL cell proliferation 
and to induce changes in the gene expression profile. 
More intriguingly, it restores cisplatin sensitivity in 
resistant HL cells by downregulating CD30 and 
the poxvirus and zinc finger domain (PATZ1) (61). 
Currently, there are studies suggesting that HDAC1 
and HDAC6 are directly involved in autophagy, 
which may induce CML cell lines to become resistant 
to vorinostat (62, 63, 64).

Multiple studies have demonstrated that 
the interaction of leukemia cells with the bone 
marrow stromal microenvironment represents an 
important pathway in hematological malignancies 
and contributes to the survival of leukemia cells. 
Through cell surface receptor CXCL12/CXCR4-
mediated chemotaxis, leukemia cells migrate to 
microscopic niches within the bone marrow, which 
induces retention of HSCs within the niches and 
leads to increased proliferation and survival. This 
phenomenon is linked to the resistance to traditional 
chemotherapy. CXCR4 is found to be a target of 
valproic acid (an HDACi), thus throwing light on the 
reversal of drug resistance (65). Mahlknecht et al. 
showed that the α4β1 integrin very late activation 
antigen-4 (VLA-4) plays a key role in the retention of 
leukemic blast cells in bone marrow in which stromal 
cells express the vascular cell adhesion molecule-1 
(VCAM-1). VLA-4 is associated with bone-marrow 
minimal residual disease (MRD), which causes 
relapse and drug resistance after chemotherapy in 
AML. By targeting VLA-4, HDACis can downregulate 
its expression, thereby contributing to the reduction 
of MRD and the rate of relapse (66).

Wang et al. found that many genes are 
differentially expressed at ALL relapse; these 
are named relapse-specific genes. Aberrant 
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epigenetic programming occurring in these genes 
leads to chemoresistance and drives relapse in 
ALL. Furthermore, by administering the HDACi 
vorinostat or the DNMT decitabine it is possible to 
reactivate the aberrantly silenced genes, resulting 
in leukemic blasts that are once more sensitive 
to chemotherapy. Administration of these agents 
(vorinostat in combination with Decitabine) together 
with prednisolone could achieve the most robust 
cytotoxicity (67, 68). Consistent with these reports, 
Kalac et al. also reported the highly synergistic effect 
of a combination of an HDACi (panobinostat) and a 
DNMT inhibitor (decitabine) in growth inhibition and 
apoptosis in diffuse large B-cell lymphoma cells (69). 
Recently, concurrent promoter hypermethylation 
and deacetylation has been frequently found in 
Burkitt lymphoma/leukemia, which leads to BIM 
silencing. This could be reversed by reactivating BIM 
expression with HDACis (70).

5. MICRORNAS

MicroRNAs (MiRNAs) are non-protein-
coding RNAs, 19–25 nucleotides (nt) in length, 
that regulate the expression of a variety of 
genes, including translation repression and 
mRNA degradation in eukaryotic cells, by binding 
messenger RNA (mRNA) 3’ untranslated (3’UTR) 
regions in a sequence-specific manner (71). 
MiRNAs are thought to regulate the translation of 
more than 60% of protein-encoding genes (72). 
Their targets are usually a number of enzymes 
involved in epigenetic regulation such as DNA 
methylthansferases (DNMTs), histone deacetylases 
(HDACs) and histone methyltransferase (73). 
Expression of MiRNAs relies on an intricate interplay 
of DNA methylation and chromatin modifications.

Various miRNAs have recently been 
reported to be implicated in multiple biological 
processes, including cell differentiation, metabolism, 
apoptosis, development and hematopoiesis (71). 
Recent studies have shown that miRNA plays a 
decisive role in the regulation of early hematopoiesis. 
For example, the overexpression of miR-155 
or miR-29a in mouse hematopoietic stem cells 
contributes to pathological granulocyte/monocyte 
(GM) expansion or AML by converting myeloid 
progenitors into self-renewing LSC (leukemia stem 
cells) (74, 75). Furthermore, miR-15a/16-1 deletion 
causes development of indolent B-cell-autonomous, 
clonal lymphoproliferative disorders, recapitulating 
the spectrum of CLL-associated phenotypes by 
modulating the expression of genes controlling 

cell-cycle progression (76, 77). MiR-146a expression 
was found to be negatively correlated with overall 
survival in patients with AML and ALL (78). Loss of 
miR-328 was affirmed in the blast crisis of chronic 
myelogenous leukemia, and restoration of miR-
328 expression rescues differentiation and impairs 
survival of leukemic blasts (79).

The expression of miRNA genes is 
influenced by DNA or histone modifications. Nalls 
revealed that both 5-aza-2´-deoxycytidine (DNMTi) 
and vorinostat (HDACi) are able to restore miR-
34a expression, thereby inhibiting the protein 
expression of BCL2, CDK6 and SIRT1 and inducing 
apoptosis (80). MiR-34b/c was recognized as a 
direct transcriptional target of TP53 and a tumor 
suppressor. The promoter of miR-34b/c was found 
aberrantly hypermethylated in multiple myeloma. 
5-Aza-2’-deoxycytidine (5-azadC) could restore miR-
34b expression and enhance apoptosis of myeloma 
cells (81). Via targeting of TNF receptor-associated 
factor 6 (TRAF6), microRNA-146a downregulates 
NFk B activity and functions as a tumor suppressor. 
It has potent prognostic implication in NK/T cell 
lymphoma. 5-azadC could again reverse the 
low level of miRNA-146a by demethylation in 
the promoter (82). MiR-203 presents as a tumor 
suppressor in chronic myelogenous leukemia 
and Ph positive acute lymphoblastic leukemia by 
targeting the ABL gene. Hypermethylation of the 
miR-203 promoter could be found in CML cell lines 
KCL-22 and K562, and 5-Aza-dC in combination 
with 4-phenylbutyrate (an HDACi) was able to 
re-induce miR-203 expression and inhibit tumor cell 
proliferation in an ABL-dependent manner (83).

The roles of miRNAs in the drug resistance 
of hematological malignancies seem to be involved in 
regulating the expression of resistance-related genes, 
tumor suppressor genes and proto-oncogenes. MiR-
16 can downregulate overexpressed oncogenic 
proteins such as cyclin D1, and it enhances drug 
sensitivity in a New Zealand black mouse model of 
CLL (76). A wide-ranging evaluation by unsupervised 
cluster analysis of the roles of 19 miRNAs in patients 
with CML suggested differential expression between 
IM resistant and responder samples (84). Liu et al. 
revealed that a regulatory pathway between myc and 
miR-144/451 mediates the resistance of CML cell 
line K562 to imatinib, highlighting that restoration of 
miR-144/451 can sensitize K562R cells to imatinib 
therapy (85). In K562  cells, levels of expression of 
miR-27a and miR-331-5p were inversely correlated 
with doxorubicin resistance, and direct interference 



Epigenetic programming in resistance in hematological malignancies

	 734� © 1996-2015

of both miRNAs with ABCB1 mRNA expression 
was shown (86). Hao et al. demonstrated that, 
via suppression of miRNA-15a expression and 
consequently high vascular endothelial growth 
factor (VEGF) secretion, bone marrow stromal cells 
provide survival support and protect myeloma cells 
from bortezomib-induced apoptosis (87). Bai et al. 
reported that stable transfection of miR-21 induced 
daunorubicin resistance in the K562 cell line. This may 
act though the PI3K/Akt pathway and subsequent 
downregulation of PTEN protein expression (88). MiR-
34a downregulation is associated with chemotherapy 
resistance in CLL (89).

6. EPIGENETIC THERAPY IN THE CLINIC

Epigenetic therapy is an emerging area, 
targeting a variety of malignancies particularly in the 
setting of refractory and therapy-resistant diseases. 
Resistance to chemotherapy is multifactorial. 
Several major mechanisms are involved in 
drug resistance, such as enhancement of DNA 
damage repair, decline of cell apoptosis, metabolic 
abnormalities of chemotherapy drugs, enhancement 
of energy-dependent drug discharge, and changes in 
glutathione S-transferase as well as topoisomerase 
II (90, 91). Studies in AML patients revealed ABCB1 
expression induced by drug treatment was observed 
only 4h upon chemotherapy administration (92).
In contrast to genetic alterations such as base-pair 
mutation, changes in epigenetics are commonly 
mediated by enzymes, which can be reversed by 
enzyme inhibitors. Moreover, epigenetic alterations 
tend to develop early in malignant progression. They 
have also been described in preinvasive lesions 
and/or high-risk tissues with the potential to serve as 
targets for chemoprevention (93).

Until now, major targets of epigenetic 
therapeutic include DNA methyltransferase (DNMT) 
and histone deacetylase (HDAC). The DNMTis 
5-azaC and 5-aza-2’-deoxycytidine (decitabine) 
are approved for the treatment of myelodysplastic 
syndromes, which are characterized by global 
promoter hypermethylation (94). A  meta-analysis 
and systematic review revealed that, compared with 
conventional care, treatment with hypomethylating 
agents, and specifically 5-azacitidine, prolongs 
overall survival and time to AML transformation or 
death (95).

Several HDACis such as valproic acid and 
sodium phenylbutyrate have been introduced into the 
treatment of leukemia. Used alone or in combination 

with DNA demethylating agents or all-trans retinoic 
acid, they have achieved clinical remission (96, 97). 
Vorinostat, which is a potent inhibitor of the activity 
of HDAC1, HDAC2, HDAC3 and HDAC6, was 
approved by the US FDA in October 2006 for the 
treatment of progressive, persistent or recurrent 
cutaneous T-cell lymphoma. It is the first time that a 
new class of anticancer agents which has a critical 
role in the epigenetic regulation of gene expression 
has been introduced into clinical application (98). 
In two Phase II studies, patients with cutaneous 
T-cell lymphoma (CTCL) treated with oral vorinostat 
demonstrated significant reductions in skin lesions 
and decreased disease progression (99, 100). In 
addition, apart from histones, HDACi can regulate 
gene transcription by modifying nonhistone proteins, 
including p53  (101), NF-κB (102) and MYC (103). 
These proteins were previously all confirmed to have 
key roles in tumorigenesis and drug resistance.

It is interesting that, while cancer cells are 
sensitive to HDACis, normal cells remain relatively 
tolerant. This is possibly due to the multiple defects 
within tumor cells which result in a failure to 
compensate for the inhibition of pro-survival factors 
and the activation of death pathways (104).

7. PROSPECTS

In the past few years, multiple studies 
have been performed to shed light upon the role of 
epigenetic modifications in the onset, development 
and drug resistance of hematological malignancies. 
New drugs aiming to reverse aberrant epigenetic 
alterations have been applied clinically or are under 
clinical trial. The application of epigenetic drugs 
bears the risk of side effects caused by nonspecific 
alterations, not only in correcting deregulated gene 
expression but they may also affect normal gene 
expression. Although several epigenetic drugs 
have been used clinically, the safety of the therapy 
still needs to be elucidated. Nonspecific epigenetic 
inhibitors can lead to nonspecific gene and 
transposon activation. Until now, most HDACis have 
ben nonspecific, inhibiting several families of HDAC 
or failing to demonstrate a certain inhibition spectrum. 
However, it has been demonstrated that the DNA 
demethylation induced by 5-azacytidine (azacytidine, 
AZA) and 2’-deoxy-5-azacytidine (decitabine, DAC) 
is highly specific and non-random (105).

As revealed in recent studies, exposure 
of AML cells to HDACi induces a pleiotropic drug 
resistance phenotype by upregulating MDR1, which 
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may result in treatment failure (106, 107). Another 
study suggested that acetylation of histones, 
particularly H3, facilitates ABC1 expression in addition 
to ABCG2 (another MDR-related drug transporter). 
HDACCis, such as FK228, could reduce itself 
antitumor efficacy through upregulation of ABCB1 in 
APL (107). Aside from epigenetic modifications, there 
are still other mechanisms contributing to the role of 
acquired resistance, such as genetic alterations or 
stem cell renewal (108). However, these observations 
throw light on the potential that conventional therapy 
will be enriched by epigenetic drugs that induce 
the reversion of non-responsive cells to a drug-
responsive state (109). The molecular mechanisms 
resulting in aberrant epigenetic regulation are still 
largely unknown. However, striking findings are the 
frequent and often recurrent mutations in enzymes 
involved in establishing epigenetic patterns, which 
suggests a mechanistic link of genetic alterations 
and aberrant epigenetic reprograming (1). Cancer 
genome sequencing projects frequently detect 
recurrent mutations in enzymes. IDH1 and DNMT3A, 
which encode enzymes involved in establishing and 
maintaining DNA methylation, were recently found 
to be mutated in acute myeloid leukemia (4, 5). 
Generally, the study of epigenetic modification will 
increase our knowledge of drug resistance in cancer 
and provide a novel way to treat relapsed and 
refractory hematological malignancies.
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