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1. ABSTRACT

The neonatal small intestine is susceptible to 
damage by endotoxin, and this cytotoxicity may involve 
intracellular generation of reactive oxygen species 
(ROS), resulting in DNA damage and mitochondrial 
dysfunction. L-Arginine (Arg) confers a cytoprotective 
effect on lipopolysaccharide (LPS)-treated enterocytes 
through activation of the mammalian target of the 
rapamycin (mTOR) signaling pathway. Arg improves 
DNA synthesis and mitochondrial bioenergetics, which 
may also be responsible for beneficial effects of Arg on 
intestinal mucosal cells. In support of this notion, results of 
recent studies indicate that elevated Arg concentrations 
enhances DNA synthesis, cell-cycle progression, and 
mitochondrial bioenergetics in LPS-treated intestinal 
epithelial cells through mechanisms involving activation 
of the PI3K-Akt pathway. These findings provide a 
biochemical basis for dietary Arg supplementation to 
improve the regeneration and repair of the small-intestinal 
mucosa in both animals and humans. 

2. INTRODUCTION

The intestinal epithelium constitutes the 
largest and most important internal barrier against the 
external environment, which is continuously exposed 
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to potentially harmful antigens, pathogens, toxins 
and air pollutants (1,2). Enterocytes, goblet cells, 
enteroendocrine cells, crypt stem cells, and other cell 
types account for approximately 90%, 8%, 0.5%, 0.5%, 
and 1% of the mucosal epithelial cell population in the 
small intestine (3, 4). It is known that stressful conditions 
(e.g., weaning) and bacterial infection cause intestinal 
mucosal injury involving disruption of tight junctions and 
elevation of cellular permeability (5-9). 

Enterocytes are particularly vulnerable to 
chemo agents that interfere with DNA synthesis (10,11). 
This cytotoxicity may involve intracellular generation of 
reactive oxygen species (ROS) from the xanthine oxidase 
pathway, resulting in generation of hydroxyl radicals, 
which subsequently can cause DNA damage (12). 
Mitochondria are considered as the main source for 
endogenous ROS and also the major suppliers of ATP 
to maintain biological function; therefore, bioenergetics 
failure induced by mitochondrial dysfunction may play a 
role in intestinal injury (12-14). Furthermore, mitochondria 
participate in the regulation of both cell proliferation 
and death, and are thus potential mediators of the 
Phosphatidylinositol 3-kinase/Protein kinase B (PI3K/
Akt) signaling pathway (15). PI3K/Akt is an important 
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pathway implicated in the proliferation and survival of 
cells and inhibition of the PI3K/Akt pathway impair G2/M 
transition of the cell cycle (16).

L-Arginine (Arg) has recently been recognized 
as a functional amino acid to regulate key metabolic 
pathways beyond protein synthesis (17-18). Of particular 
interest, Arg has been demonstrated to confer a 
cytoprotective effect on LPS-treated enterocytes and to 
play a role in intestinal villous recovery after injury and cell 
migration (6, 7, 19). To date, the underlying biochemical 
mechanisms are largely unknown. Increased synthesis 
of DNA and protein in enterocytes may be responsible for 
this beneficial effect of Arg. We have demonstrated Arg 
increased protein synthesis involving mammalian target 
of the rapamycin (mTOR) signaling pathway in LPS-
treated enterocytes (7). In the present article, we review 
the results of recent studies regarding the effects of Arg 
on DNA synthesis and mitochondrial respiration, as well 
as signaling pathways involving PI3K/Akt. 

3. EFFECTS OF ARG ON DNA SYNTHESIS 
AND CELL-CYCLE PROGRESSION OF LPS-
TREATED PORCINE ENTEROCYTES

3.1. General study protocols
Intestinal porcine epithelial cells (IPEC-1) were 

obtained from the jejunum of newborn pigs, as described 
previously (20). Cells were cultured with Dulbecco’s 
modified Eagle’s F12 Ham medium (DMEM-F12) 
medium (Hyclone, USA) containing 5% fetal bovine 
serum (FBS) (Gibico, USA), 1% an antibiotic solution 
(P/S; Sigma, USA), 2 mM L-glutamine (Sigma, USA), 
0.1 % ITS (ScienCell, USA), and 5 µg/L mEGF (BD 
Biosciences, USA) at 37 oC in a 5% CO2 incubator. After 
an overnight incubation, the cells were starved for 6 h 
in Arg-free DMEM. The 5% FBS in the Arg-free DMEM 
provided 10 μM Arg. The cells were then cultured in 
medium containing 10, 100 or 350 µM Arg (Sigma, USA) 
and 0 or 20 ng/ml LPS (Sigma, USA) The cells cultured 
in the presence of 10 µM Arg virtually did not proliferate. 
The culture medium was changed every 2 days.

After a 4-day period of culture, DNA synthesis 
during cell proliferation in all treatment groups was 
quantified using 5-ethynyl-2’-deoxyuridine (EdU) 
incorporation using Cell-LightTM EdU Kit (Rui Bo 
Biotechnology Limited Company, Guangzhou, 
China) (21,22). Briefly, cells were cultured in DMEM 
medium containing 50 μM Edu for 2 h. Following 
incorporation, cells were washed with PBS twice and fixed 
for 30 min in 4% parafoemaldehyde at room temperature. 
After washing with a 2 mg/ml glycine solution, the cells 
were permeablized with 0.5% Triton X-100 in PBS for 10 
min and washed with PBS for 5 min. Thereafter, cells were 
incubated in Apollo® staining reaction solution for 30 min 
without light. The cells were washed three times with PBS 
containing 0.5% Triton X-100 for 10 min in each rinse. 

For subsequent DNA staining, cells were counterstained 
with the Hoechst 33342 reaction solution for 30 min in 
the dark. Subsequently, the cells were washed twice with 
PBS for 3 min in each rinse, and examined immediately 
under a fluorescent microscope (magnification × 400). 
An Olympus BX51 microscope (Olympus, Japan) was 
used to observe EdU-positive cells. Images of the Apoll® 
567 Hoechst 33342 were captured. The percentage of 
EdU-positive cells was expressed as the ration of red 
nuclei cells to blue nuclei cells in at least five different 
microscopic fields randomly selected for counting at 200-
fold magnification.

The cell cycle was analyzed using propidium 
iodide DNA staining (23). Briefly, after a 4-day period of 
culture in DMEM medium containing 10, 100 or 350 µM 
Arg and 0 or 20 ng/ml LPS, medium and cells were 
collected separately. Cells were washed with PBS and 
filtered by a 200-mesh screen. Cells were then suspended 
in PBS and fixed them in 70% ethanol and stored at 4oC 
for 24 h. After two washes with PBS, the fixed cells were 
incubated in 100 μl RNaseA at 37 oC for 30 min, followed 
by staining of the DNA with 100 μl propidium iodide (PI) at 
4 oC for 30 min in the dark. Before flow cytometry analysis, 
each sample was incubated at room temperature for 1 
h. The PI-DNA complex was measured using FACSort 
flow cytometry (Becton Dickinson, CA, USA) at 488 nm 
excitation and 617 nm emission. The percentage of cells 
at G1, S and G2 phases of the cell cycle and apoptosis 
were determined by analysis with the CellQuest Pro® 
software (Becton Dickinson, CA, USA).

3.2 Arg improved DNA synthesis and cell-
cycle progression in LPS-treated porcine 
enterocytes

The neonatal small intestine is susceptible to 
damage by endotoxin, and there is growing interest in 
developing effective methods for prevention and treatment 
in both clinical medicine and animal production (19,24,25). 
We previously reported that LPS inhibited cell proliferation 
and protein synthesis in IPEC-1 cells but Arg conferred a 
cytoprotective effect on these cells through the activation 
of the mTOR signaling pathway (7). Here, we focused on 
the roles of their DNA synthesis in cytoprotective effect of 
Arg in LPS-induced intestinal cells.

Bacterial LPS, which is often used to provide a 
model of microbial infection, may induce cell apoptosis, 
increase epithelial paracellular permeability, DNA 
damage and mitochondrial dysfunction (10,12,26). LPS 
induces mitochondrial ROS generation and then causes 
DNA damage. Our results showed that the percentages 
of EdU-positive cells (Figure 1) and cells in the S-phase 
(Figure 2) were decreased in response to LPS treatment. 
However, an increase in EdU incorporation was observed 
when the extracellular concentration of Arg was increased 
from 10 µM to 100 or 350 µM (Figure 1). The synthesis 
of polyamines and nitric oxide (NO) from Arg may be 
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responsible for its DNA repair effect (27). Polyamines can 
stabilize DNA and promote protein synthesis, whereas 
physiological levels of NO enhance intracellular cyclic 
guanosine monophosphate (cGMP) content and also 
stimulate DNA synthesis in cells, including endothelial 
cells and tumors (28-30). An increase in DNA synthesis 
plays an important role in increasing proliferation of 
enterocytes for repair of the mucosal barrier (7, 31). 
In addition, flow cytometry analysis showed that the 
percentage of cells in the Gl phase increased, while 
the percentage of cells in the S phase decreased in the 
100 μM Arg + LPS group, compared with the 100 μM 

Arg group (Figure 2). Polyaminew and NO also have a 
positive effect on progression through the cell cycle (32). 
In the presence of DNA damage induced by LPS, the 
G1/S checkpoint prevents cells from entering the S phase 
by inhibiting the initiation of replication (33). Also, amino 
acid deficiencies potently arrest cell-cycle progression 
and down-regulate expression of proliferation-control 
proteins (34). In support of this notion, reducing Arg 
concentration from 100 µM (a physiological level in the 
plasma of mammals (35) to 10 µM impeded the cell 
cycle, and increasing Arg concentration from 100 to 350 
µM greatly increased DNA synthesis. 

Figure 1. DNA synthesis in IPEC-1 cells. DNA synthesis during the proliferation of IPEC-1 cells was quantified by EdU incorporation (red color) using Cell-
LightTM EdU Kit (Rui Bo Biotechnology Limited Company, Guangzhou, China). Nuclei are shown in blue color. (A) Representative images of EdU staining 
(magnification ×200) of cells treated with 10 μM Arginine (a), 100 μM Arginine (b), 350 μM Arginine (c), 100 μM Arginine + 10 ng/ml LPS (d), or 350 μM 
Arginine + 10 ng/ml LPS (e) for a 4-day period. (B) The percentage of EdU-positive cells (the number of red nuclei versus the number of blue nuclei in at 
least five different microsopic fields of vision). Data are expressed as means ± SEM, n = 4 independent experiments. a–d Means sharing different letters 
differ (P < 0.05), as analyzed by one-way analysis of variance and the Student-Newman-Keuls multiple comparison test (89, 90). 
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4. EFFECTS OF ARG ON MITOCHONDRIAL 
FUNCTION OF LPS-TREATED PORCINE 
ENTEROCYTES

4.1. General study protocols
The XF-24 Extracellular Flux Analyzer and Cell 

Mito Stress Test Kit from Seahorse Biosciences were used 

to examine the effects of Arg treatment on mitochondrial 
respiration in LPS-induced cells (36). After a 2-day period 
of culture in DMEM medium containing 10, 100 or 350 µM 
Arg and 0 or 20 ng/ml LPS, the base medium was changed 
prior to the bioenergetic measurements to serum-free 
unbuffered (without sodium bicarbonate) DMEM medium 
base supplemented with 2 mM L-glutamine, 17.5 mM 

Figure 2. Cell cycle of IPEC-1 cells analyzed using propidium iodide DNA staining and flow cytometry. (A) Representative flow-cytometry diagrams of 
cells treated with 10 μM Arginine (a), 100 μM Arginine (b), 350 μM Arginine (c), 100 μM Arginine + 10 ng/ml LPS (d), or 350 μM Arginine + 10 ng/ml LPS 
(e) for a 4-day period. (B) The percentage of cell population in each phase of the cell cycle. Data are expressed as means ± SEM, n = 4 independent 
experiments. a–c Means sharing different letters differ (P < 0.05), as analyzed by one-way analysis of variance and the Student-Newman-Keuls multiple 
comparison test (89, 90). 
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D-glucose and 0.5 mM sodium pyruvate, at pH 7.4. To 
measure indices of mitochondrial function, oligomycin, 
carbonyl cyanide-p-trifluoromethoxyphenylhydrazone 
(FCCP), as well as rotenone and antimycin A were 
injected sequentially at the final concentrations of 0.5, 4, 
and 1 μM, respectively. This allowed for an estimation of 
the contribution of non-ATP–linked oxygen consumption 
(proton leak) and ATP–linked mitochondrial oxygen 
consumption (ATP production). The maximal respiration 
capacity was determined using the FCCP-stimulated rate. 
The spare respiratory capacity was represented by the 
maximal respiratory capacity subtracted from the baseline 
oxygen consumption rate (OCR). The residual oxygen 
consumption that occurred after addition of rotenone 
and antimycin A was ascribed to non-mitochondrial 
respiration and was subtracted from all measured values 
in the analysis. Owing to the effects of Arg on IPEC-1 
proliferation, total cellular protein was determined and 
used to normalize mitochondrial respiration rates.

4.2. Arg improved mitochondrial bioenergetics 
of LPS-treated porcine enterocytes

Oxidation of energy substrates produce 
CO2, water and ATP in cells (37, 38). Mitochondria are 
considered as the main source for endogenous ROS (13) 
and that resulted from the disruptions in the respiratory 
chain (39). Mitochondrial function damage induced by 
LPS was observed, showing with decrease in the basal 
respiration, maximal respiration and non-mitochondrial 
respiration (Figure 3). This is consistent with the results 
in mouse aortic endothelial cells and human tubular 
epithelial cells (40, 41). LPS induced alterations in oxygen 
consumption and radical generation and the indirect DNA 
damage induced by ROS involves the mitochondrial 
electron transport chain (40,42). 

Mitochondria are also the major suppliers of 
ATP to maintain biological function and play a central role 
in satisfying higher demands for energy and anabolic 
needs during stress (13). A novel and important finding 
of our recent study is that Arg improved mitochondrial 
bioenergetics. To our knowledge, this is the first report 
demonstrating that Arg modulates mitochondrial oxygen 
consumption by cultured cells.  Similarly, increasing Arg 
concentrations in blood through dietary supplementation 
with Arg enhances anti-oxidative capacity (43,44) and 
oxygen consumption and ATP production (45,46) in 
rats. Likewise, improving mitochondrial function in 
obese and diabetic rats through oral administration 
of interferon tau promotes oxidation of fatty acids 
and glucose, and, therefore, whole-body energy 
expenditure (47).  Conversely, Arg deprivation affected 
mitochondrial bioenergetics (Figure 3). Consistent 
with this observation, Arg deficiency decreased the 
abundance of the mitochondrial inner membrane and 
matrix proteins, while impairing mitochondrial oxidative 
phosphorylation and ATP production (39). Although the 
mechanisms of positive effect of Arg on mitochondrial 

bioenergetics remains unclear, this regulation appears to 
be due, in part, to the stimulation of DNA synthesis and 
cell proliferation.

5. SIGNALING PATHWAY INVOLVED IN THE 
CYTOPROTECTIVE EFFECT OF ARG IN LPS-
TREATED PORCINE ENTEROCYTES

5.1. General study protocols 
We investigated the effects of Arg on the 

Growth arrest, the mRNA and protein abundances 
of DNA damage-45 (GADD45) alpha [an indicator of 
mucosal damage (48)], as well as the protein levels 
for PI3K, Akt and B-cell lymphoma/leukaemia-2 (Bcl2) 
(the cell-survival regulatory proteins). The rationale 
for our study was to explore the signaling pathways 
involved in the cytoprotective effect of Arg in LPS-treated 
porcine enterocytes. Our research protocol included the 
measurement of expression of GADD45 alpha mRNA 
using real-time quantitative RT-PCR (49-52). Briefly, after 
a 4-day period of culture in DMEM medium containing 
10, 100 or 350 µM Arg and 0 or 20 ng/ml LPS, cells were 
collected using the Trizol-reagent (Invitrogen). Total RNA 
was extracted from cells according to the manufacturer’s 
instructions and quantified by electrophoresis on 1% 
agarose gel and the measurement of optical density at 
260 and 280 nm. The cDNA was reverse-transcribed from 
0.2 mg of eluted RNA using a kit from Takara, according to 
the manufacturer’s instructions. The real-time quantitative 
PCR for GADD45 alpha was performed in the Rotor-Gene 
Multi-filter system Rotor-Gene 3000 instrument (Corbett 
Research, Australia) with SYBR Premix Ex Taq kit (Takara), 
using the 18S house keeping gene as an internal control. 
The oligonucleotide sequences used to amplify genes 
were: GADD45 alpha (F) 5’-CGA GGA CGA CGA CAG 
GGA C-3’ (R) 5’-AGC AAA ACG CTT GGA TCA GG-3’; 
18S (F) 5’-AAT TCC GAT AAC GAA CGA GAC T-3’ (R) 
5’- GGA CAT CTA AGG GCA TCA CAG-3’. Cycle threshold 
(Ct) values are means of triplicate measurements. The 
comparative Ct value method was employed to quantitative 
expression levels for target genes relative to those for the 
18S DNA. Data are expressed as the relative values to 
those of 10 µM Arg-treated cells.

Protein levels for GADD45 alpha, phosphorylated 
PI3K, Akt, phosphorylated Akt (Ser473), Bcl2 and 
phosphorylated Bcl2 were determined by western blot 
analysis (52, 53). Briefly, after a 4-day period of culture 
in DMEM medium containing 10, 100 or 350 µM Arg and 
0 or 20 ng/ml LPS, cells were collected using RIPA Lysis 
Buffer (Beyotime Institute of Biotechnology, Shangshai, 
China) containing 50 mM Tris (pH  7.4), 150 mM  NaCl, 
1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 
sodium orthovanadate, sodium fluoride, EDTA, leupeptin 
and 0.1 mM PMSF. Cells were homogenized with a 
polytron homogenizer and centrifuged at 10, 000 × g for 10 
min at 4 oC. Protein concentrations in cell homogenates 
were measured using the BCA method and bovine 
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Figure 3. Mitochondrial respiration of IPEC-1 cells measured by the XF-24 Extracellular Flux Analyzer and Cell Mito Stress Test Kit from Seahorse 
Biosciences (North Billerica, MA, USA). Schematic (A) and oxygen consumption rate (OCR) (B) assessed by extracellular flux analysis. OCR was 
measured under basal conditions followed by the sequential addition of oligomycin (0.5 μM), FCCP (4 μM), rotenone (1 μM) or antimycin A (1 μM). Each 
data point represents an OCR measurement. (C) Individual parameters for basal respiration, proton leak, maximal respiration, spare respiratory capacity, 
non-mitochondrial respiration and ATP production. Cells were cultured in DMEM medium containing 10, 100 or 350 µM Arg and 0 or 20 ng/ml LPS for 
a 2-day period. The basal medium with 5% fetal bovine serum contained no putrescine, spermidine or spermine (detection limit = 0.5 µM), as analyzed 
by high-performance liquid chromatography (HPLC; 91). Arg concentrations in the final culture medium were verified by HPLC analysis (92). Data are 
expressed as means ± SEM, n = 4 independent experiments. a–d Means sharing different letters differ (P < 0.05), as analyzed by one-way analysis of 
variance and the Student-Newman-Keuls multiple comparison test (89, 90). 

serum albumin as standard. All samples were adjusted 
to have an equal protein concentration. The supernatant 
fluid (containing cell proteins) was then diluted with 2× 
sodiumdodecyl sulfate (SDS) sample buffer (0.63  ml 

of 0.5 M Tris-HCl pH 6.8, 0.42 ml 75% glycerol, 0.125 g 
SDS, 0.25 ml β-mercaptoethanol, 0.2 ml 0.05 % solution 
of bromphenol blue, and 1 ml water to a final volume of 
2.5 ml) and heated in boiling water for 5 min. After the 
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solution was cooled on ice, it was used for western blot 
analysis (54). Aliquots of samples were loaded onto SDS-
polyacrylamide gels. After separation on 4-12% gels, 
proteins were transferred to a nitrocellulose membrane 
(Bio-Rad, Hercules, CA) under 12 V overnight, using the 
Bio-Rad Transblot apparatus (Hercules, CA). Membranes 
were blocked in 5% fat-free dry milk in TTBS (20 mM 
Tris/150 mM NaCl, pH 7.5, and 0.1 % Tween-20) for 3 
h and then were incubated with the following primary 
antibodies overnight at 4 oC with gentle rocking: GADD45 
alpha (Cell Signaling, 1:1000), phosphorylated PI3K 
(Cell Signaling, 1:1000), Akt (Cell Signaling, 1:1000), 
phosphorylated Akt (Ser473) (Cell Signaling, 1:1000), 
Bcl2 (LifeSpan BioSciences, 1 μg/ml), phosphorylated 
Bcl2 (Ser70)(Cell Signaling, 1:1000) or β-actin (Cell 
Signaling, 1:1000). After washing three times with TTBS, 
the membranes were incubated at room temperature for 

2-3 h with corresponding secondary antibodies at 1:10,000 
(ZSGB-BIO, Beijing, China). Finally, the membranes 
were washed with TTBS, followed by development using 
Luminata Forte Western HRP Substrate according to 
the manufacturer’s instructions (Millipore, MA, USA). 
The signals were detected on Fujifilm LAS-3000 (Tokyo, 
Japan). All protein measurements were normalized to 
β-actin and all data were expressed as the relative values 
to those of cells cultured with 10 μM Arg.

5.2. Arg stimulated the PI3K/Akt signaling 
pathway in LPS-treated porcine enterocytes

GADD45 alpha played an important role in the 
DNA damage response and could be an indicator of 
mucosal damage in the gut (48). LPS increased but Arg 
reduced expression of GADD45 alpha in IPEC-1 cells 
at both mRNA and protein levels (Figure 4), indicating 

Figure 4. Growth arrest and DNA damage-45 alpha (GADD45 alpha) mRNA (A) and protein (B) expression in IPEC-1 cells determined by real-time 
quantitative RT-PCR and western blot analysis, respectively. Cells were cultured in DMEM medium containing 10, 100 or 350 µM Arg and 0 or 20 ng/ml 
LPS for a 4-day period. The comparative Ct value method was employed to quantitative expression levels for target genes relative to those for the 18S 
DNA and protein measurement were normalized to β-actin. Data are expressed as the relative values to those of 10 µM Arg-treated cells and as means ± 
SEM, n = 4 independent experiments. a–c Means sharing different letters differ (P < 0.05), as analyzed by one-way analysis of variance and the Student-
Newman-Keuls multiple comparison test (89, 90). 
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an important role for Arg in intestinal DNA repair under 
endotoxic and inflammatory conditions. GADD45 alpha 
has also been shown to be a potent cell-cycle regulator 
and can arrest cells in the G2/M phase of the cell 
cycle (55). GADD45 alpha expression is at the highest 
level in the G1 phase of the cell cycle and at the lowest 
level in the S phase (48). The finding that Arg decreased 
the expression of GADD45 alpha in IPEC-1 cells was 
consistent with the observation that physiological levels of 
Arg increased the number of IPEC-1 cells in the S phase.

Mitochondrial function may be regulated by 
the PI3K/Akt signaling pathway (17). This signaling 
pathway may also play a role in modulating the 
proliferation and survival of cells (16). Sheng et al. (56) 
have demonstrated that activation of PI3K/Akt is crucial 
for small-bowel and colon mucosal proliferation after 

food deprivation and subsequent re-feeding. Akt can 
be activated in response to DNA damage through 
PIKK family members (57). Expression of active 
Akt promotes cells to enter the S phase and DNA 
synthesis (56, 58), thereby enhancing DNA repair (57). 
Likewise, Arg increases DNA and protein synthesis by 
activating the PI3K/Akt signaling pathway in mammalian 
trophectoderm  cells (59,60) and embryos (61). 
Conversely, inhibition of the PI3K/Akt pathway impairs 
G2/M transition of the cell cycle (16). Treatment with 
LPS reduced protein levels for phosphorylated Akt and 
Bcl2 in IPEC-1 cells in the present study (Figure 5). 
There is evidence that DNA damage triggers apoptosis 
through the down-regulation of the anti-apoptotic Bcl2 
gene (62). Bcl2 is an oncogene that inhibits apoptosis, 
but paradoxically it also has an anti-proliferative 
effect (62,63). Thus, Bcl2 plays a regulatory role in cell 

Figure 5. Abundances of proteins in the Akt-Bcl2 signaling pathway in IPEC-1 cells determined by western blot analysis. Cells were cultured in DMEM 
medium containing 10, 100 or 350 µM Arg and 0 or 20 ng/ml LPS for a 4-day period. All protein measurements were normalized to β-actin and all data 
were expressed as the relative values to those of cells cultured with 10 μM Arg.Data are expressed as means ± SEM, n = 4 independent experiments. 
a–c Means sharing different letters differ (P < 0.05), as analyzed by one-way analysis of variance and the Student-Newman-Keuls multiple comparison 
test (89, 90). 
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survival and proliferation. The role of PI3K/Akt pathway 
in the regulation of Arg on enterocyte proliferation was 
not be investigated by inhibiting this signaling pathway 
in this study. Nevertheless, it is noteworthy that Arg 
stimulated the PI3K/Akt pathway, while reducing Bcl2 
protein levels both in normal and LPS-challenged IPEC-1 
cells (Figure 5). L-Arg has also been demonstrated to 
increase the protein phosphorylation and, therefore, 
the activity of Akt-1 in ovine trophectoderm cells (64), 
which is likely through the action of polyamine and/
or NO generation (65, 66). In support of this view, 
physiological levels of NO can stimulate the PI3K/Akt 
signaling pathway to promote cell survival (67, 68). 
Therefore, it is likely that Arg enhanced the proliferation 
and survival of IPEC-1 cells by activating the PI3K/Akt 
signaling pathway through the action of NO.

6. SUMMARY AND PERSPECTIVES

The intestinal mucosa has the highest rate of 
turnover among tissues in young pigs, which involves 
cell proliferation, migration, differentiation, and 
shedding, resulting in total renewal of the epithelial 
cell lining every 3 to 4 days. This rapid turnover 
makes enterocytes particularly vulnerable to chemo 
agents that interfere with DNA synthesis. Arg plays an 
important role in intestinal physiology and has been 
studied as a component of an oral rehydration solution 

to enhance intestinal absorption and villous recovery 
after injury and has been shown to be effective in 
protecting against gastrointestinal injury (69). The 
results of recent studies indicated that: (a) LPS induced 
mitochondrial dysfunction and cell-cycle impairment; 
and (b) Arg promoted DNA synthesis and mitochondrial 
bioenergetics in intestinal epithelial cells. Possible 
mechanisms for the cytoprotective effect of arginine on 
LPS-induced mitochondrial dysfunction and cell-cycle 
impairment are proposed in Figure 6. Arg stimulates 
PI3K and Akt phosphorylation, thereby inhibiting 
Bcl2 and ameliorating cell-cycle arrest and apoptosis 
brought about by an endotoxin. These findings provide 
a biochemical basis for beneficial effects of dietary 
Arg supplementation in improving the regeneration 
and repair of the small-intestinal mucosa.  Like other 
functional amino acids (70-84), Arg plays vital roles in 
nutrition and metabolism.  Animals and humans (young 
and adult, men and women) have dietary requirements 
of Arg for supporting optimal growth, development, and 
health in the small intestine and the while-body (85-88).  
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