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1. ABSTRACT

Despite the intense scientific efforts made, there 
are still many tumors that are difficult to treat and the 
percentage of patient survival in the long-term is still too 
low. Thus, new approaches to the treatment of cancer are 
needed. Cancer is a highly heterogeneous and complex 
disease, whose development requires a reorganization 
of cell metabolism. Most tumor cells downregulate 
mitochondrial oxidative phosphorylation and increase 
the rate of glucose consumption and lactate release, 
independently of oxygen availability (Warburg effect). 
This metabolic rewiring is largely believed to favour tumor 
growth and survival, although the underlying molecular 
mechanisms are not completely understood. Importantly, 
the correlation between the aerobic glycolysis and cancer 
is widely regarded as a useful biochemical basis for the 
development of novel anticancer strategies. Among the 
enzymes involved in glycolysis, lactate dehydrogenase 
(LDH) is emerging as a very attractive target for possible 
pharmacological approaches in cancer therapy. This 
review addresses the state of the art and the perspectives 
concerning LDH both as a useful diagnostic marker 
and a relevant molecular target in cancer therapy and 
management.

2. INTRODUCTION

With respect to other diseases, there is not a 
universal cure for cancer; the different type of tumors, 

their size and the location, the nature of the cells and 
its development and the health condition of the subjects 
represent important factors to take in consideration in order 
to address a possible best treatment. The approaches 
most often used are surgical interventions, radiation 
therapy, chemotherapy and, where applicable, targeted 
therapies. In most tumors, these treatments are used 
either simultaneously or in an appropriate sequence (1-3). 
Recently, combination chemotherapy has received more 
attention in order to find compounds that could increase 
the therapeutic index of clinical anticancer drugs. In this 
regard, dietary supplements, phytotherapeutic agents and 
naturally occurring molecules with antitumor activity and 
with the least toxicity to normal tissues are proposed as 
possible intriguing candidates to be investigated for their 
synergistic efficacy in combination with antineoplastic 
drugs (4,5). In addition, other treatment strategies adopt 
new approaches deriving from the concept of removing 
tumor nutrients (6). Moreover, great therapeutic 
opportunities are expected from nanomedicine (7).

However, to date, despite decades of intensive 
efforts, the cancer remains a disease extremely difficult 
to treat, especially when the diagnosis is delayed and 
the tumor rooted. By recording large differences in the 
success rate of treatment depending on the type of 
cancer, cancer cure rate (absence of the recurrence of 
the tumor after 5 years) can reach 70% for breast cancer 
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or prostate cancer, whereas for tumors of the lung, 
pancreas, esophagus, the percentage of survival does 
not exceed 20%. In total, the cancer survival rate after 5 
years is approximately of 60% (8). Thus, novel strategies 
for the treatment of cancer are warranted. Thanks to the 
basic research, in the past decade considerable advances 
have been made in the understanding of cancer. In 
particular, one relevant aspect of the recent research 
is the ability of cancer cells to change their energy 
metabolism. Notably, energy metabolism is considered 
an emerging hallmark of cancer and a very attractive 
area for developing innovative therapeutic strategies in 
cancer therapy (9, 10). In fact, the metabolic properties 
of cancer cells diverge significantly from those of normal 
cells, so that targeting cellular metabolism is considered 
an intriguing approach to obtain specific antitumor effects 
without or minimally affecting normal cells (10, 11).

In particular, the majority of the tumor cells 
decreases the mitochondrial oxidative phosphorylation 
(OXPHOS) and instead increases the amount of 
glucose consumed and lactate production in a manner 
completely independent of the availability of oxygen 
(Warburg effect), so that the energy production in cancer 
cells is abnormally dependent on aerobic glycolysis 
(see below) (12). Thus, targeting aerobic glycolysis 
remains attractive for therapeutic intervention in cancer. 
At this regard, glycolytic inhibitors serve as a classical 
example of cancer metabolism targeting agents. Several 
preclinical investigations have indeed demonstrated 
the effectiveness of this therapeutic approach (13, 14). 
Among the enzymes involved in glycolysis, lactate 
dehydrogenase, LDH, which belongs to the class of 
oxidoreductases and converts pyruvate to lactate at 
the end of glycolysis, is regarded as one of the most 
interesting molecular targets for the development of new 
glycolytic inhibitors to possibly use in cancer therapy (15). 
The LDH appears to be the main metabolic enzyme 
whose inhibition can lead to a block of aerobic glycolysis 
of the tumor cells without damaging healthy cells which, 
in condition of normal activities and of sufficient supply 
of oxygen, usually degrade completely the glucose to 
CO2 and H2O (via the tricarboxylic acid cycle, TCA/Krebs 
cycle) and do not require this enzyme (16).

3. GLYCOLYSIS AND AEROBIC GLYCOLYSIS

The uncontrolled and sustained cell proliferation 
is one of the major hallmark that characterizes virtually 
all types of cancer (9). Tumor initiation and progression 
require selection for the most aggressive and resilient 
cells to drive and increase proliferation and survival. To 
fuel growth, cancer cells must adapt their metabolism 
according to the new energy needs, and the metabolism 
of glucose, that provides the most efficient method of 
generating energy within the cell, is primarily affected 
(17). 

The glucose metabolism can be divided into two 
major phases (18). In the first part, namely glycolysis, 
common to both normal and tumor cells, one molecule 
of glucose is metabolized in the cytoplasm with the 
formation of two residues of reduced NADH and two 
molecules of pyruvate and the concomitant production 
of two molecules of ATP, the molecule that conveys the 
energy to all cellular processes. This process can occur 
in the absence of oxygen and for this reason it is a very 
exploited process in nature for the production of energy. In 
the second step, pyruvate is imported in the mitochondria 
and, after the decarboxylation to acetyl-CoA, enters the 
Krebs cycle where is degraded to CO2 and H2O while 
the NADH is reoxidized by the mitochondrial respiratory 
chain. In the overall process (glycolysis, Krebs cycle and 
respiratory chain) a single molecule of glucose produces 
36 molecules of ATP.

There are circumstances where pyruvate entry 
to the mitochondria is prevented and it is converted by 
the enzyme lactate dehydrogenase into lactate with the 
simultaneous re-generation of NADH, thus allowing 
the continuous flow of the first stage of the reactions 
of glycolysis (which require NADH) and leading to an 
accumulation of lactate in the extracellular environment. 
Through this pathway, just two moles of ATP per mole of 
glucose metabolized are obtained. In normal cells, this 
pathway is active only in particular conditions such as 
embryonic development, or in conditions of insufficient 
supply of oxygen, for example in the hyper-working 
skeletal muscle (18). On the contrary, cancer cells 
reprogram their metabolism to use mainly glycolysis 
even in the presence of oxygen, through the so called 
“aerobic glycolysis” or “Warburg effect” (12,  19). Why 
does a cell that proliferates more and faster use the 
glycolytic metabolism, which guarantees a lower 
energy production? Despite its low energy yield and 
wasteful of glucose, the aerobic glycolysis is considered 
advantageous to the cancer cells. This metabolic 
pathway produces ATP far quicker than the slow route of 
oxidative phosphorylation and results in the generation 
of crucial precursors for biomass production such as 
NADPH which is not produced at such levels via oxidative 
phosphorylation. It is believed that cancer cells utilize the 
rapid generation of ATP and the increase in de novo fatty 
acid synthesis to grow and divide quickly (20). Moreover, 
the Warburg shift not only allows rapid generation 
of ATP, fatty acids and nucleotides whilst glucose is 
abundant, but the consequent accumulation of lactic acid 
produces the acidification of the microenvironment that 
could induce degradation of the extracellular matrix and 
facilitate angiogenesis, tumor invasion and a protection 
against immune attack (21).

On the other hand, it is known also that specific 
changes in the tumor microenvironment and hypoxia 
can enhance glycolysis through activation of specific 
transcriptional factors, such as Myc proto-oncogene 
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protein or the hypoxia inducible factors HIF-1 and HIF‑2, 
which regulate the transcription of genes involved in 
glucose metabolism (22). Notably, aerobic glycolysis was 
described for the first time about a century ago by Otto 
H. Warburg who showed that cancer cells metabolize 
glucose differently than normal cells (Warburg effect) and 
that tumors derive energy mainly from the conversion of 
glucose to lactic acid and minimally via cellular respiration 
involving oxygen (12, 23). The observation that tumors 
produce massive amounts of the aerobic glycolysis 
waste product, lactic acid, was central to the concept of 
deregulated metabolism, so that cancer was even termed 
“disorder of metabolism” (12). Although cancer is now 
more accurately defined in terms of genomics, it appears 
clear that there are substantial modifications to metabolic 
pathways as a consequence of genetic and epigenetic 
changes and also that an impaired mitochondrial function 
is strongly involved in (9, 24-26). 

Coming back to the Warburg effect/aerobic 
glycolysis, it is a very hallmark of cancer, so widespread 
and common to the cancer cells, that it is the principle, 
for example, at the basis of the largely used diagnostic 
techniques such as Positron Emission Tomography 
(PET) for the identification of primary and metastatic 
lesions. The patient takes a radioactive molecule, 
glucose analogue, which is incorporated mainly by tumor 
cells. PET identifies the tumor cells revealing increased 
radioactivity, indicative of a higher rate of metabolic 
consumption of glucose (27).

As far as the molecular mechanisms underlying 
the Warburg shift concerned, they are not fully clarified 
and include mitochondrial defects and malfunction, 
adaptation to hypoxic tumor microenvironments, 
abnormal expression of metabolic enzymes, and 
oncogenic signaling (28). At this regard, increasing 
evidence indicates that a central role on the shift to 
aerobic glycolysis occurring in cancer cells is played 
by the nuclear receptor superfamily. This large family of 
receptors, including steroidal, retinoids and peroxisome 
proliferator-activated receptors, is significantly involved 
in sensing environmental cues and controlling decisions 
on proliferation, differentiation and cell death for 
example, to regulate glucose uptake and metabolism 
and to modulate the actions of oncogenes and tumour 
suppressors (29). 

By the way, whatever the mechanisms, the 
general increased dependence of cancer cells by 
aerobic glycolysis has been recently regarding as a 
useful biochemical basis for the development of novel 
anticancer strategies (10, 11, 13, 14, 30, 31). 

At this regard, lactate dehydrogenase (LDH) is 
involved in the critical step of inter-conversion of pyruvate 
to lactate and plays a central role in the Warburg effect. 
Consistently, LDH is considered very relevant to cancer 

and a highly promising therapeutic target for new 
anticancer treatments.

4. LACTIC DEHYDROGENASE (LDH): 
FEATURES OF THE DIFFERENT ISOZYMES

Lactate dehydrogenase (LDH, L-lactate, NAD+ 
oxidoreductase, EC1.1.1.27) is an ubiquitous enzyme 
present in mammals, yeast, plants and microorganisms. 
LDH interconverts pyruvate and lactate at the end of the 
glycolytic pathway using NAD+ as a cofactor. LDH was 
isolated many years ago from cell free muscle extracts 
and it is one of the best characterized enzymes in the 
scientific literature (32, 33). Its molecular characteristics 
have been well studied and recently the structures of 
the different isoforms of the human LDH enzyme have 
been characterized (34, 35). LDH is a 140 kDa tetrameric 
molecule that exists in five major isoenzymes, numbered 
LDH-1 through LDH‑5, formed by the association of 
two different types of approximately 35 kDa subunits, 
M (Muscle) and H (Heart), encoded by two different 
genes: ldh-a and ldh-b which are respectively located 
on chromosomes 11p15.4 and 12p12.2-p12.1 (36). In 
addition, it is known also a sixth, minor LDH isoenzyme, 
containing a third subunit X. Such third subunit, 
encoded by the ldh-c or ldh-x gene, which is located on 
chromosome 11p15.5-p15.3 and is likely a duplicate of 
LDH-5, forms testis-specific isoform known as LDH-6 or 
LDHC (37, 38).

Both human ldh-a and ldh-b genes are 
comprised of eight exons encoding proteins of 331 and 
333 amino acids, respectively (39, 40). Several amino 
acid substitutions were demonstrated in human LDH 
variants by genetic analysis (41-43). These variants are 
of interest for investigation of the relationships between 
the LDH structure and function. Although the structure of 
the five isoforms of LDH is very similar, there are instead 
differences in the tissue (and cellular) distribution of the 
enzyme and in its kinetics and regulation (18, 34, 44).

On the basis of combination of M and H 
monomers, two homotetrameric isoforms, LDH-1 (H4) 
and LDH-5 (M4), and three heterotetrameric isoforms, 
LDH-2 (M1H3), LDH-3 (M2H2), LDH-4 (M3H1) can be 
obtained. To note, LDH-1 and LDH-5 are commonly 
named also LDHB and LDHA, respectively. LDH isoforms 
are present in all tissues at different ratios, so that the 
isoenzymatic profile is tissue-specific. LDH-5 and LDH-4 
isoforms, containing exclusively (LDH-5) or mainly 
(LDH‑4) M subunits, are expressed in most of tissues 
subject to anaerobic conditions such as skeletal muscle, 
liver and tumor tissues. On the other hand, LDH-1 and 
LDH-2 isoforms, composed exclusively (LDH-1) or mainly 
(LDH-2) by H subunits, are prevalently present in tissues 
subjected to high aerobic metabolism, such as the heart, 
the spleen, the kidney and the brain. LDH-3 isoform, 
characterized by a balanced subunit composition (two 
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M and two H subunits), is expressed mainly in lymphoid 
tissues. 

As far as the intracellular localization 
concerned, LDH engaged in glycolysis is located 
in the cytosol; however, the enzyme is also present 
in mitochondria, peroxisomes and nuclei, where it 
exerts some peculiar functions (18, 34, 45). Moreover, 
the intracellular localization of each isoform may be 
different among different tissues. For instance, in the 
heart LDH-1 is present in the mitochondrion whereas 
LDH-5 is equally distributed both in the cytosol and 
mitochondrial matrix. In liver, LDH-5 isoform is mostly 
present within the mitochondrion, whereas in cancer 
cells it is mainly localized to the cytoplasm (18, 34). 
The different distribution of LDH isoforms is thought to 
be linked to its fundamental role in intracellular lactate 
shuttle mechanism, that is especially present in liver and 
muscle tissues. According to this mechanism, the lactate 
produced by glycolysis is transported from cytosol into 
the mitochondrial intermembrane space where, after its 
oxidation to pyruvate by a mitochondrial LDH, is released 
into the mitochondrial matrix in order to enter the Krebs 
cycle (21, 46). The different tissue and cellular distribution 
of LDH is probably linked to the different affinity of the 
various isoforms toward the substrates. LDH isoforms 
that contain predominantly M subunits (LDHA), display 
a higher affinity for pyruvate and catalyze preferably 
the reaction of conversion of pyruvate into lactate. 
Conversely, LDH isoforms that are constituted mostly 
by H monomers (LDHB), show higher efficiency in the 
conversion of lactate to pyruvate. This observations 
confirms Kaplan’s theory (33). According to this theory, 
LDH-5/LDHA, that has the highest efficiency to catalyze 
the conversion of pyruvate to lactate, is favored in tissues 
with a low level of oxygenation, whereas LDH-1/LDHB, 
that is more able to produce pyruvate and favors the 
conversion of pyruvate to acetyl-CoA for entry into the 
citric acid (Krebs) cycle, is instead favored in tissues 
with a strong aerobic metabolism. Relevantly, normal 
and tumor tissues have basically similar levels of LDHB/
LDH  1; whereas, LDHA/LDH-5 is primarily expressed 
in cancer cells (see below)  (47). As anticipated and 
extensively discussed below, the interest toward this 
enzyme in the field of cancer is continuously increasing.

5. LDH AND CANCER

5.1. LDH expression in tumor maintenance, 
progression and metastasis

The key role played by LDHA in the Warburg 
effect and the prevalence in cancer cells of this metabolic 
pathway independently from the presence of oxygen, 
highlights the importance of the LDHA function in human 
tumors (47). 

LDHA is elevated in many types of cancers 
and has been linked to tumor growth, maintenance and 

invasion. Importantly, there is clear evidence showing that 
knocking down LDH-A expression by RNA interference, 
the malignant behaviour of cancer cells is severely 
affected in vitro and in vivo (48). In a recent study, RNA 
interference mediated by lentiviral vectors was applied 
to investigate the role of LDHA in tumor growth and 
metastasis of hepatocellular carcinoma (HCC) (49). 
In this investigation, it was clearly shown that, first, 
HCC cell lines over-express LDHA and, second, LDHA 
inhibition increased apoptosis through the production of 
reactive oxygen species. Moreover, the knockdown of 
LDHA resulted in a significant reduction of the metastatic 
potential in a xenograft mouse model. Authors showed 
also that FAK, MMP-2, VEGF and E-cadherin are 
involved in (49). Relation between clinic-pathological 
factors of breast cancer and LDHA also have been 
analysed, with particular regard whether LDHA silencing 
could suppress breast cancer growth and to its potential 
mechanisms  (50). Specimens of breast cancer were 
collected to study the correlation between the expression 
of LDHA and clinic-pathological characteristics. Moreover, 
short hairpin RNA (shRNAs) were applied to silence the 
expression of LDHA in breast cancer cell lines. The 
expression of LDHA strongly correlated with tumour 
size and showed to be independent from other clinic-
pathological factors. Down-regulation of LDHA led to an 
inhibition of cancer cell proliferation accompanied by a 
strong Ki67 decrease, elevated intracellular oxidative 
stress and induction of mitochondrial pathway apoptosis. 
On the other hand, the tumorigenic capability of LDHA 
deficient cancer cells was significantly limited in breast 
cancer xenografts (50). 

Currently, it has been reported that the LDHB/
LDHA ratio reflects (very likely more than the level of 
LDHA protein alone) the metabolic capacity of breast 
cancer cells (51). Authors propose a new measurement, 
the “Glycolytic Index,” which quantitates the LDHB/LDHA 
ratio in cancer cells as a possible biomarker of breast 
cancer aggressiveness (51). To note, an estimation of the 
LDH subunit ratio has been even suggested in the past to 
be useful as an indicator of neoplastic transformation in 
cultures of normal human fibroblasts, too (52).

In contrast to LDHA expression, LDHB is 
highly expressed in non-malignant tissues relative to 
tumors (53). In malignant tumors, LDHB appears to be 
silenced by promoter hypermethylation; this occurs at a 
high frequency in primary breast tumors and in primary 
prostate tumors (54, 55). However, although LDHB 
expression is commonly believed to be decreased in 
tumors (53-55), it has been described to be partially 
up-regulated in some cancer cells (56, 57). 

A crucial role in the process of tumour initiation 
and progression is played by microenvironment. Tumor-
associated stroma (TAS), for instance, plays an important 
role in tumour growth, invasion and metastasis (58). 
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Changes of stromal constituents levels like loss of 
Caveolin-1 have been linked to tumor aggressiveness. 
Caveolin-1 is a principal structural protein of the plasma 
membrane expressed in normal and hyperplastic 
fibroblasts and it is closely related to malignant 
growth  (59). Other works indicated that Caveolin-1 to 
facilitate tumor invasion, can favor cell elongation and 
promote force-dependent contraction, matrix alignment 
and microenvironment stiffening (60). Interestingly, the 
relevant costituents of Tumor-Associated Stroma (TAS), 
Caveolin-1 and thymidine phosphorylase (TP, whose 
overexpression has been linked to the aggressiveness of 
tumours, too), have been investigated in prostatic cancer 
together with the expression of the isoenzymes LDHB 
and LDHA (61). TAS was found to play a primary role in 
the growth and development of prostatic cancer. Indeed, 
the loss of Caveolin-1 and the overexpression of TP were 
markers of TAS. Furthermore, compared to cancer cells, 
the tumour stroma is characterized by the overexpression 
of LDHB and downregulation or lack of LDHA. These 
behaviors are present in the majority of cancer cases 
independently from Caveolin-1 or TP expression, and 
highlight the metabolic co-operation between the aerobic 
stroma and the anaerobic cancer cells (58, 61).

Recently, Xie et al. have shown that the 
inactivation of LDHA in mouse models of non-small cell 
lung cancer (NSCLC) induced by the oncogene K-RAS 
or EGFR led to a decrease of established tumors and 
regression of disease. In addition, these authors also 
showed that LDHA down-regulation was accompanied 
by reactivation of mitochondrial function (62).

These data are in agreement with previous 
ones, showing that via immunohistochemistry (IHC) 
almost 90% of NSCLC were immunopositive for LDHA, 
whereas all non-neoplastic lung tissues appeared LDHA 
immunonegative. Moreover, the staining intensity of 
LDHA was found to correlate highly with the histological 
type of lung carcinomas and lymph node metastases, 
indicating that the tissue level of LDHA can have 
prognostic value in NSCLC (see also below) (63). LDHA 
has been shown to be upregulated also in esophageal 
squamous cell carcinoma, pancreatic cancer and oral 
squamous cell carcinoma (64-66). Interestingly, also in 
such cases it was proposed that LDHA correlate with 
metastases, tumor stage, recurrence of the tumor and 
patient survival (see also below). Taken together, these 
above observations indicate that LDHA is central to tumor 
proliferation and malignant behaviour and that survival 
of tumor cells is highly dependent on LDHA activity in a 
hypoxic environment.

5.2. LDH as diagnostic marker, prognostic 
factor and predictive marker for response to 
cancer therapy 

As largely known and also reported above, 
LDH is present inside the cell, but when an injury occurs 

and cells are damaged, the enzyme is released into 
the bloodstream where its concentration increases. In 
medicine, for many years the interest for LDH has been 
mainly due to its importance as a diagnostic test in 
human diseases. An increase of LDH activity in serum 
is a consequence of massive cell death, which causes 
the release of the intracellular LDH (and that of other 
intracellular components, including other enzymes) into 
the circulation, and is associated to acute diseases. 
Reference values are dependent on many factors, 
including patient age, sex, sample population, test 
method, and numeric test results can have different 
meanings in different labs. Normal serum value range 
is 105-333 IU/L (International Units per Liter) (67). An 
increase of LDH can be determined measuring total LDH 
activity or that one of single isoenzymes (67, 68).

As above described, although some overlap 
might occur, each of the five LDH isoenzymes appear to 
be more concentrated in a specific tissue (34). Therefore, 
evaluation of each isoenzyme concentration can be 
used, together with other tests, to evaluate the disease 
condition or the condition that determines cell damages 
and the compromise of organ or tissue. As anticipated 
above, the dosage of LDH in serum of patients is largely 
used and is commonly done when there is a suspect of 
damage and/or disfunction of a specific organs such as 
heart, liver, muscle. Interestingly, it is also well known that 
serum LDH levels increase during neoplastic diseases, 
as a consequence of tissue destruction caused by 
the neoplastic growth; accordingly, the serum LDH 
measurement has an important clinical significance 
in cancer (47). Serum LDH is commonly increased 
in patients with hematopoietic malignancies, such as 
Hodgkin’s lymphoma (HL), non-Hodgkin’s lymphoma 
(NHL) or multiple myeloma. LDH is one of the risk factors 
included in the International Prognostic Index (IPI) and it 
is believed a strong predictor of survival in patients with 
aggressive lymphoid cancers (69-74).

As above described, LDHA is upregulated in 
some types of human cancers and is associated with 
aggressive tumor outcomes. Kolev et al. investigated 
the expression levels of LDHA and HIF-1 in a group of 
patients with gastric carcinoma. Authors showed that 
overexpression of LDHA correlates with intratumoral 
angiogenesis, hypoxia and with several clinic-
pathological parameters including prognosis. Relevantly, 
patients with overexpression of LDHA showed far lower 
disease-free (63.5% vs 82.7%) and overall lower (56.3% 
vs 78.4%) survival rates compared with patients with 
low LDHA expression (75). In addition, more recently, it 
has been shown that increased expression of LDHA that 
positively correlated with VEGF expression characterized 
almost 60% of gastric adenocarcinomas, suggesting the 
potential use of LDHA as a biomarker for response to 
VEGF-targeted therapy (76). In a prospective study in 
which several cancer types, symptoms, signs and other 
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serological variables were included, the value of LDH as 
a predictor of survival time in terminal cancer patients 
were evaluated. The results obtained indicated that the 
serum LDH level was a useful predictor for terminally 
ill cancer patients (77). Hepatocellular carcinoma 
(HCC) is a common cancer of liver and one of the most 
frequent and aggressive cancer in the world. Recently, a 
systematic review of large number of studies regarding 
the prognostic indicators in HCC has been reported (78). 
Interestingly, from such review, LDH was included among 
the most strong predictors of death in patients affected 
by HCC. Moreover, a study by Faloppi et al. reported that 
LDH was an important predictive factor in HCC patients 
evaluating the pre-treatment serum LDH level and its 
variation during treatment in HCC patients receiving 
the tyrosine kinase inhibitor, sorafenib. Remarkably, 
LDH appeared able to predict clinical outcome in terms 
of progression free survival (PFS) and overall survival 
(OS) for HCC patients in response to sorafenib (79). 
In addition, pretreatment serum LDH levels have been 
linked to the prediction of clinical outcome also for HCC 
patients undergoing trans-arterial-chemo-embolization 
(TACE) (80).

The prostate-specific antigen (PSA) is present 
in small quantities in serum and increases in some 
cases, including prostate cancer and benign prostatic 
hypertrophy. Very recently, Santotoribio et al. have 
evaluate the utility of LDH dosage in combination 
with free-to-total serum prostate specific antigen ratio 
(%fPSA) determination, in the diagnosis of prostate 
cancer; authors conclude that LDH in combination with 
%fPSA improved diagnostic performance for detection of 
prostate cancer compared to using %fPSA alone (81). 
It was also shown that pretreatment serum LDH levels 
might serve as a significant prognostic factor in high-
risk patients with metastatic renal cell carcinoma (RCC) 
and a predictive factor associated with the response 
and survival benefit of the mTOR complex-1 (mTORC1) 
inhibitor temsirolimus (82). To note, there is evidence 
of the diagnostic significance of lactate dehydrogenase 
isoenzymes in urogenital tract tumours also from old 
studies (83, 84). Additionally, in patients with metastatic 
colon cancer or locally advanced nasopharyngeal 
carcinoma treated with radiotherapy combined with 
neoadjuvant chemotherapy, high-serum LDH levels were 
an independent unfavorable risk factor for overall survival 
(OS) (85-87).

Osteosarcoma is a a very aggressive tumor 
of bone and its treatment remains a challenge (88). A 
study has reviewed records from patients diagnosed 
with conventional high-grade osteosarcoma treated with 
chemotherapy over a 25-year period and has analysed 
the prognostic significance of LDH, showing that the 
pre-treatment serum LDH level had an independent 
prognostic value for both progression-free survival (PFS) 
and overall survival (OS) in these patients (89). Another 

multicenter retrospective study has evaluated the 
clinicopathological characteristics and prognostic factors 
in 240 Turkish patients with osteosarcoma from March 
1995 to September 2011. By multivariable analysis, 
high LDH level (and also the presence of metastasis at 
diagnosis) were associated with poor overall survival in 
this study, too (90).

Pancreatic cancer is a fatal malignancy, with a 
median survival of 6 months and a very low percentage 
of long-term surviving patients (91). Due to poor progress 
provided from chemotherapeutics in the pancreatic cancer 
therapy, recent studies aimed to improve in selection 
of patients with poor prognosis to be treated only with 
supportive care and would avoid unnecessary adverse 
effects and complication of systemic chemotherapy.

At this regard, a retrospective recent study 
investigated the impact of pretreatment serum LDH 
along with CA19-9, CEA levels on the prognosis of 196 
metastatic pancreatic cancer (MPC) patients, treated with 
gemcitabine-based chemotherapy. Interestingly, patients 
with normal serum levels of all three tumor markers had 
better outcome than others (p = 0.002) and those with 
normal serum LDH and CEA levels (whatever CA19-9) 
levels had associated with better survival compared with 
other possible alternatives (p < 0.001) (92).

Moreover, Zhao et al. have found that 
acetylation at lysine-5 of LDHA was reduced in 
pancreatic cancer (93). Lysine acetylation, in addition to 
phosphorylation, appears as an important modification of 
LDHA, although it has been poorly addressed so far. It 
has been involved in the control of its activity. Acetylated 
LDHA can be recognized by a cytosolic chaperone and it 
is easily degraded by lysosomal proteolysis. Interestingly, 
LDHA lysine-5 acetylation has been shown to be reduced 
and accompanied with increased LDHA protein levels in 
both early and late stages of pancreatic cancers (93). 
On the other hand, Authors failed to detect a correlation 
between decreased lysine-5 acetylation and LDHA-linked 
liver cancer development (94). Therefore, given the fact 
that LDHA lysine acetylation can be readily detected by 
specific antibody, it has been suggested that it might 
serve as a potential early diagnostic marker in pancreatic 
cancer (93, 94). 

As far as LDH and lung cancer concerned, 
above we have already reported that the tissue level of 
LDHA can have prognostic value in non-small cell lung 
cancer (NSCLC) (60). In addition, it has been previously 
shown that serum LDH levels inversely correlated with 
the survival of patients with small cell lung cancer (SCLC) 
and allowed the selection of very high-risk patients. In 
addition, a significant relationship between high levels of 
LDH and a higher incidence of liver and bone metastases 
was found in the case of advanced SCLCs  (95).
Moreover, it has been described for a long time that 
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elevated levels of LDH are a predictor of poor prognosis 
in malignant pleural effusion (MPE), very likely reflecting 
a higher degree of necrosis in the pleural cavity (96). 
Recently, it has been shown for the first time a significant 
association between high LDH, low pleural glucose 
levels and overexpression of HER-2 in lung cancer (97). 
This relation allowed to hypothesize the possible use of 
low pleural glucose and high LDH levels as a screening 
tool for finding HER2-positive cases of lung cancer (97).

Concerning LDH as a possible predictive 
marker for assessing the response of tumor cells to 
therapeutic agents, a recent study describes that serum 
LDH levels could be used as a predictive marker useful to 
elaborate a possible algorithm for clinical use in patients 
with metastatic melanoma to be sequencially treated 
with BRAF inhibitors and immune checkpoint inhibitor, 
monoclonal antibody ipilimumab (98).

Additionally it has been shown that serum LDH 
levels could be also valuable to predict hypersensitivity 
reactions in colorectal cancer patients treated with the 
platinum anticancer agent, oxaliplatin (L-OHP) (99). In 
addition, Koukourakis et al. reported that tissue LDHA was 
associated with resistance to standard chemotherapy, poor 
progression-free survival and high performance status in 
patients with advanced colorectal cancer (CRC) (100).

Moreover, an investigation on acquired Taxol 
resistance in a number of human breast cancer cell lines 
found that Taxol-resistant cells expressed more LDHA 
compared to Taxol-sensitive cells and that their sensitivity 
could be increased by downregulating LDHA. It was also 
described that Taxol-resistant cells could be resensitized 
by specific LDHA inhibition (101, 102). Overall, these 
above observations strongly indicate that LDH can be 
considered as a relevant diagnostic marker, a prognostic 
factor and a predictive marker for response to therapy in 
cancer.

5.3. LDH as drug target for cancer therapy
There is a very large number of data indicating 

that the isoform 5 of the LDH (LDH-5 or LDHA) plays 
undoubtedly a key role in tumorigenesis. First of all, 
LDHA expression is directly targeted by oncogenes 
(such as Myc and HIF-1), which are critical factors 
in tumor development (103). Accordingly, as above 
described, LDHA is consistently up-regulated in tumors 
and has been found also to correlate with tumor size 
and prognosis. Relevantly, down-regulating LDH-A 
expression by antisense approaches has been 
shown to result in inhibition of cell growth, migration 
and in vivo tumorigenesis in many cancer models 
(48, 49, 50, 62, 64, 65, 101, 104, 105). On the contrary, 
it has been observed that silencing LDH-A expression in 
non cancer cultured cells, proliferation and protein syn
thesis were not impaired (106, 107).

Interestingly, patients with homozygous 
absence of M subunits (also referred as A subunits) do 
not show significant clinical symptoms under ordinary 
circumstances. Individuals lacking M subunits only 
complain of muscle rigidity and sudden myoglobinuria 
after intense exercise, when an increase in aerobic 
glycolysis and in ATP synthesis is required (108,  109). 
Homozygous gene mutations causing complete 
deficiencies of LDH H subunits (also known as B subunits) 
have been described, too (110). Also in this case, such 
patients do not show relevant symptoms. The H subunit 
containing isoform is the major isoenzyme found in red 
blood cells, which do not have mitochondria and obtain 
all their ATP by aerobic glycolysis. In spite of a strongly 
reduced LDH activity in erythrocytes, individuals with 
genetic deficiency of the H subunits do not suffer from 
anemia and just show signs of mild hemolysis in some 
case (110). Notably, the above reported data suggest that 
LDH inhibition (including LDHA inhibition) could be well 
tolerated by normal cells. Therefore, inhibitors of LDHA 
might have a potential antitumor action accompanied by 
a relatively modest systemic toxicity.

By the above encouraging considerations, they 
are largely justified the increasing interest towards LDHA 
as a specific anticancer target and the efforts in the 
search of small molecule metabolic inhibitors directed to 
LDHA. Recently, some drug-like inhibitors selective for 
human LDHA have been reported to exhibit promising 
anticancer activity both in vitro and in vivo (111). These 
LDHA inhibitors include analogues of gossypol, such 
as FX11; quinoline 3-sulfonamides; a series of malonic 
derivatives (Mal), including AZ-33; a group of heterocyclic 
derivatives, the N hydroxyindoles (NHI), bearing a 
carboxylic acid group in the 2-position; a salt of oxalic 
acid, oxamate; and the recently identified gallic acid 
derivative galloflavin (GF) (62, 112-115 ). All of them act 
as competitive inhibitors of LDHA with respect to both the 
substrate (pyruvate) and the cofactor (NADH). To note, 
most of these drug-like molecules inhibiting LDHA have 
been straightforwardly reviewed in two very recent and 
exhaustive articles (116, 117).

Although various LDHA inhibitors have been 
proposed as possible drugs, they only show a moderate 
efficacy and selectivity when administered alone. 
However, some of them exhibit high potential when used 
in combination with current drugs. Recently, Maftouh 
et  al. have showed that NHI-1 and -2 in combination 
with gemcitabine potentiated the antiproliferative and 
anti-invasive effects induced by the chemotherapeutic 
drug in pancreatic ductal adenocarcinoma (PDAC) cell 
lines (118). Moreover, it has been also shown that NIH 2, 
combined with the redox-sensitive anticancer drugs 
synergistically induced apoptosis via a novel p53/NAD 
(H)-dependent mechanism (119). In addition, oxamate 
used in combination with phenformin, a biguanide anti-
diabetic drug recently recognized to reduce cancer risk, 
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was shown to have a synergistic anti-cancer effect in a 
syngeneic mouse model (120). However, none of these 
inhibitors has been shown in clinical trials so far. Very 
recently, another promising LDH-5 inhibitor, GNE-140, 
which is a piperidine derivative generated by researchers 
at Genetech, Inc., has been demonstrated to be effective 
in inhibiting MiaPaCa-2 pancreatic cell proliferation with an 
EC50 of 0.25 μM (117). In addition, the high-throughput 
screening (HTS) of the Roche and Genentech chemical 
archives, with the use of a fluorescence based assay which 
monitored the disappearance of the NADH cofactor during 
enzymatic conversion of pyruvate to lactate, allowed to 
identify a novel class of 3-hydroxy-2-mercaptocyclohex-2-
enonecontaining inhibitors of human LDHA that effectively 
interact with its active site, by imitating the pyruvate 
substrate, and exhibit good pharmacokinetic properties 
after oral administration to rats. (116, 117, 121).

Finally, numerous natural product extracts have 
been tested for their ability to inhibit LDHA, too (117, 122). 
Among these, the results of fractionation and purification 
of bioactive compounds from the crude Spatholobus 
suberectus (SS) extract identify the epigallocatechin 
(EGC) as the most potent compound with anti- LDHA 
activity under both normoxia and hypoxia conditions (117, 
123). Currently, there is continuously new information on 
novel LDHA inhibitors that are being actively identified, 
designed and synthesized (116, 117, 124-126). Therefore, 
it could be expected that effective anti-LDHA agents will 
soon be successfully developed for clinical use.

6. SUMMARY AND PERSPECTIVES

Recently, there is an increasing interest in 
the bioenergetic features of cancer cells regarded as 
a very attractive area for developing novel therapeutic 
strategies in cancer therapy. At this regard, several 
preclinical investigations have indeed demonstrated that 
targeting aerobic glycolysis is an effective therapeutic 
approach. Among the enzymes involved in glycolysis, 
LDH is emerging as one of the most interesting 
molecular targets for the development of glycolytic 
inhibitors to possibly use in cancer therapy. In addition, 
LDH is considered as an important diagnostic marker, a 
prognostic factor and a predictive marker for response 
to therapy in cancer. LDHA is considered very relevant 
to cancer due to its role as a metabolic checkpoint in 
the cancer glycolytic pathway, its associations with 
the activation of some proto-oncogenes and the 
maintenance of invasiveness and metastatic potential, 
and its associations with resistance to chemo- and 
radiotherapy of cancer cells. Importantly, patients with 
complete lack of LDHA, due to homozygous gene 
mutations, have been described and do not show 
significant clinical symptoms under ordinary conditions, 
strongly suggesting that LDHA inhibition could be well 
tolerated in healthy cells and not accompanied by 
relevant systemic toxicity in patients. 

A number of effective LDH inhibitors have been 
identified. Although LDH is considered an intricate target 
for the development of inhibitors due to the characteristic 
of its active site (poorly accessible and highly polar) and 
the involvement of its cofactor NADH in several other 
enzymatic activities, pharmaceutical industries and 
academic institutions recently succeeded in identifying 
promising small molecules inhibitors. However, most 
of the active LDH inhibitors need to be extensively 
investigated on human tumor models to evaluate the 
complete therapeutic potential by LDHA inhibition in 
cancer treatment. Overall, the possible introduction of 
these compounds into the clinical practice will hopefully 
provide new opportunities for the treatment of cancer 
patients.
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