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1. ABSTRACT

Despite significant advances in the diagnosis 
and treatment of osteosarcoma in recent years, 
overall survival has remained low for over 2 decades. 
The standard diagnosis of osteosarcoma requires a 
combination of clinical presentation, radiologic studies, 
and pathologic tissue evaluation. A  typical “Codman’s 
triangle” in radiologic evaluation is vital in making correct 
diagnosis for middle or late stage of osteosarcoma. 
However, there is an actual demand for novel molecular 
markers with high sensitivity and stability for the diagnosis 
of early events of osteosarcoma and also the probability 
of recurrence and metastasis. Except that, some highly 
relevant gene mutations with these events could also 
provide valuable information regarding osteosarcoma 
protection. In this review, we will focus on the molecular 
markers which have been discovered in recent years 
with potential application of early stage and recurrence 
diagnosis and protection.

2. INTRODUCTION

Osteosarcoma displays a bimodal distribution 
with two peaks in the late adolescent and young adult 
period and after the 60s’ of life, respectively (1). Many 
evidences indicate an association between rapid bone 
growth and osteosarcoma, as an earlier age of onset 
of osteosarcoma in female adolescent and early adult 
than male counterparts and patients with osteosarcoma 
significantly taller than general population have been 
discovered (2,3). Moreover, 56% osteosarcomas occur 
around metaphyseal location of the knee (4).

The initiation of osteosarcoma is not quite 
clear. One possibility could be the radiation induced 
accumulative genetic mutation. Because it was noted 
that there was a link between radiation exposure 
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and osteosarcoma in female radium dial worker (5). 
High incidence of osteosarcoma in children treated 
by radiotherapy for solid tumor is also observed (6). 
During the progression stage, tumor cells will undergo 
uncontrolled proliferation through somatic mutation of 
some oncogenes such as AP-1 and tumor suppression 
genes such as p53 and retinoblastoma (Rb) genes (7,8). 
Then the proliferative osteosarcoma cells will interplay 
with local osteoblast and osteoclast through cytokines 
such as IL-6, IL-11, et al. to promote bone resorption by 
activating osteoclast (9,10). Meanwhile, osteosarcoma 
will degrade bone matrix through secreting MMP-2/
MMP-9, and undergo epithelial to mesenchymal (EMT) 
transition to facilitate their metastasis to surrounding 
soft connective tissue or long distance organ such as 
lung (11-13).

Therefore, based on the knowledge of the 
pathogenesis of osteosarcoma, it is necessary to find the 
genes and molecules including proteins and microRNAs 
which can regulate the proliferation and dormancy of 
tumor cells.

3. GENETIC REGULATION

Osteosarcoma is characterized by a high level 
of chromosomal instability (CIN) (14). CIN can be further 
categorized into numerical CIN (N-CIN) and structural 
CIN (S-CIN). N-CIN leads to copy number alterations 
of chromosomes, while S-CIN leads to chromosomal 
rearrangements, breakages, and mutations.

Maintenant, the major discovered mutations 
in osteosarcoma are TP53, RB1, and RECQL4. TP53 
mutation has been discovered significantly correlated with 
high levels of genomic instability in osteosarcoma (15). 
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Because p53 has important role in DNA repair, so its 
inactivated mutation will cause genomic instability. This 
genomic instability will cause other mutations. And if some 
mutations of cell cycle related genes happen, it will initiate 
the cancer. For example, in 2008, Seth et al. discovered that 
double deletion of pRb and p53 in osteoblast precursors 
(Osx1 Cre) can cause more severe osteosarcoma than 
p53 single deletion (16). However, one thing is noteworthy 
that in pRb single deletion mice, they have much lower 
ratio of osteosarcoma than p53 single knockout mice. It 
indicates that the proposed model of second mutation 
initiated tumorigenesis due to p53 inactivation does not 
work well in pRb case. Furthermore, this mechanism of 
this synergistic effect of p53 and pRb needs to be clarified.

The next issue is that if p53 is a good marker for 
clinical prognosis. However, some results are conflicting, 
and most of them are inconclusive or sample size is not 
big enough. For example, in Tsuchiya’s study in 2000, they 
discovered that in 21 osteosarcoma patients, the event-
free survival (EFS) was worse with TP53 alterations than 
without TP53 alterations (17). In another study in 1997, 
Papai et al. discovered a direct correlation between 
mutated p53 proteins and resistance to therapy based 
on their histological analysis of biopsy (18). However, 
in a 2004 meta-analysis study, it was shown that TP53 
status is not associated with the histologic response to 
chemotherapy, but it may be associated with decreased 
survival (19). Two very recent meta-analysis also support 
this point of view that p53 is an effective biomarker of 
survival in patients with osteosarcoma (20,21). However, 
it was shown in a multicenter study of 196 patients that 
p53 mutations cannot predict for metastasis in patients 
with high-grade osteosarcoma (22). Therefore, the 
mechanism how mutated p53 cause poor prognosis of 
osteosarcoma needs to be further investigated.

RB1 (retinoblastoma protein 1) is a major 
inhibitory regulator of the G1 to S phase progression 
in the cell cycle through its binding to E2F after 
its phosphorylation by cyclin dependent kinase 4 
(CDK4) (23). pRb not only regulates the cell proliferation, 
its deficiency can also inhibit the osteoblast differentiation 
of osteoprogenitor. (24) But the mechanism how pRb 
regulates this differentiation is still not very clear. It 
is discovered in another recent basic study that pRb 
deficiency leads to the N-cadherin loss and enhanced 
migration by an indirect consequence (25).

In clinic, the expression levels of both pRb and 
cyclin D1 have a clear correction with clinical outcome, 
suggesting that these parameters could be used as 
prognostic markers (26). But the relation between pRb 
mutation and clinical metastasis of osteosarcoma is still 
unknown.

RECQL4, a DNA helicase, has been implicated 
in DNA replication, DNA repair and recombination, and 

transcription of RNA (27,28). As RECQL4 gene product 
can suppress genetic recombination and ensure accurate 
chromosome segregation, its somatic mutation is 
frequently relevant with Rothmund-Thomson syndrome 
(RTS) related osteosarcoma (29,30). However, the 
specific mechanism is also not very clear.

There are also some other gene mutations 
involved in osteosarcoma. Mouse double minute 2 
homolog (MDM2), located in 12q13-15, can mediate 
TP53 ubiquitination and degradation through its E3 
ubiquitin ligase activity. It has been proved that MDM2 
gene amplification is highly associated with tumor 
progression and metastasis in osteosarcoma, but 
not in primary osteosarcoma (31). Other two recent 
studies reveal that COPS3, another component of the 
proteasome pathway targeting p53, has increased copy 
number in osteosarcoma (32,33).

4. SIGNALING REGULATION

Although genetic regulation contributes a lot to 
tumorgenesis of osteosarcoma, it is not easy to diagnose 
it based on genetic analysis because sometimes 
the genetic mutation happens in a somatic manner. 
Therefore, to check some important molecules in certain 
activated signaling pathways could be helpful as another 
way of osteosarcoma diagnosis.

Wnt signaling has an essential role in regulating 
bone formation and remodeling during embryonic 
development and fracture repair. Its abnormalities give 
rise to several pathological bone conditions, including 
abnormal bone mass, osteosarcomas and bone loss 
in multiple myeloma (34). The role of Wnt signaling in 
osteosarcoma is also a hot field. There are at least 4 Wnt 
signaling pathways have been extensively investigated: 
the canonical Wnt/b-catenin pathway, and the non-
canonical Wnt/Ca2+ pathway, Wnt/planar cell polarity 
(Wnt/PCP) pathway, and Wnt/protein kinase A (Wnt/PKA) 
pathway (35). The canonical Wnt pathway is initiated by 
the binding of appropriate Wnt ligands to the Fzs and 
LRP-5/6 co-receptor, and then the activated receptor 
complex will inhibit the degradation of b-catenin through 
the activation of intracellular protein, Dishevelled (Dvl) 
and inhibition of GSK-3b. The undegraded b-catenin 
will then accumulate and translocate to the nucleus to 
be in concert with members of the T cell factor/lymphoid 
enhancer factor (TCF/LEF) and activate the transcription 
of a wide downstream genes including c-myc and 
cyclin D1 (36).

In osteosarcoma, overexpression of Wnt ligands 
and Frizzled and LRP co-receptors are very common. 
For example, LRP-5 overexpression is significantly 
involved in osteosarcoma disease progression and 
metastasis. (37) A dominant-negative soluble LRP-5 can 
block the invasiveness of Saos-2 cells through reversing 
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the epithelial-to-mesenchymal transition (EMT) and 
together with reduced expression of metalloproteinase 
(MMP) 2 and 14. (38) The same group also proved the 
anti-tumor function of dominant-negative soluble LRP-5 
in vivo through an orthotopic xenograft model (39). As 
Wnt signaling pathway is tightly controlled by secreted 
antagonists that either bind Wnt receptors or directly bind 
Wnt ligands, these antagonists and Wnt proteins could 
be good indicators and even therapeutic reagents for 
osteosarcoma. Wnt inhibitory factor 1 (Wif-1), the secreted 
frizzled-related protein (SFRP) family, was recently 
shown to be epigenetically silenced due to promoter 
hypermethylation (40). Dickkopf (Dkk) family proteins 
(Dkk-1, Dkk2, and Dkk-3) that bind with high affinity to 
LRP-5 or LRP-6 are proved to have opposite functions 
in the progress and metastasis of osteosarcoma and 
Ewing sarcoma. Dkk-1 and Dkk-2 have pro-metastatic 
function and their elevated expression levels have 
been detected in both paediatric patients and mouse 
models (41,42). On the opposite, Dkk-3 can suppress 
tumorigenic potential and pulmonary metastasis in 
an orthotopic xenograft model of osteosarcoma (43). 
The expression level of b-catenin could also be a good 
indicator for the diagnosis of osteosarcoma and its lung 
metastasis, as its expression level is correlated with the 
invasiveness of osteosarcoma, and chemical inhibition 
of the Wnt/b-catenin signaling enhanced MTX mediated 
death of Saos-2 cells (44).

Except the canonical Wnt signaling pathway, the 
non-canonical Wnt signaling pathway also play important 
roles in osteosarcoma, though such investigations are not 
as many as canonical Wnt signaling pathway. Wnt5a is 
one commonly studied non-canonical Wnt ligand. Wnt5a 
and its co-receptor ROR2 expression level correlates 
with disease severity in osteosarcoma patients (45). 
Furthermore, this cell-autonomous cycling manner of 
Wnt5a signaling pathway has been proved to enhance 
the migration of osteosarcoma cells through several 
mechanisms including upregulation of chemokine receptor 
CXCR4  (46), upregulation of matrix metalloproteinase 
(MMP-13) (47), and improvement of EMT transition (48). 
For another non-canonical Wnt protein, the Wnt11, there 
is until now only 1 publication showing that Wnt11 does 
not express in 4 human osteosarcoma cell lines including 
U2OS, HOS, 143B, and Saos-2  (37). CD99, a 32kDa 
highly glycosylated transmembrane protein generally 
present in osteoblasts but lost in osteosarcoma, can 
increase contact strength and reactivate stop-migration 
signals through inhibiting c-Src and ROCK2 activity and 
recruiting N-cadherin and b-catenin to the adherens 
junctions (38). The downregulation of surface expression 
of CD99 could be a diagnostic marker for osteosarcoma.

The Notch pathway is a highly conserved 
regulatory signaling network involved in many 
developmental processes and several cancers. Abnormal 
activated Notch pathway can promote metastasis 

of osteosarcoma (49). Engin F, et al. discovered 
significant upregulation of Notch1 and Osterix in human 
osteosarcoma cell lines Saos-2 and primary human 
osteosarcoma tumor samples. Moreover, gamma-
secretase inhibitors or dominant negative Mastermind-
like protein (DN-MAML) can decrease osteosarcoma cell 
proliferation in vitro (50). However, in another study in 
the same year by Tanaka M, et al., they only discovered 
overexpression of Notch2 in the biopsy specimens 
using the same real-time PCR method; while the Notch1 
expression is downregulated (51). Although the role 
of Notch1 and Notch2 in osteosarcoma needs further 
investigation, the common discovery in both studies of 
the inhibitory effects of gamma-secretase inhibitors on 
the growth of osteosarcoma cells indicates that Notch 
signaling pathway is convincingly involved.

Hedgehog, a transmembrane receptor which 
is important for cell-cell conjunction, has been recently 
proved to be involved in osteosarcoma progression and 
metastasis. High expression levels of the Hedgehog 
ligand gene, IHH, and target genes, PTCH1 and GLI1 
are detected in most high-grade human osteosarcoma 
samples (52). GLI2 overexpression is also detected 
in human osteosarcoma biopsy. Its overexpression 
promotes mesenchymal stem cell proliferation and 
accelerated their cell cycle progression (53). Some 
hedgehog signaling pathway inhibitors have been 
proved to inhibit osteosarcoma progression and 
metastases. For example, cyclopamine targeting 
receptor Smoothened to inhibit Hedgehog pathway 
has been proved to inhibit osteosarcoma pulmonary 
metastases (54). By inhibiting GLI proteins, the ancient 
drug arsenic trioxide has been proved able to prevent 
osteosarcoma growth (55).

5. miRNA REGULATION

MicroRNA (miRNA) was initially identified in 
Caenorhabditis elegans in 1993(56). Numerous studies 
have demonstrated their important regulatory roles in tumor 
growth and migration in different types of tumor (57-60). 
A  number of recent studies also demonstrated the 
important roles of miRNA in osteosarcoma (61). Basically, 
according to their pathological functions, these miRNAs 
can be categorized into three groups: proliferation-
related miRNAs, metastasis-related miRNAs, and 
chemotherapy-related miRNAs.

In the proliferation-related miRNAs, some act 
as oncogene which is overexpressed in osteosarcoma, 
while some others act as tumor suppressor gene which is 
underexpressed. For example, a recent study revealed 
a combination of miRNA signatures for osteosarcoma 
diagnosis which include high expression of miR-181a, 
miR-181b, and miR-181c as well as reduced expression 
of miR-16, miR-29b, and miR-142-5p (62). However, the 
mechanism how these miRNAs work is still not clear. 
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miR-214 functions as an oncogene in osteosarcoma 
through direct inhibition of leucine zipper putative tumors 
suppressor 1 (LZTS1) (63). MiR-27a can function as an 
oncogene by targeting MAP2K4, which in turn inhibits 
cell proliferation and migration through the JNK/p38 
signaling pathway (64). The overexpression of miR-
802 is discovered in osteosarcoma tissues compared 
with adjacent normal tissues, and enforced expression 
of miR-802 is able to promote cell proliferation in 
U2OS and MG63  cells. During this process, p27, a 
negative cell-cycle regulator, is negatively regulated 
by miR-802. However, if this regulation is direct or 
not is still unknown (65). miR-128, a direct inhibitor 
of PTEN, is proved to enhance osteosarcoma cells 
MG63 and U2OS proliferation by activating PTEN/
Akt signaling pathway (66). Generally speaking, 
overexpressed molecules are much easier to be used 
as diagnostic markers than underexpressed molecules. 
However, much more miRNAs have inhibitory effects 
on proliferation in osteosarcoma cells, and their 
downregulation will promote the tumor cells to expand. 
For example, downregulation of miR-3928 can promote 
osteosarcoma growth by targeting ERBB3, IL-6R, and 
CDK6  (67). Through targeting Rho-associated protein 
kinase 1 (ROCK1), miR-145 can inhibit osteosarcoma 
cell proliferation and invasion. (68,69) By using miRNA 
microarray to compare the human osteosarcomas 
with normal human skeletal muscle, miR-133a and 
miR-133b expression level are found 135 folds and 
47 folds decrease respectively. Overexpression of 
miR-133b in U2OS and MG-63 osteosarcoma cell 
line by stable transfection can inhibit cell proliferation, 
invasion and migration by targeting Akt and FAK 
signaling pathway (70). Loss of miR-132 can predict 
poor prognosis in patients with primary osteosarcoma 
by directly suppressing cyclin E1 (71,72). MiR-542-3p, 
a p53 positive regulator, which stables p53 protein 
and inhibits cell proliferation, is downregulated in 
osteosarcoma (73). It could also be a diagnostic marker 
for osteosarcoma.

Except the proliferation-related miRNAs, 
there are also a lot of metastasis-related miRNAs 
in osteosarcoma. They will promote the invasion, 
migration, and metastasis of tumor cells. For example, 
Osaki M. et al. discovered the downregulation of miR-
143 correlates with the lung metastasis of human 
osteosarcoma cells probably via MMP-13 upregulation. 
But how miR-143 regulate MMP-13 is not indicated in 
this study (73). Furthermore, exosome-formed synthetic 
miR-143 is used to transfer the osteosarcoma cells, 
and proved to reduce the migration of osteosarcoma 
cells (74). MiR-218 can inhibit osteosarcoma cell 
migration and invasion by down-regulating MMP2 
and MMP9  (75). Although there have been already 
numerous studies on the regulation of EMT by miRNA, 
it is still blank of such studies on osteosarcoma. For 
example, in colon cancer, loss of miR-101 expression 

promotes Wnt/b-catenin signaling pathway and 
EMT (76). Ectopic overexpression of miR-374a 
promotes EMT and metastasis of breast cancer both in 
vitro and in vivo (77).

There are also some miRNAs which can 
regulate the resistance of osteosarcoma cells to 
chemotherapy. It has been found that in chemoresistant 
osteosarcoma samples, miR-33a is up-regulated and can 
down-regulate TWIST expression to inhibit the apoptosis 
inducing effect of TWIST. In MG63 cells, overexpression 
of miR-33a significantly decreases cisplatin-induced cell 
apoptosis (78). In the osteosarcoma tumor xenografts 
treated with chemotherapeutic agents (including 
doxorubicin, cisplatin and ifosfamide), miR-140 is 
identified high expression level. The chemotherapy 
resistant mechanism is p53 dependent and HDAC4-
mediated (79). MiR-215, through the suppression of 
denticleless protein homolog (DTL), induces a decreased 
cell proliferation by causing G2-arrest, leading to an 
increase in chemoresistance to MTX and TDX of 
osteosarcoma (80).

Circulating miRNA is the easiest molecule for 
diagnosis, however until now not too many circulating 
miRNAs are discovered to be ideal for the diagnosis of 
osteosarcoma and its metastasis. In 2013, Ouyang L, 
et al. defined a three-plasma miRNA signature as novel, 
non-invasive biomarker for osteosarcoma diagnosis. 
They found there was higher level of circulating miR-
21, and lower levels of miR-143 and miR-199a-3p in 
the serum of osteosarcoma patient. Circulating miR-21 
and miR-143 expression correlated with both metastasis 
status and histological subtype; while, miR-199a-3p levels 
only correlated with histological subtype (81). A  more 
recent study in 2014 by Tian et al revealed that plasma 
miR-34b was causally associated with osteosarcoma risk 
and related with its metastatic status, because miR-34b 
level in both plasma and local tissue are decreased in 
osteosarcoma patients (82).

6. CIRCULATING TUMOR CELL MARKER

Circulating molecules or cells are usually ideal 
targets for diagnosis due to their easier manipulation 
compared with the local molecules or cells. However, it 
is sometimes hard to find a circulating molecules or cells 
which are highly correlated with the specific disease. 
Sometimes, the content of the specific markers are 
too low in the circulation to be detected. Therefore, the 
sensitivity and specificity are the key issues for these 
markers.

Very recently, Li group discovered cell-surface 
vimentin (CSV) as an exclusive marker on sarcoma 
circulating tumor cells, which has high sensitivity and 
specificity (83). The same group also claimed in 2013 
that they developed a new antibody 84-1, which can 
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specifically target epithelial-mesenchymal transformed 
(EMT) circulating tumor cells with high sensitivity, though 
the studies for the characterization of the epitope for 84-1 
are still ongoing (84). As early as in 2000, a very interesting 
investigation tried to isolate the circulating tumor cells 
and made PCR reaction to detect osteosarcoma. In 
their results, 91% (10 of 11) osteosarcoma patients have 
significantly higher type I collagen mRNA level comparted 
with healthy subjects (85).

7. CONCLUSIONS AND PERSPECTIVES

The diagnosis of osteosarcoma is undergoing 
major changes, from the traditional “Codman’s triangle” 
evaluation method based on clinical presentation, 
radiologic studies, and pathologic tissue evaluation to the 
modern molecule-based way of evaluation. The original 
purpose of the investigation of these novel molecular 
markers is to help the diagnosis of the initiation of 

Table 1. Details of dysregulated miRNAs in osteosarcoma tumorigenesis, metastasis, and chemotherapy
miRNA Function Trend Target Reference

miR‑181a Positively associated with pathogenesis of 
osteosarcoma

Up Not known 62

miR‑181b Positively associated with pathogenesis of 
osteosarcoma

Up Not known 62

miR‑181c Positively associated with pathogenesis of 
osteosarcoma

Up Not known 62

miR‑16 Negatively associated with pathogenesis of 
osteosarcoma

Down Not known 62

miR‑29b Negatively associated with pathogenesis of 
osteosarcoma

Down Not known 62

miR‑142‑5p Negatively associated with pathogenesis of 
osteosarcoma

Down Not known 62

miR‑214 Enhance tumor cell proliferation and invasion Up Direct target LZTS1 63

miR‑27a Promote tumor cell proliferation and migration Up Direct target MAP2K4 64

miR‑802 Promote tumor cell proliferation Up p27 65

miR‑128 Promote tumor cell proliferation Up Direct target PTEN 66

miR‑3928 Inhibit tumor cell proliferation Down ERBB3, IL‑6R, and CDK6 67

miR‑145 Inhibit tumor cell proliferation, invasion, and migration Down ROCK1 68,69

miR‑133a Inhibit tumor cell proliferation, invasion, and migration Down Not known 70

miR‑133b Inhibit tumor cell proliferation, invasion, and migration Down Predict target BCL2L2, 
MCL‑1, IGF1R, and MET

70

miR‑132 Suppress tumor cell growth and proliferation Down Direct target CCNE1 71,72

miR‑143 Suppress tumor cell metastasis Down MMP‑13 73

miR‑218 Suppress tumor cell proliferation and migration Down Predict target TIAM1, 
MMP2, and MMP9

75

miR‑33a Promote tumor cell chemo‑resistance Up Direct target TWIST 78

miR‑140 Inhibit tumor cell proliferation and promote tumor cell 
chemo‑resistance

Overexpression in chemotherapy 
treated tumor cell

HDAC4 79

miR‑215 Suppress tumor cell proliferation and promote tumor 
cell chemo‑resistance

Overexpression in chemotherapy 
treated tumor cell

DTL 80

miR‑21 Circulating and Correlates with metastasis and 
histological grade

Up Not known 81

miR‑143 Circulating and Correlates with metastasis and 
histological grade

Down Not known 81

miR‑199a‑3p Circulating and Correlates with histological grade Down Not known 81

miR‑34b Circulating and Correlates with metastatic status Down Not known 82
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osteosarcoma, the prevention of the metastasis of late 
stage osteosarcoma, and the recurrence of dormant 
tumor cells. In general, these novel markers can come 
from 3 levels: the gene, the protein, and the miRNA. It is 
already known several gene mutations could be correlated 
with osteosarcoma such as P53, RB1, and RECQL4. 
However, sometimes these kinds of mutation are not easy 
to be detected, as these mutations only happen in somatic 
tumor cells. Therefore, it is more important to find some 
important and specific molecules involved in the tumor 
progression. There are many signaling pathways involved 
in the control of tumor cell proliferation. For example, the 
canonical and non-canonical Wnt/b-catenin signaling 
pathway (Summarized in Figure 1), and the Akt signaling 
pathway have been proved related to the proliferation of 
osteosarcoma. Moreover, the Wnt/b-catenin signaling 
pathway and the Notch signaling pathway have been 
proved related to the metastasis of osteosarcoma. 
However, there is also the same problem as the genetic 
marker has that these signaling pathway is only activated 
in the local lesion or the metastasis lesion. As a new field 
of investigation, the role of miRNAs as novel markers for 
diagnosis has been paid more attentions than genetic 
markers and signaling markers. And also novel miRNAs 
are found highly correlated with the progression and 
metastasis of osteosarcoma. (Summarized in Table  1) 
However, the limitation of ways of detection still exists. 

The more ideal way of diagnosis would be to find some 
circulating markers such as miRNA, cytokine, or other 
small molecules, or even sometimes the cells. However, 
such kind of efforts is far from satisfactory. There is still a 
long way to go in this field.
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