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1. ABSTRACT

Genome integrity maintenance is crucial for 
cell survival and for counteracting cancer onset and 
progression. Mammary cells invest great amount of 
energy in DNA repair, in order to avoid errors accumulation 
in DNA sequence. Nucleotide Excision Repair (NER) 
removes a broad spectrum of DNA damages, mainly 
bulky DNA lesions. Tissues of Head and Neck region are 
heavily exposed to bulky lesions inducing carcinogens, 
this making NER process of great interest in the field. 
Here we review the recent literature about NER in HNC 
and we also discuss the role played by NER in HNSCC 
in the chromatin context; to this aim we particularly 
focus on the role played by histones chaperon CAF-1, 
essential in restoring the chromatin structure following 
DNA replication and DNA damage repair, including NER. 
A better understanding of basic mechanisms underlying 
the DNA damage response, particularly involving NER, 
especially in the chromatin context, will provide us with 
new promising way to bypass the repair block, possibly 
becoming an unexpected mode of “transversal” control 
also of the proliferative deregulation, classically observed 
in HNSCC.

2. INTRODUCTION

For Head and Neck cancers we usually refer 
to tumors originating from nasal cavities and paranasal 
sinuses, pharynx (rinopharynx, oropharynx and 
ipopharynx), salivary glands, oral cavity and larynx. 
About 12,000 new cases of malignant head and neck 
cancers are diagnosed every year in Italy where these 
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tumors account for about 3% of all malignancies. The 
Italian incidence rate is 12 cases per 100,000 inhabitants, 
while in the whole Europe it is equal to 18 per 100,000 
inhabitants. 90% of all tumors of Head and Neck region 
are squamous cell carcinomas (HNSCC: Head and Neck 
Squamous Cell Carcinoma); the remaining 10% are 
melanomas, lymphomas, sarcomas and tumor of other 
histology as salivary gland tumors. Men are usually more 
frequently affected then women (ratio being about 6:1) 
with an average age ranging between 50 and 70  years 
old (salivary gland tumors and sarcomas usually hit 
younger patients). Most affected sites for squamous cell 
carcinomas are ipopharynx, oropharynx, rinopharynx 
and oral cavity. Head and neck cancers are a very 
heterogeneous group of tumors, for etiopathogenesis, 
histology, natural history and mutational status. 75% 
of Head and Neck cancers are directly related to the 
association between tobacco smoke habit and alcohol 
consumption (1). HPV infection (mainly HPV16 and less 
frequently HPV18) (2‑4) is at the basis of neoplastic 
transformation also in those cases where canonical risk 
factors do not apply. HPV related cancers are usually oro-
pharynx squamous cell carcinomas of younger population, 
not preceded by clinically evident preneoplastic lesions, 
mainly linked to the sexual habits (number of partners, 
oral sex). In US more about 70% of oro-pharyngeak 
cancers are estimated to be HPV-positive and tend 
to increase. HPV positivity is a favorable prognostic 
factor in terms of tumor behavior and of response to 
chemo and radio-therapy: HPV positive tumors, in fact, 
are usually more sensitive to chemotherapies and to 
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radiation therapy. One of the possible explanations about 
the different behavior between the HPV positive and 
negative HNSCC rely on the different pathogenesis: HPV 
proteins E6/E7 epigenetically inhibits cell cycle proteins 
Rb and p53 (in HPV positive tumors), while in alcohol 
and tobacco associated cancers inactivation of the 
tumor suppressors occurs mainly by genetic mutations. 
Recently, a possible third class of HNSCC has been 
described with the coexistence of high risk HPV strains 
and a documented alcohol and tobacco exposure, 
envisaging a synergic effect between the two factors (5). 
The EBV virus has also been associated with HNSCC 
affecting young people.

Fanconi anemia, a cancer-prone genetic disorder 
causing aplastic anemia, characterized by deficient 
DNA damage repair, has also been described to favor 
HNSCC. The mutation landscape of cancers of head and 
neck region reveals the extreme heterogeneity of these 
tumors (6). The molecular signature of these tumors show 
great variations depending whether the tumor is alcohol/
tobacco associated or HPV positive; in fact, HPV positivity 
inversely associates to TP53 mutations, moreover alcohol 
and tobacco associated tumors usually show more 
mutations than the HPV positive counterpart  (7). The 
most frequently mutated genes found in HNC are TP53, 
CDKN2A, PTEN, PIK3CA, HRAS and NOTCH1. It’s 
interesting to note that in head and neck region cancers 
there is a prevalence of mutations in tumor suppressor 
genes, rather than oncogenes, this making much more 
difficult to find new “drug-able” molecular targets to 
personalize treatments (6,8‑11). Staging of HNC commonly 
follows the UICC/AJCC guidelines (12). Tumors at initial 
stages are commonly treated with surgery or radiotherapy 
with similar results for some tumor sites (such as glottic 
larynx). Only exceptions are rinopharyngeal tumors whose 
treatment is mainly radiotherapy eventually associated to 
chemotherapy. Advanced stage tumors (stage III and IV) 
are mainly treated by surgery, expecially oral cancers, 
although in last decades combined approaches with 
chemo and radiotherapy have been studied in order to 
improve the efficacy of radiotherapy. Several clinical 
studies have assessed the efficacy of chemotherapy and 
its use is highly recommended. The combined treatment 
with platinum based chemotherapy and radiotherapy 
has to be considered the standard treatment in locally 
advanced head and neck squamous cell carcinomas 
(III  and IVA-B) (13). Chemotherapy has also to be 
considered the choice treatment in operated patients, with 
positive margins and/or excapsular nodal extension, and 
with good performance status (14‑17). Several clinical 
studies have considered a platinum-based chemotherapy 
as neoadiuvant therapy before the locoregional surgical 
treatment. To date, the neoadiuvant chemotherapy has 
a defined role only to the aim of preserving the organs 
in case of ipopharyngeal-laryngeal tumors (18‑22). Up to 
date we don’t know many biomarkers predictive of therapy 
response. The viral etiology (HPV for oropharyngeal and 

EBV for rinopharyngeal tumors) is a known prognostic 
and predictive marker (2‑5,23). Recentely mutational 
status of TP53 gene has been associated to prognosis in 
patients treated by surgery; prognosis is, in fact, affected 
by the presence and by the kind of mutation (24,25). 
EGFR hyperexpression has been shown to be a negative 
prognostic factor in terms of response to radiotherapy (26) 
as well as tobacco smoke and BMI, even in case of 
HPV positivity, this underlining the importance of life 
styles in modifying the therapy response (26). Overall, 
a better understanding of HNSCC tumor biology and the 
uncovering of more reliable prognostic and predictive 
biomarkers is needed in order to improve HNSCC 
patients response to therapy and quality of life. To this aim 
an interesting and actually debated field of investigation 
is the involvement of DNA damage response pathways 
in the pathogenesis, prognosis and response to therapy 
of HNSCC. As a matter of the facts, the DNA damage is 
strictly tied to cancer being cause of cancer, therapeutic 
strategy and responsible of many of side effects of current 
therapeutic strategies. The DNA damage response, on the 
other side, is an early anticancer barrier for many human 
solid tumors and mutations in DNA damage response 
pathways genes are often cancer prone.

3. GENOME STABILITY MAINTENANCE 
AS A CRITICAL DETERMINANT FOR 
CELL SURVIVAL AND NEOPLASTIC 
TRANSFORMATION

Our genome is constantly under attack. 
Threats to the integrity of the genetic information derive 
from a multitude of causes coming both from outside 
(e.g.  exposure to tobacco-smoke constituents, sunlight, 
dietary constituents) and inside the cell (e.g. free radicals 
associated with oxygen metabolism). Each cell of living 
organisms spend a large amount of energy in order to repair 
the DNA damages and failure to accomplish this important 
task might result in a variety of diseases. In particular, the 
maintenance of genome integrity is a big issue in cancer 
field (27). The negative effects that DNA damage is able 
to elicit on a single cell and, in a larger scale, on the entire 
organism, can be schematically divided in short-term 
effects and long-term ones. In the short term, damages to 
DNA might affect gene transcription and can elicit a DNA 
damage response; the signalling pathways that activate 
in response to DNA damage usually drive to cell cycle 
arrest, to allow damage to be repaired, or, whenever the 
damage is too extended to be repaired, to cell death by 
necrosis or by apoptosis or to cell senescence. In the 
long term, unrepaired or faulty repaired mismatches or 
DNA breaks can lead to an unfaithful DNA replication and 
the genetic alteration that follows is very often cause of 
neoplastic transformation (28).

As said, we recognise exogenous and 
endogenous sources of genotoxic stress: exposure to 
ionizing radiation, UV light and several chemicals, as well 
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as exposure to cellular metabolites that are constitutively 
produced in a living cell (such as oxygen free radicals), 
might causes DNA damage in the form of breaks or 
adducts. Cell survival and the maintenance of genome 
integrity, especially after the exposure to a genotoxic insult, 
rely mainly on the efficiency of DNA damage sensing and 
repair machineries. Those genes whose products are 
involved in i) detecting DNA damage and activating the 
repair machinery, ii) directly repairing damaged DNA, 
and iii) inactivating or intercepting mutagenic molecules 
before they have damaged the DNA (29) are called 
caretaker genes and they are acknowledged as tumour 
suppressors (30). Many cancers are characterized by 
caretaker genes loss during progression; this loss might 
be achieved via gene deletion, inactivating mutations or 
epigenetic repression. Although genomic DNA is by itself 
an unstable molecule (31), genome instability, meaning 
an extreme predisposition to accumulate mutations, is 
an hallmark of cancer (29). Cancer cells are, indeed, 
characterized by an increased rate of mutation (32).

4. ENVIRONMENTAL CAUSES OF CANCER

By definition, “carcinogen” is considered any 
factor capable to favor or to cause the onset of cancer. 
Most of the chemicals carcinogens we know today are 

genotoxic compounds. The genotoxic compounds alter, 
directly or indirectly (by their metabolic derivatives) 
the DNA molecules.(by adduction, substitution, base 
oxidation). Very few non-genotoxic cancerogens are 
known, whose are thought to induce epigenetic alteration 
of gene expression. The typical metabolic processing of 
a cancerogen is depicted in Figure 1. For example, the 
Benzo(a) pyrene, a classic DNA-damaging carcinogen 
in tobacco smoke and in the ambient environment, is 
biologically activated, in vivo, by cytochrome P450 and 
peroxidases, forming highly toxic electrophilic and free-
radical reactive intermediates such as BPDE, that can 
irreversibly damage DNA by non-covalent intercalation 
and covalent bounding or oxidation (33,34). One pathway 
of BPDE covalent action leads to formation of covalent 
adduct primarily with the exocyclic amino-group of gGUO; 
the second pathway is a DNA-dependent hydrolysis of 
the diol-epoxide to tetrols (35‑37). The determination of 
DNA adduct structures has been of critical importance 
to determine the repair mechanisms of BPDE-dependent 
DNA lesions, for what NER proved to be the pathway of 
choice (38).

DNA lesions are immediately followed by 
DNA repair (39). The choice of a specific DNA repair 
pathway usually depends on the type of DNA damage; 

Figure 1. Removal of toxic compounds.
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the relationship between lesion type and mechanism 
of repair could be summarize as follow: mismatches 
or structural abnormalities at the replication forks are 
repaired by the mismatch repair pathway; DSBs are 
repaired by homologous recombination; damaged 
bases are repaired by BER; NER occurs in case of 
bulky DNA lesions which are exclusively repaired by 
nucleotide excision repair (40). The majority of physical 
and chemical carcinogens (except for ionizing radiations 
and most alkylating agents) produce bulky lesions. The 
vast majority of cancers of head and neck region (nasal 
cavity, sinuses, lips, mouth, salivary glands, throat, or 
larynx) are squamous cell carcinomas, beginning in the 
squamous cells that line the moist surfaces inside the 
head and neck. Tobacco use (including “passive smoke”), 
together with alcohol consumption and HPV infection, 
is an important risk factor for head and neck cancers, 
with a particular predilection of oral cavity, oropharynx, 
hypopharynx and larynx districts (41,42). Head and 
neck cancers account for approximately 3 percent of all 
cancers in the United States, where it has been estimated 
that about 52,000 individuals of both sexes have 
been diagnosed of HNC in 2012 (43). Epidemiological 
studies have correlated tobacco smoking habit with less 
efficient DNA repair (44‑46) indeed it has been shown 
also experimentally that a less efficient DNA repair in 
circulating lymphocytes correlates with an increased risk 
of developing HNC, in a dose-dependent manner (47). 
Lymphoblastoid cell lines obtained from HNC patients 
had minor alterations in DNA repair function, however the 
mutagen sensitivity correlated with NER capacity  (48). 
Correlation between reduced NER associated DRC (DNA 
repair capacity) and increased risk to develop cancer has 
been reviewed elsewhere (40).

5. NUCLEOTIDE EXCISION REPAIR (NER)

Mismatches between the strands of DNA are 
among the major targets for repair systems and are usually 
corrected by excision repair. Base excision repair (BER) 
systems directly remove the damaged base and replace 
it in DNA, while nucleotide excision repair (NER) systems 
excise a sequence that includes the damaged base or 
bases replacing it with a stretch of newly synthesized 
DNA. As a general consideration, we might say that most 
cells possess four different categories of DNA repair 
system: Direct, Excision, Mismatch and Recombination 
repair systems. The “Direct” repair systems act directly 
on damaged nucleotides, converting each one back to its 
original structure. The “Excision” repair involves excision 
of a segment of the polynucleotide containing a damaged 
site, followed by resynthesis of the correct nucleotide 
sequence by a DNA polymerase. The “Mismatch” repair 
corrects errors of replication, again excising a stretch of 
single-stranded DNA containing the mutated nucleotide 
and then repairing the resulting gap. Finally, the 
“Recombination” repair is used to correct double-strand 
breaks (49).

Nucleotide excision repair removes a broad 
spectrum of DNA damages excising and resynthesizing 
a region of a polynucleotide (50,51). The NER process 
differs from base excision repair because it is not 
preceded by selective base removal and a longer 
stretch of polynucleotide is excised; showing, therefore, 
a much broader specificity. Chromatin rearrangements 
occur during NER; the first evidence came from the 
in vivo observation that the nuclease accessibility of 
DNA is modulated during UV-induced DNA synthesis 
in mammalian cells (52,53). We recognize two types 
of NER: the transcription coupled nucleotide excision 
repair (TC-NER), and the global genome nucleotide 
excision repair (GG-NER). TC-NER is strictly associated 
to transcription and its activation involves the RNA 
polymerase II while GG-NER activation is unrelated to 
transcription. The repair via nucleotide excision of the 
transcribed strand of double helix is generally much 
faster than untranscribed regions of the genomes maybe 
because in the first one act both the TC-NER and the 
GG-NER (51).

At the molecular level, we could summarize 
the core events of NER mechanism as follow (54): (I) 
Whenever a DNA lesion, distorting the double helix, 
occurs, XPC–hHR23B senses the distortion in GG–
NER leading to conformational alterations of the DNA. 
In transcription-coupled repair (TC–NER) lesions 
are detected by elongating RNA Pol II blocked by, 
e.g.,  CPDs. (II) Once XPC–hHR23B binds to distorted 
helix, it attracts at lesion TFIIH (and possibly XPG). TFIIH 
creates a 10-  to 20-nucleotide opened DNA complex 
around the lesion by virtue of its helicases XPB and 
XPD; this step requires ATP. Once the helix has been 
opened by helicases, XPC–hHR23B may be released at 
this or one of the subsequent stages. In TC-NER CSA, 
CSB, TFIIH, XPG, and possibly other cofactors displace 
the stalled Pol II from the lesion, which now becomes 
accessible for further repair processing. (III) XPA and 
RPA stabilize the 10- to 20-nucleotide opening, create by 
TFIIH, and drive the position of other factors. XPA binds 
to the damaged nucleotides, RPA to the undamaged DNA 
strand. The RPA stretching formation plays an important 
role in full open complex formation stabilized by XPG. 
(IV) XPG, positioned by TFIIH and RPA, makes the 3′ 
incision, while ERCC1–XPF, positioned by RPA and XPA, 
makes the second incision 5′ of the lesion. (V) Finally, the 
dual incision is followed by gap-filling DNA synthesis and 
ligation.

For a comprehensive list of NER involved 
genes please refers to Table 1. The actual knowledge 
about the NER process is based on both in vitro and 
in  vivo experiments; the first ones take advantages of 
the ability of yeast, xenopus, drosophila or eukaryotic 
cell free extracts to ricapitulate in vitro all the aspects of 
DNA damage repair process by using as DNA source 
tipically a molecule of naked DNA previously exposed to 
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DNA damage agents (e.g. UVC light) (55-58). Although 
this approach has unveiled many of the molecular details 
of NER apparatus and function, it is of great interest to 
consider the NER process within the chromatin context, a 
condition closer to what we may expect to happen within 
a living cell; the in vivo experiments, carried out mainly 
in cultured cells, have provided most informations to this 
point (59‑61). An insight on how GG-NER works in the 
context of chromatin has been recently provided by Yu 
et al. showing how GG-NER drives UV-induced chromatin 
remodelling by controlling histone H3 acetylation levels 
in chromatin (62). The hierarchical activation of NER 
machinery proteins follows the so-called ARR model, a 
complex network of chromatin modifying, remodelling, 
assembly factors, signalling pathways and repair proteins, 
postulated by Smerdon in 1991 (63,64). ARR stands for 
Activation, Repair and Restore; this model recognises, 
in fact, three consecutive steps in the repair process: 
sensing the damage with subsequent activation of the 
machinery, the repair process itself and a recovery step 
during which chromatin is repacked and reconducted 
to the original state (59,63,65,66). General ARR model 
involves Chromatin remodelling/Modification factors 
(that allow the repair factors the access to chromatin), 
the Repair machinery (responsible for the repair itself), 
and the Chromatin assembly factors (responsible for the 
restitutio ad integrum of the chromatin).

6. EVIDENCES OF NER INVOLVEMENT IN HNC

The risk of squamous cell carcinoma of Head 
and Neck has been associated with poor DNA repair 
phenotype in response to benzo(a) pyrene diol epoxide, 
a carcinogen released by tobacco smoke (47,68‑70). 
The efficiency of NER DNA repair capacity is significantly 
affected by polymorphisms in NER genes (71). During 
last decade, several published research article reported 
a significant correlation between polymorphisms of 
NER genes and increased risk of HNSCC (72‑90); 
fewer reports can be found about relationship between 
NER genes polymorphisms and progression of H&N 
cancer  (88), outcome of advanced-stage tumors (91), 
response to radiotherapy (especially in combination with 
RAD 51 polymorphisms) (92) and to cisplatin-based 
chemotherapy (93), progression of the disease  (94). 
Genetically determined NER DNA repair capacity may 
modulate not only cancer risk, but also prognosis: 
an increased risk of second primary malignancy in 
patients with SCCHN has been associated to NER 
genes SNP (95), as well as susceptibility to recurrence 
of HNSCC (96). Sometimes, a single polymorphic allele 
proved not to be associated with an increased risk 
of HNSCC, on the contrary a combination of alleles, 
such as having both ERCC1 809CC and ERCC2/XPD 
23591A alleles, statistically associates to increased risk 
of SCCHN  (81). Association with NER genes SNPs, 
cigarette smoking and risk of Head and Neck cancer has 
also been evaluated (97‑99). Expression studies have also 

Table 1. Human NER associated genes as 
reviewed in (67). Nucleotide excision repair (NER) 
associated genes

Nucleotide 
excision 

repair (NER) 
associated genes
(XP = xeroderma 
pigmentosum)

Gene associated function Locus

XPC Binds DNA distortions
XPC, RAD23B, CETN2

3p25.1.

RAD23B 9q31.2.

CETN2 Xq28

RAD23A Substitutes for RAD23B 19p13.1.3.

XPA Binds damaged DNA in preincision 
complex

9q22.3.3.

DDB1 Complex defective in XP group E
DDB1, DDB2

11q12.2.

DDB2 (XPE) 11p11.2.

RPA1 Binds DNA in preincision complex
RPA1, RPA2, RPA3

17p13.3.

RPA2 1p35.3.

RPA3 7p21.3.

TFIIH Catalyzes unwinding in preincision 
complex

ERCC3 (XPB) 3’ to 5’ DNA helicase 2q14.3.

ERCC2 (XPD) 5’ to 3’ DNA helicase 19q13.3.2.

GTF2H1 Core TFIIH subunit p62 11p15.1.

GTF2H2 Core TFIIH subunit p44 5q13.2.

GTF2H3 Core TFIIH subunit p34 12q24.3.1.

GTF2H4 Core TFIIH subunit p52 6p21.3.3.

GTF2H5 (TTDA) Core TFIIH subunit p8 6p25.3.

CDK7 Kinase subunits of TFIIH
CDK7, CCNH, MNAT17. Chromatin 
dynamics at DNA replication and 
DNA damage sites.

5q13.2.

CCNH 5q14.3.

MNAT1 14q23.1.

ERCC5 (XPG) 3’ incision 13q33.1.

ERCC1 5’ incision DNA binding subunit 19q13.3.2.

ERCC4 (XPF) 5’ incision catalytic subunit 16p13.1.2.

LIG1 DNA ligase 19q13.3.2.

NER‑related

ERCC8 (CSA) Cockayne syndrome and 
UV‑Sensitive Syndrome; Needed 
for transcription‑coupled NER
ERCC8, ERCC6, UV‑sensitive 
syndrome

5q12.1.

ERCC6 (CSB) 10q11.2.3.

UVSSA (KIAA1530) 4p16.3.

XAB2 (HCNP) XAB2 19p13.2.

MMS19 Iron‑sulfur cluster loading and 
transport

10q24.1.
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been performed in order to correlate abundance of NER 
proteins to survival in HNSCC (100), and as a marker of 
susceptibility to HNSCC (101). An increased expression 
of NER proteins has been found in metastases of 
SCCHN, probably contributing to resistance to cisplatin-
based chemotherapy (102). A significant association has 
been found between risk of oral premalignant lesions and 
SNPs of several NER genes, this further confirming the 
strict relationship between impairment of NER process 
and development of HNSCC (103).

7. CHROMATIN DYNAMICS AT DNA 
REPLICATION AND DNA DAMAGE SITES

Great attention has been paid on the role of 
chromatin dynamics as critical determinants in many 
nuclear events and in pathological conditions such 
as tumor development and progression (104,105). 
Whichever is the metabolic process involving the DNA 
molecule, it should always be considered in the chromatin 
context. Within the cell, the nuclear DNA is tightly 
packaged in the chromatin structure. The nucleosome 
is the fundamental unit of chromatin and it is composed 
of an octamer of the four core histones (H3, H4, H2A, 
H2B), around which 147 base pairs of DNA are wrapped. 
DNA packaging follows several orders of wrapping and 
is fundamental for the maintenance of the genome 
stability regulating the DNA-based activities as DNA 
replication, transcription and repair. Chromatin structure 
poses structural constraints likely to challenge vital 
processes like DNA replication and repair(106); detection 
and repair of DNA lesions, as much as recognition 
and activation of replication origins and progression of 
replication forks, are in fact some of the processes than 
more than others have to cope with the several orders 
of chromatin packaging  (106,107). The relationship 
between the nucleosomes and the DNA damage repair 
process is controversial: first (in vitro) studies showed, 
in fact, an inhibitory effect of nucleosomes on the repair 
process  (108) while in vivo studies seem to show the 
opposite (109,110), thus confirming the importance of a 
chromatin remodeling activity.

A current challenge is to understand how to 
integrate chromatin structure within the scheme of DNA 
repair and how it is associated with maintenance (or loss) 
of epigenetic information (64). Together with the genome 
instability, in fact, every living cells has to cope also with 
the epigenomic instability, whose consequences are not 
less dramatic than the first one. A major unresolved issue 
related to histone dynamics within damaged chromatin is 
whether preexisting nucleosomal histones are replaced 
by new histones within damaged chromatin or if they are 
recycled. It remains unknown how restoration of chromatin 
structure is achieved in vivo. Histone chaperons plays 
a critical role in maintaining and regulating chromatin 
structure driving histones deposition. Among the histone 
chaperones, the best known is CAF-1 (Chromatin 

Assembly Factor-1) a heterotrimeric complex, formed 
by p48, p60 and p150 subunits, that plays a pivotal role 
in the epigenetic regulation of chromatin assembly and 
participates in the DNA damage repair, too. During the S 
phase of the eukaryotic cell cycle, the newly replicated 
DNA is rapidly assembled into chromatin. CAF-1 
mediates the deposition of newly synthesised histones 
H3 and H4 onto nascent DNA and their assembly into 
nucleosomes, by PCNA association (111). CAF-1 was 
first described as a chromatin protein for which a DNA 
repair role was subsequently discovered (112,113); it 
is required for nucleosome assembly coupled to DNA 
repair and experiments in yeasts have shown that yeast 
mutants are UV sensitive (114,115).

Another histone chaperone involved in 
chromatin assembly is Asf-1 that has been described 
to synergize with CAF-1 following DNA replication or 
NER (116).

8. CAF-1 AND NER

Most of our knowledge about NER system 
is about activation and repair, less is known about the 
restore step. Recovery from Nucleotide excision repair 
mechanism involves several chromatin modifiers and, 
among them, the most studied is CAF-1. Of particular 
interest is to consider the role of CAF-1 during the 
NER, emphasizing the recovery process since CAF-1 
drives histones repositioning after repair. CAF-1 
complex, initially described as a replication-dependent 
chromatin assembly factor (117,118), has been widely 
associated to UV-repair by NER. Studies in vitro have 
shown that the complex is required for the assembly of 
nucleosomes around a repair site in a PCNA-dependent 
manner (65,113), CAF-1 and PCNA are, in fact, recruited 
to chromatin in UV-damaged cells (119); in particular, a 
phosphorylated form of CAF-1 is recruited to chromatin 
following UV exposure, as demonstrated in cell 
cultures (119). S. Cerevisiae lacking CAF, are sensitive to 
UV light (114,115). In order to drive chromatin assembly, 
CAF-1 complex binds post-translational modified histones 
H3.1. and H4, in particular has been shown that CAF-1 
is associated with acetylated forms of histones H3.1. and 
H4 (117,120). A proficient CAF-1 function and NER are 
required for a stable de novo incorporation of histone 
H3.1. at sites of UV damage. Following deposition, 
histones H3 and H4 are rapidly deacetylated and 
although CAF-1 has never been demonstrated to act as 
a deacetylase, the p48 subunit of CAF-1 has been shown 
to associate with deacetylated activity (118). Several 
histones post-translational modifications identify sites of 
DNA within the chromatin, among them are ubiquitylated 
H2A foci (121). CAF-1 localizes to gH2AX sites and 
knockdown of CAF-1 p60 abolished CAF-1 as well 
gH2AX foci formation. Moreover, CAF-1 p150 was found 
to associate with NER factors TFTIIR,1q23, RPAp70, 
PCNA in chromatin. Successful NER of genomic lesions 
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and prompt CAF-1 mediated chromatin restoration link 
gH2AX incorporation to the sites of damage repair within 
chromatin (122). In S. Cerevisiae Rad53 controls the 
degradation of excess histones, in order to avoid their 
accumulation in cells (123); in mammalian cells, the 
CUL4-DDB-ROC1 ubiquitin ligase recently was found 
to mediate UV-induced H3 and H4 ubiquitination and 
facilitate nucleosome eviction (124).

9. CAF1 AND CANCERS OF HEAD AND NECK

CAF-1 involvement in several human cancers 
has been well documented. A large body of literature 
demonstrates that CAF-1 overexpression correlates with 
higher aggressiveness and poor prognosis. The nuclear 
expression of CAF-1 p60 is particularly increased in 
multiple types of cancer, proportionally to their adverse 
clinical behavior (125‑129). Expression of CAF-p60 
and p150 subunits, evaluated by IHC, has been found 
increased in tongue SCC (125) and salivary gland 
tumors (129); moreover, the over-expression of CAF-1 p60 
subunit, together with cancer stem cell marker expression 
(eg Nestin) predicts the metastasizing behavior of oral 
cancer (130). CAF-1 subunits IHC expression in head 
and neck cancers has been conveniently investigated 
also by TMA technique (130).

The peculiar function of Chromatin assembly 
factors make them ideal candidates for a new therapeutic 
approach to treat malignant neoplasia; in particular, 
CAF-1 p60 has recently emerged as a promising target, 
inhibition of which could lead to cell death in aggressive 
tumors (125,127,129). Epigenetic alterations, especially 
the histone modifications, influence cellular metabolism 
and mainly affect the chromatin structure. The epigenetic 
inheritance includes DNA methylation, RNA-mediated 
silencing and histone modifications, although DNA 
methylation and histone acetylation are among the 
most frequent epigenetic modifications observed both 
in normal and neoplastic cells, the disruption of any of 
these three distinct and mutually reinforcing epigenetic 
mechanisms leads to an inappropriate gene expression, 
resulting in cancer development and other ‘epigenetic 
diseases’ (131,132). Chromatin assembly factors, such 
as CAF-1, are crucial for cell survival and to preserve the 
integrity of the genome. In the present review we focused 
mainly on the role of CAF-1 in the NER process in the 
chromatin environment; we specifically focused on the 
restore process, that in the hierarchical ordered events 
of the NER repair process, is the only chance the cell 
has to recover from the cell cycle checkpoints activation 
and reload the normal cell cycle machinery, following the 
restitutio ad integrum of the nuclear chromatin. Failing to 
do that means dramatic consequences to the cell fate. 
A better understanding of basic mechanisms underlying 
the DNA damage response, particularly involving 
nucleotide excision repair, especially in the chromatin 
context, will provide us with new promising way to bypass 

the repair block, possibly becoming an unexpected 
mode of “transversal” control also of the proliferative 
dysregulation, classically observed in HNSCC.
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