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1. ABSTRACT

Matrix metalloproteinases (MMPs)are a family
of zinc dependent endopeptidases whose main function
is to degrade and deposit structural proteins within the
extracellular matrix (ECM). A dysregulation of MMPs
is linked to vascular diseases. MMPs are classified
into  collagenases, gelatinases,  membrane-type,
metalloelastase, stromelysins, matrilysins, enamelysins,
and unclassified subgroups. The production of MMPs
is stimulated by factors such as oxidative stress,
growth factors and inflammation which lead to its up- or
down-regulation with subsequent ECM remodeling.
Normally, excess activation of MMPs is controlled
by their endogenous inhibitors, tissue inhibitors of
metalloproteinases (TIMPs). An imbalance of MMPs
and TIMPs has been implicated in hypertension,
atherosclerotic plaque formation and instability, aortic
aneurysms and varicose vein wall remodeling. Also,
recent evidence suggests epigenetic regulation of some
MMPs in angiogenesis and atherosclerosis. Over the
years, pharmacological inhibitors of MMPs have been
used to modify or prevent the development of the disease
with some success. In this review, we discuss recent
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advances in MMP biology, and their involvement in the
manifestation of vascular disease.

2. INTRODUCTION

Vascular diseases are the leading cause of
morbidity and mortality worldwide. In general, vascular
disease relates to pathological states of the circulatory
system including arteries, vein, capillaries, lymph
vessels, and blood disorders which affects circulation.
One of the major manifestation of vascular disease
is atherosclerosis, a plaque build-up containing fat,
cholesterol, and other substances within the arterial walls.
Over time, the plaque hardens leading to narrowing of the
arterial lumen which ultimately decreases blood flow to
the tissue or organ. The consequence of atherosclerosis
can progress to a spectrum of serious health problems
including hypertension, stroke, heart attack and death.

The inner lining of blood vessels is composed of
endothelial cells (ECs) and damage to ECs by pathogens
or oxidative radicals lead to inflammatory response which
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triggers leukocyte adhesion and transmigration into the
vessel wall. As a result, extracellular matrix regulatory
peptidases, matrix metalloproteinases (MMPs) become
activated leading to vascular smooth muscle cells
(VSMCs) proliferation, cell-to-cell tight junction protein
alteration and vascular leakage, elastin and collagen
derangement, and vascular dysfunction. This review,
summarizes the impact of uncontrolled MMP activation
in the vasculature and highlights their regulatory
mechanisms involved in maintaining physiological
function and deviations leading to pathophysiology.

3. GENERAL CONCEPTS OF MMPS

In 1962, Gross and Lapiere discovered an
enzyme capable of degrading collagen during the
metamorphosis of the anuran tadpole tail (1). The
enzyme, a collagenase was found to play a significant
role in the normal development and growth in amphibians
thus maintaining a balance between tissue synthesis and
degradation (1). From this conclusion arose the general
concept of MMPs which has been applied continuously
in various studies including homeostasis and tissue
remodeling under pathological conditions. The MMPs in
turn are regulated by a group of enzymes, tissue inhibitors
of metalloproteases (TIMPs). The general concept
dictates that a balance between TIMPs and MMPs
regulates tissue remodeling, repair, and resorption.
A dysregulation of the MMP/TIMP ratio may lead to
unchecked MMP activity leading to adverse events in
tissue homeostasis (2). There are currently 25 MMPs
with substrate specificity for a broad spectrum of fibrous
structural proteins (2). Many of these substrates are
found within the extracellular matrix (ECM) surrounding
the blood vessels (3). Indeed, dysregulated MMP activity
has been observed in a number of diseases including
atherosclerosis, fibrosis, heart failure, emphysema, and
chronic obstructive pulmonary disease (COPD)where
ECM alteration is a predominant feature (2,4). Since
MMP activity is known to play a prominent role in vascular
diseases a potential strategy counter would be to reduce
MMP activity to ameliorate ECM remodeling.

4. STRUCTURE AND BIOSYNTHESIS

X-ray crystallography and NMR spectroscopy
have been used for elucidation of MMP structure in
the last 20 years. Prior to this, thermolysin, a bacterial
endopeptidase, and astacin, a crayfish endopeptidase,
were used to design MMP inhibitors and subsequent
structure elucidation. However, the models lacked the
information necessary to carry out rational drug design,
and the catalytic domain of MMP-1 became the first of
the group to undergo structural studies using multiple
isomorphous replacements at a resolution of 2.4
Angstroms (5). MMPs have three conserved domains;
(i) zinc-containing catalytic domain; (ii) pro-peptide on
the amino terminus; (iii) hemopexin-like domain at the

C-terminus (Figure 1). The catalytic domain has two
zinc ions and at least one calcium ion. Of the zinc ions,
only one ion (Z1)is catalytic (2). MMP-23 does not have
a catalytic domain (2). The hemopexin-like domain
is called as such because of its sequence homology
to hemopexin, a plasma protein involved in heme
binding and transport (2). MMPs are a family of zinc
endopeptidases present in the extracellular matrix (ECM)
or membrane (2). Sequence alignment has confirmed
that they belong to a superfamily of zinc peptidases
known as metzincins. Among all the MMPs described so
far, 25 MMPs have been discovered where MMP-4,-5,
and -6 are encoded by MMPs can be either membrane-
bound or secreted (2,6,7). Membrane-type MMP is often
referred to as simply MT-MMPs (2).

All MMPs are secreted and cleavage of the
signal sequence yields a zymogen inactivated by a
highly conserved prodomain displaying the consensus
sequence PRCGVPDV (Figure 1). This prodomain is
often called a switch loop as it contains Cys92 whose
thiol coordinates with Z1 in the proenzyme (2,8). The
polypeptide linker connecting the catalytic domain to the
prodomain can undergo furin cleavage, proconvertase
action, sheddase action, or auto-activation to yield the
active enzyme (2).

5. TYPES OF MMPS AND THEIR
INVOLVEMENT IN DISEASES

MMPs are further divided into subgroups based
on their substrate preference (Figure 2). Blood vessels
are known to be under the control of hormonal, neuronal,
and hemodynamic input. Since the blood vessels are
surrounded by ECM, dysregulation of MMP activity
may lead to chronic vascular remodeling and vascular
disease (9). Table 1 displays the vascular events
associated with specific MMPs.

5.1. Collagenases

MMP-1, -8 -13 and -18 are collagenases which
mainly cleave fibrillar collagen types |, Il and Ill. In addition,
these collagenases exhibit specificity for other substrates
such as gelatin, casein, aggrecan, laminin, versican,
perlecan, fibronectin, and tenascin (10,11). High levels
of MMP-1 have been reported in varicose veins (12). In
spontaneously hypertensive rats, DeLano and Schmid-
Schonbein showed that cell membrane receptor cleavage
by MMP-1 was associated with insulin resistance (13).
Elevated MMP-1 and -8 activity in the mesentery were
observed in rat models of acute venous hypertension (12).
In the same study, upstream of the venous pressure
increased vascular endothelial growth factor receptor-2
(VEGRF2)expression was observed, and became
more elevated with MMP inhibition (12). In human
carotid atheroma, angiotensin Il receptor 1 blockage
significantly reduced MMP-1 and -8 concentrations
within atheroma suggesting the involvement of these
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MMPs are generally secreted as zymogens
where the prodomain (PRCGVPDV)
maintains the enzyme inactivity by
interacting with the sole catalytic zinc.
The zymogen becomes activated when
furin cleaves the RXRRR site.

Fibronectin-like
Type Il domain (Fib1-3)
in Gelatinases only:

MMP-2
MMP-9

Zn2+ Hemopexia- All MMF’S withthe
like domai exception of MMP-

All MMPs have the RXRRR furin-specific
cleavage site including MMP-23 which
lacks the prodomain

PRCGVPDV

7,-23, and -26

in2+

Linkage to plasma
Allmembrane-type MMPs

Figure 1. Schematic of generalized structure of MMPs. The Prodomain has a
the pro-enzyme. Although MMP-23 has the cleavage site, it is the only one th
consisting of two Zn?* ions where one is purely structural, while the other is

I
' membrane
|
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GPI
Plasma membrane Trans- Anchor Plasma membrane
membrane
domain
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Cytoplasmic MMP-25
Transmembrane
Helix
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cleavage site at RxRRR which activates the subsequent autocatalysis of
at lacks a prodomain. The catalytic domain is common across all MMPs
involved in catalytic activity. The catalytic zinc interacts with a cysteine

residue (cysteine switch)within the prodomain to remain inactive. The Hemopexin-like domain and catalytic domain are connect by a linker peptide,
and is observed at the C-terminus of all MMPs except for MMP-7,-23, and -26. Its sequence homology resembles that of hemopexin, a protein with
heme-binding capabilities. It enhances substrate recognition and specificity in stromelysins and collagenases, but not required for elastase activity in
metalloelastase. Lastly, TIMP: proenzyme interactions are facilitated by this domain in gelatinases. The Fib1-3s are fibronectin-like type Il domains found

only in gelatinases.

MMPs in plaque stability (14). Recent findings suggest
that M1 macrophage-mediated MMP-13 expression
induced neointima formation after vascular injury in
eNOS knockout mice, and that MMP-13 is involved in
vascular disease (15). Protease-activated receptor-1
(PAR1)is a G protein-coupled receptor and MMP-13
has been demonstrated to cleave PAR1 resulting in the
activation of G-protein signaling pathway in restenosis
and atherothrombotic diseases (16). In addition, MMP-
13 is an interstitial collagenase and has been shown
to have significant renal expression related to ECM
remodeling during progressive renal diseases (17,18).
In a recent study, we reported that increased expression
of MMP-13 in mouse glomerular ECs were mediated by
homocysteine, a non-protein amino acid and vascular
risk factor (19). Using pharmacological MMP-13 inhibitor,
Quillard et al showed that the accumulation of collagen in
the plaque is associated with resistance to rupture (20).
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Although the expression of MMP-18 has been reported in
a variety of human cell lines, it has not been associated
with any disease (21,22).

5.2. Gelatinases

MMP-2 and MMP-9 are gelatinases highly
expressed in varicose veins (9). Increased MMP-9
activity has been demonstrated in the mesenteric veins
of acutely hypertensive rats (12). In a meta-analysis
focusing on characterizing the expression profile of
low grade inflammation in patients with coronary artery
disease, MMP-9 levels were found to be elevated
suggesting its use as a potential biomarker, however,
further studies are required to conclude the causality of
low grade inflammation in vascular diseases (23).

The receptor activation of NF-kB was studied
by using receptor activator of nuclear factor kappa-B
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Figure 2. Subgroup classification of MMPs.

ligand (RANKL) /Osteoprotegerin ratio in a cohort study
consisting of patients with severe carotid artery stenosis
and was observed to correlate directly with MMP-9
activity (24). Hydroxytyrol is commonly found in olive
oil and is associated with cardioprotection. It has been
suggested that this molecule inhibits monocyte activation
of cyclooxygenase 2 which generates eicosanoids
capable of suppressing MMP-9 activity (25). The proposed
mechanism of action is inhibition of the protein kinase C
alpha and beta 1 pathways conferring anti-atherosclerotic
and anti-inflammatory properties (25). High serum MMP-9
is associated with increased intimal thickness and plaque
instability (26). Tumor necrosis factor-induced activation
of eNOS along with MMP-9 and protein kinase B
activation are markers for endothelial dysfunction which is
mitigated by treatment with apigenin, an estrogen receptor
agonist (27). The formation of calcified aortic valve is
influenced by a number of cardiac risk factors, molecular
signaling pathways, and hemodynamics (28,29). A model
for fluid shear stress (FSS) showed increased ECM
degradation due to elevated MMP-9 and MMP-2 activity
was associated with FSS (30). In patients suffering from
cardiac disease, increased expression and binding of
CDA40 ligand/receptor has been associated with activation
of MMP-9 and pro-angiogenesis (31). The upregulation of
soluble CD40 ligand (sCD40L)occurs via CD40/CD40L/
TRAF axis and the stimulation of sCD40L has been
shown to induce the phosphorylation of p38 MAPK and to
increase the release of MMP-9 in endothelial progenitor
cells (31). In a recent study, vitamin C deficiency directly
correlated with stress-induced cardiac damage which was
associated with increased activity of MMP-2 and -9 (32).
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The cardiac matrix was shown to regulate
physiological processes involved in angiogenesis,
hypertrophy, and cardiac fibrosis through the differential
microRNA profile (33). A recent review article reports the
current mechanistic understanding on the effects of reactive
oxygen/nitrogen species effect on MMP-2 expression (34).

MMP-2 was also shown to induce
VSM relaxation in the inferior vena cava of rats
leading to venous dilatation, varicose veins and
insufficiency (35). Treatment with L-NG-nitroarginine
methyl ester (L-NAME) and indomethacin showed that
elevated levels of nitric oxide (NO) or prostacyclin was
not involved because inhibition of nitric oxide synthase
(NOS) and cyclooxygenase did not stop vascular smooth
muscle (VSM) relaxation (8,35). Iberiotoxin treatment
was successful in stopping VSM relaxation through the
action of blocking large conductance Ca?"-activated K*
channels, suggesting a role in the VSM hyperpolarization
pathway (8).

In patients with chronic ischemic stroke
it has been demonstrated that decreased plasma
concentrations of MMP-2 and homocysteine were more
closely associated with intracranial atherosclerosis (ICAS)
than extracranial atherosclerosis (ECAS) suggesting that
MMP-2 may play a role in the development of ICAS (36).
In another clinical study, Shimizu et al reported the
progression of intracranial large artery atherosclerosis
(ILA)in 12.5% patients with acute ischemic stroke,
and these patients exhibited decreased MMP-2 and
increased MMP-9 along with increased IL-6 in their
serum (37). Although the authors did not conclude on
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Table 1. MMPs in vascular health and disease

Type Enzyme Other name (s) Associated vascular events (Ref.)
Collagenases MMP-1 Interstitial collagenase Venus hypertension (10)
Fibroblast collagenase Carotid atheroma (14)
Insulin resistance (13)
MMP-8 Neutrophil collagenase Carotid atheroma (14)
MMP-13 CLG3; MANDP1; Neointima formation (198)
Collagenase-3 Restenosis/atherothrombosis (16)
Renal Disease (17, 18)
MMP-18 Collagenase-4 Not known
Xenopus collagenase
Gelatinases MMP-2 Gelatinase A ICAS, thrombosis, heart and renal disease (12,36,39,197)
MMP-9 Gelatinase B Hypertension (12)
Carotid stenosis (25)
Cardiac and renal disease (31,197)
Stromelysins MMP-3 Stromelysin-1 Inflammatory bowel disease (44)
MMP-10 Stromelysin-2 Inflammatory bowel disease (44)
Tumor growth and progression (46)
Microvascular disease in diabetes (47)
Muscular dystrophy (48)
MMP-11 Stromelysin-3 Mammary gland development (49)
Membrane type MMP-14 MT1-MMP Lung tumor (51)
Neuroinflammation (53)
Neointima formation (54)
Pressure overload (59)
Macular degeneration (64)
Hypertension (66)
MMP-15 MT2-MMP Inflammatory disease (71)
MMP-16 MT3-MMP HSP and deep vein thrombosis (72,73)
MMP-17 MT4-MMP Tumor growth and metastasis (74)
MMP-24 MT5-MMP Deep vein thrombosis (73)
MMP-25 MT6-MMP Abdominal aortic aneurysm (75)
Matrilysins MMP-7 PUMP1 Myocardial infarction (77)
Kawasaki disease (80)
Coronary artery disease (81)
Hypertension (83,87)
MMP-26 Matrilysin-2 Wound healing (88)
Endometase cerebral amyloid angiopathy (90)
Enamelysin MMP-20 Enamel metalloproteinase No report
Metalloelastase MMP-12 Macrophage metallo-/elastase Atherosclerosis (92,99)
(MME or ME) Aortic dissection (96)
Retinopathy (101)
Intracerebral hemorrhage (102)
Peripheral vascular damage (104)
COPD (108)
Deep vein thrombosis (73)
Unclassified MMP-19 RASI-1 Thoracic aortic aneurysms (110)

Cerebral amyloid angiopathy (90)
Rheumatoid arthritis (112)
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Table 1. (Continued)

Type Enzyme Other name (s) Associated vascular events (Ref.)
MMP-21 Xenopus MMP (XMMP) Melanoma development (113)
Tissue remodeling/embryogenesis (114,115,117)
MMP-23 MMP-23A/B Thrombosis (73)
Reproductive system (11)
MMP-27 Epilysin Not known
MMP-28 Epilysin Left ventricular remodeling (125)
Soft tissue edema (72)

COPD, Chronic Obstructive Pulmonary Disease

Abbreviations: CLG3, collagenase-3; MANDP 1, Metaphyseal anadysplasia 1; ICAS, Intracranial atherosclerosis; HSP, Henoch—Schonlein purpura;

the role of MMPs in this study, it is possible that both
MMPs may have role in ILA progression along with IL-6.
It is also known that carotid artery atherosclerotic plaque
rupture can lead to thromboembolism and stroke. In fact,
Heo et al conducted a study to determine the relationship
between the expression of MMP-2 and -9 in patients
with atherosclerotic plaque instability. Their findings
demonstrated a significant correlation between increased
expression of MMP-2 and -9 and cap rupture suggesting
their involvement in plaque instability (38).

Cell-to-cell gap junction proteins play a pivotal
role in vascular remodeling and disease progression. In a
pressure overload rodent model, our group demonstrated
that gap junction proteins, connexins-37 and -43 were
decreased in TIMP-2 knockout mice with ascending aortic
banding (AB), a model of pressure overload-induced left
ventricular dysfunction and heart failure (39). In addition,
decreased expression of pro-angiogenic MMP-2, VEGF
and increase in anti-angiogenic factors exacerbated
abnormal left ventricular remodeling in these animals
suggesting a possible relationship between MMP-2,
connexins-37 and -43 in heart failure (39).

Unlike gap junction proteins, caveolae are lipid
rafts within plasma membrane and contains caveolins
which are involved in endocytosis, transcytosis and
signal transduction in vascular health and disease.
In bleomycin-induced caveolin-1 knockout mice,
Shivshankar et al demonstrated that MMP-2 and -9
expression was reduced and this was associated with
attenuated pulmonary injury and collagen deposition in
caveolin-1 knockout mice (40). On the other hand, loss
of caveolin-1 has been reported to upregulate MMP-2
and -9, tight junction proteins, and enhanced blood brain
barrier (BBB) permeability in focal cerebral ischemia
and reperfusion injury (41). These above experimental
evidences suggest that gap junction proteins and
collagenases (MMP-2 and -9) may have a role in BBB
permeability as observed in caveolin-1 knockout mice
where one modulates another and vice versa leading
to vascular pathogenesis. Furthermore, our group has
demonstrated that hyperhomocysteinemia enhanced

cerebrovascular permeability through activation of
MMP-9 and increased the formation of fibrinogen-p-
amyloid complex within the brain (42). Additionally,
increased cerebrovascular permeability and memory
loss was also observed with increased MMP-9 activity
which was ameliorated by MMP-9 ablation (43).

5.3. Stromelysins

Stromelysin-1, -2, and -3 subcategorize MMP-3,
MMP-10, and MMP-11 respectively. Among them, MMP-3
and -10 are intestinal proteases, and are established key
players in the development of ulcers in inflammatory
bowel disease (44). In addition, although in chronic
human hypertension elevated activity of MMP-3 has been
reported (45), MMP-10 experimentally has been shown
to regulate tumor cell migration, invasion and EC tube
formation (46). In a recent report, Toni ef al documented
that increased circulating MMP-10 was associated with
increased microvascular disease risks including diabetic
retinopathy in type 1 diabetes (47). In addition, MMP-
10 has been reported to play a critical role in muscle
regeneration during injury and muscular dystrophy (48).
Using a MMP-11-deficient mice model, Tan et al showed
that during postnatal mammary gland development
ductal tree, alveolar structure and milk production were
reduced suggesting a paracrine function of MMP-11 (49).
MMP-11 is a negative regulator of adipogenesis which
reduces and even reverts adipocyte differentiation, and
has been shown to require correct collagen IV folding for
fat tissue cohesion and adipocyte function (50).

5.4. Membrane-type MMPs

MMP-14, -15, -16, -17, -24 and -25 are
membrane type or membrane bound enzymes.
MMP-14 was the first MMP discovered possessing a
transmembrane domain cloned from lung tumor cells
conferring their invasiveness and metastasis (51).
A study focusing on ischemia-reperfusion in the spinal
cord injury of rats reported that TIMP-2 binding to MMP-2
activates MMP-14 (52). Furthermore, MMP-14 has been
found to be involved in neuroinflammation (53). In another
study, elevation of MMP-14 and MMP-2 correlated with
abnormal aortic remodeling in sheep fetus development
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under hypoxic conditions. Furthermore, aortic intimal
proliferation was associated with increased expression
of cell adhesion molecule, E-Selectin suggesting
interaction between endothelial cells and leukocytes
(54).

In diabetic retinopathy, MMP-14 induced MMP-2
activation has been associated MMP-2 interaction with
integrin and promotion of apoptosis leading to impaired
retinal pericyte survival (55). In an in vitro study using
VSMCs, MMP-14 induced ApoE degradation was
associated with migration of VSMCs in both lipid-free and
lipid-loaded treatment (56). Further, proteomic studies has
shown that ApoA1, a lipid-free lipoprotein is a substrate
of MMP-14 and more susceptible to cleavage than the
lipid-loaded lipoprotein suggesting that degradation of
high-density lipoprotein (HDL)can severely hamper lipid
metabolism and possibly induce vascular disease (57).
In salt-sensitive rats, elevation of MMP-14 was seen in
late phase of chronic hypertension and left ventricular
remodeling (59).

The ischemia-reperfusion (IR)model was
applied to the left rat lung, and showed upregulation of
several MMPs, including MMP-2 and MMP-9. Uninhibited
protease activity was observed during the early phase
of reperfusion which was demonstrated to arise from
plasma via protein extravasation instead of de novo
synthesis within the pulmonary tissue. Preconditioning
rats with NO was shown to mitigate protease activity
suggesting the mitigation IR injury (58). In another study,
IL-6 induced upregulation of MMP-14 has been reported
to contribute in carotid artery plaque formation involving
Raf-MEK-ERK1/2-AP-1 pathway leading to ECM collagen
degradation (61). In group X secretory phospholipase
A2-deficient double knockout mice treatment with
angiotensin Il failed to induce MMP-2, -13,-14 and was
associated with decreased progression of abdominal
aortic aneurysms in this model suggesting a pathogenic
role for MMP-14 (62). Elevated MMP-14 has been
observed in early phase venous thrombosis. However,
its role in thrombus formation or resolution has not been
defined (63). In age-related macular degeneration,
MMP-14 and basigin mediated increase in MMP-2 activity
was associated with ECM dysregulation and sub-retinal
pigment epithelium deposits (64).

MMP-14 has been shown to cleave brain-
specific angiogenic inhibitor-1 to yield vasculostatin-40
a potent angiogenesis inhibitor (65). Early stage
hypertension is associated with increased MMP activities
including MMP-14 and enhanced NAPDH oxidase activity
suggesting that tissue remodeling occurs from the onset
of hypertension and is linked to oxidative stress (66).
This study further suggests that vascular remodeling
associated with the early phase of hypertension may be
mitigated through the administration of MMP inhibitors or
antioxidants (66).

In hepatic ischemia reperfusion injury (IRI),
fibronectin- a4p1 integrin interaction with macrophages
leads to increased MMP-9 and -14 levels worsening
the injury (67). Using a peptide, connecting segment-1,
CS-1 the authors showed that the levels of both
MMPs decreased offering protection to the liver (67).
Furthermore, the pharmacological inhibition of p38 MAPK
pathway via SB203590 also mitigated the MMP-14
expression suggesting the involvement of this pathway
in hepatic IRI (67).

In tumor pathology, angiostatin mediated
inhibition of angiogenesis was found to be dependent
on MMP-2 and MMP-14 expression (68). This was
associated with an increase in hypoxia-induced VEGF
which was sufficient in protecting against angiostatin-
induced apoptosis (68).

In another study, osteopontin upregulation
directly correlated with MMP-14 expression in a rat
model of balloon-injured carotid artery suggesting
a pathogenic role. One study showed that MMP-14
expression levels increased with respect to osteopontin
upregulation in balloon-injured rat carotid arteries
suggesting that osteopontin may be involved in the
signaling leading to MMP-14 expression (69). The
study suggested that osteopontin may be a potential
target for avoiding arterial restenosis (69). Sirtuin-1,
deficiency in mice was shown to decrease MMP-14
expression promoting a fibrotic phenotype which was
associated with vascular dysfunction and diminished
angiogenesis (70).

There is limited literature on the role of
MMP-15 in vascular diseases. One study reported
the upregulation of MMP-15 in chronic inflammatory
diseases and malignant tumors (71). It is reported that
VEGF-A upregulates ADAMSTS-1 (a Disintegrin And
Metalloproteinase with Thrombospondin motifs-1)and
increases the development of large ‘mother’ vessels in
human cancers (71). In the above study, VEGF-A was
found to upregulate MMP-15 and ADAMTS-1 which
together contributed to pathological angiogenesis (71).

MMP-16 levels were reported to be upregulated
in patients with Henoch—Schénlein purpura (72).
Another study focusing on the MMP expression profile in
traumatic deep vein thrombosis (TDVT)in rats reported
low expression of MMP-16 and -24 in early thrombotic
stage but was upregulated during the resolution
stage (73). The role of MMP-17 in vascular disease has
not been described so far, however, it has been reported
to stimulate tumor growth and facilitate a permissive
microenvironment for metastsis (74).

MMP-25 expression was shown to be

downregulated in the aortic wall of patients suffering
from abdominal aortic aneurysm after the administration
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of doxycycline (75). Furthermore, increased MMP-
25 expression was observed in classically activated
macrophages, and increased mRNA expression was
observed in alternate activation of macrophages (76).

5.5. Matrilysins

MMPs-7 and -26 are matrilysins. MMP-7 has
been shown to be involved in adverse left ventricular
remodeling post-myocardial infarction and proteomic
analysis revealed fibronectin and tenascin-C as its
substrate (77). Thyroid cancer-1 gene was suggested
to activate MMP-7 and endothelial growth factor
downstream of the Wnt/B3-catenin signaling pathway to
enhance non-small-cell lung cancer in patient (79).

In patients with Kawasaki’'s disease, increased
expression of integrins a4 and aM on macrophages and
myofibroblasts were associated with increased MMP-7
activation and collagen type 1 a1 expression in coronary
artery stenosis (80).

In another study involving coronary artery
disease patients, the expression of MMP-7, osteopontin,
IFN-gamma, and osteopontin were found to be increased
suggestingits potential use as biomarkers (81). MMP-7 has
been reported to be increased by over 100-fold in patients
with atherosclerotic carotid plaques and associated with
plaque instability (82). In addition the upregulation of
MMP-7 correlated with overexpression of inflammatory
genes, RANKL and CD68 (82). In spontaneously
hypertensive rats, the increase in MMP-7,-9 and elastase
expressions has been demonstrated to cleave ICAM-1
in the glomeruli leading to renal inflammation (83). Using
a protease-activated receptor 1 antagonist, F16688,
Chieng-Yane et al demonstrated that downregulation of
MMP-7 and TNF-alpha levels mitigated post angioplasty
restenosis of carotid artery in rats (84). Similarly, using
RNA interference against MMP-7 and TACE, Odenbach
et al demonstrated mitigation of MMP-2 mediated
angiotensin-ll-induced cardiac pathology (85). Taken
together, the above studies suggest a significant role
for MMP-7 in various vascular pathologies. It is known
that B2 adrenergic receptor (B2 AR)agonists mediate
vasodilatation of blood vessels (87). In rats, when MMP-7
and -9 were injected into the superior mesenteric artery
the diameter of arterioles and venules in the mesentery
were reduced and these effects have been attributed to
MMP-7 and -9 mediated cleavage of 62 AR (87).

A study focusing on endothelium regeneration
post-vascular injury reported a decrease loss of
pertussis toxin-induced endothelial derived relaxation
factor mechanisms as well as an increase in MMP-7
expression (86).

In wound healing, MMP-26 expression
is associated with chronic wound healing (88).
In an in vitro study using human macrophages,

Krishnatry et al observed that acute nitroglycerin
exposure decreased MMP-26 expression along with
testican-1, integrin o-1, thrombospondin-3, fibronectin-1
suggesting that nitroglycerin modulates ECM by changes
in the activities of proteases (89). Furthermore, MMP-
26 was found to be associated in patients with cerebral
amyloid angiopathy (90).

5.6. Enamelysin

MMP-20 is a protease secreted during teeth
development and functions mainly in the deposition
of minerals in the dental matrix. There is not reported
literature on its vascular effects.

5.7. Metalloelastase

MMP-12 is a metalloelastase originally
discovered in alveolar macrophages of cigarette
smokers (91). In a mouse model of brachicephalic artery
atherosclerosis, MMP-12 was found to be detrimental
to plaque stability (230). Using a MMP-12 inhibitor,
RXP470.1, Johnson et al demonstrated a significant
reduction in plaque formation, necrosis, calcification and
macrophage apoptosis. Furthermore, this was associated
with increased smooth muscle cell: macrophage ratio
leading to a loss of thickness of fibrous plaque and
slowing of atherosclerosis (92).

Henoch-Schonlein  purpura (HSP)is a IgA
mediated immune complex disease characterized by small
vessel vasculitis of the skin, gastrointestinal tract, kidneys,
joints and rarely the respiratory and central nervous
system. Increased MMP activity has been implicated
in the pathogenesis of HSP (93). In a recent study,
patients with HSP receiving steroids showed negative
correlation of MMP-12 suggesting a role of this MMP-12
in HSP (72). Further, a recent study identified MMP-12
as a potential biomarker in patients with Stanford-A Acute
Aortic Dissection (94). In a mice model of angiotensin-II
induced abdominal aortic aneurysm, 3, 4-Benzopyrene,
a compound present in cigarette was found to increase
macrophage infiltration, upregulation of MMP-2, -9 and -12
and apoptosis of vascular smooth muscle cells (95). Further,
MMP-12 levels were found to be elevated in patients with
aortic dissection and coronary artery disease suggesting its
use as a potential biomarker and effect of treatment (96).

In patients with abdominal aortic aneurysm
(AAA), elevated leptin, a hormone involved in ECM
degradation was associated with increased MMP-
12 (97). Further, when ApoE-/- mice were treated with
local leptin, the expression of MMP-12 and MMP-9
increased by several fold which was associated with
medial degeneration of aorta suggesting a link between
leptin and AAA (97). MMP-12 ApoE-/- mice increased
levels of MMP-12 and exacerbated degeneration of the
aortic wall in Ang-Il-induced abdominal aortic aneurysm
was detected which further demonstrated enhanced
degeneration upon endogenous leptin induction (97).
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Osteopontin, an atherosclerotic factor, can be
cleaved by MMP-12 into an N-terminal and C-terminal
fragment where the former is associated with high-risk
carotid plaque formation in hypertensive patients (98).
In another clinical study carotid atherosclerotic plaques
were found to be associated with MMP-12-expressing
foam cells and increased MMP-12 is linked to plaque
instability (99,100).

Using MMP-12 knockout mice, Li et al
demonstrated decreased macrophage infiltration in
oxygen-induced retinopathy (101). Furthermore, itreduced
adverse neovascularization and promoted nonpathological
revascularization of the retina (101). Increased MMP-12
has been associated with disruption of blood brain barrier
following intracerebral hemorrhage (102). Furthermore, in
a neonatal hypoxic-ischemic brain injury, increased MMP-
12 expression was observed in neurons suggesting its
participation in immature brain injury (103).

Elevated MMP-12 was observed in systemic
sclerosis patients and associated with the classical
symptoms of scleroderma including peripheral vascular
damage (104). Aortic dilation induced by congenital
bicuspid aortic valves is associated with increased MMP-
12 levels among other MMP and TIMP levels (105). Spleen
tyrosine kinase leads to JNK and p38 signaling leading
to glomerular injury which enhances pro-inflammatory
expression of MMP-12 (106). Certain MMP-12 haplotype
are associated with elevated risk of aneurysm in patients
suffering from Kawasaki disease (107). Mice susceptible
to atherosclerosis showed cigarette smoke-induced
COPD vascular effects as well as increased activity of
MMP-12 (108). Furthermore, pentraxin-3, a modulator
of inflammation, was upregulated upon cigarette smoke
as well as an increase in MMP-12/TIMP-1 ratio (109).
Expression of MMP-12 was found to be elevated in deep
vein thrombosis in rats (73).

5.8. Unclassified MMPs

Some MMPs such as, MMPs-19, -21, -23, -27
and — 28 remain uncategorized. In patients with tricuspid
aortic valves, elevated MMP-19 has been associated
with thoracic aortic aneurysms (110). Furthermore, a
human study has revealed immunoreactivity against
MMP-12 in cerebral blood vessels in cerebral amyloid
angiopathy (90). Astudy focusing on the acute and chronic
manifestations of myelin oligodendrocyte glycoprotein-
induced experimental autoimmune encephalitis in
mice showed that VEGF levels directly correlated with
demyelination of lesions which was associated with
increased MMP-19 (111). MMP-19 has been extracted
from the synovium of patient suffering from rheumatoid
arthritis and was found to be localized to smooth muscle
cells in the media of blood vessels (112).

Since its original description in ovarian serous
tumors, the role of MMP-21 has now expanded to include

invasiveness in breast cancer cells and early melanoma
development (113). Apart from tumor progression,
MMP-21 activity is associated with embryogenesis
(114,115,117). Also, MMP-21 may be a marker for
keratinocytes as demonstrated by a study which showed
increased MMP-21 upon keratinocyte differentiation
in cell culture (116). Increased MMP-21 expression
was suggested to play a role in invasiveness of human
colorectal cancer and progression in human gastric
cancer (118, 119).

MMP-23 is encoded by two genes, MMP23A and
MMP23B (120, 121). MMP23A is a pseudogene which is
duplicated on chromosomal region 1p36.3, while MMP23B
is the protein encoding gene. In a study involving DVT
in rats, the expression of MMP-12 was found to be low
during thrombus formation but increased during resolution
suggesting a wound healing role than pathological (73).
MMP-23 expression has been described in reproductive
tissues such as, testis, prostate and ovaries however,
their exact role remains unknown (11).

MMP-27 was first discovered as epilysin
expressed in response to injury, and in testis and
keratinocytes (122). The role of MMP-27 in vascular
disease has currently not been identified. MMP-27
is expressed in B-cells, bone and kidney tissues of
rats (123). In humans, MMP-27 has been implicated
in osteogenesis (231). Although mutations in MMP-27
have been identified in thyroid cancers, it has not been
suggested to play a role in tumorigenesis (124).

The role of MMP-28 in vascular diseases is yet to
be defined. However, in a recent study MMP-28-deficient
mice worsened left ventricular remodeling to the point of
rupture as a result of inhibiting the type 2 subpopulation of
macrophages (125). In a clinical study focusing of MMP/
TIMP profile in children with Henoch-Schénlein purpura,
decreased MMP-28 expression was observed in soft tissue
edema and the levels of MMP-19 was decreased during
convalescent stage compared to its level in the acute
stage (72). Treatment with steroid mitigated the changes in
MMP and TIMP expression in these patients (72).

6. REGULATION OF MMPS IN VASCULAR
DISEASES

MMP expression and their biological function
are regulated by a variety of factors that include biological
effectors, endogenous inhibitors, epigenetic regulators,
miRNAs and pharmacological agents. A summarized
chartis presented in Table 2. Below, we discuss how these
factors regulate MMPs in normal and pathophysiological
conditions.

6.1. Biological activators of MMPs

Oxysterols, a promotor of oxidative stress
through Nox2 activation, has been shown to enhance the
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Table 2. Regulators of MMPs and examples of their targets

Category Type Class Name Target MMPs (Ref.)
Biological Activator Oxidized derivatives of Oxysterols MMP-9 (126)
cholesterol
Inducer Transcription factor E2F1 MMP-9, -16 (127)
Natural Inhibitor TIMPs TIMP-1 MMP-8, -9 (135,144)
TIMP-2 MMP-2, -14 (199-201)
TIMP-3 MMP-9 (202)
TIMP-4 MMP-2, -9 (139-143)
Epigenetic Modulator Methylation Dystrophin MMP-2 (150)
miRNAs Gene regulator |- - MMP-2, -9, -11, -13 (158,162,164-167,169)
Pharmacological Inhibitor Anti-cancer drug Batimastat MMP-2, -14 (203-205)
Marimastat MMP-1, -2, -3, -7, -9 (172,206)
llomastat MMP-2, -9 (207, 208)
Cipemastat MMP-2, -9 (205)
Inhibitor Statins Cerivastatin MMP-1, -2, -3, -9 (209-211)
(cholesterol lowering drug)
Simvastatin MMP-1, -3, -9 (209,212-216)
Lovastatin MMP-1, -3, -9 (209,216)
Fluvastatin MMP-9 (217-219)
Inhibitor Hydroxamates R-phosphonate MMP-8 (220)
Sulfone hydroxamates MMP-1, -2, -9, 13 (221)
Inhibitor Sulfa drugs Sulphonamides MMP-8, -12, -13 (222)
Unclassified Inhibitor Recombinant C-TIMP-2 MMP-2 (182)
Inhibitor Pyrimidine 5-hydroxy, 5-substitute- MMP-2, -9 (183)
pyrimidine-2,4,6,-triones
Inhibitor Methyl rosmarinate (R)-10n MMP-1 (223)
derivatives
Inhibitor Divalent cation chelators Alendronate and EDTA MMP-1, -3, -9, -13 (187,224)
Quinolinone-derivative Cilostazol MMP-1, -9 (188,225-227)
Inhibitor Anti-hypertension drug Captopril MMP-2, -9 (189,190)
Candesartan MMP-9 (191)
Inhibitor Herbal Hydroxysafflor yellow A MMP-2, -9 (193)
Inhibitor Flavonoid Kaempferol MMP-2 (194)
Inhibitor Gasotransmitter Hydrogen sulfide MMP-2, -9 (195-197)
Inhibitor Phosphinic peptide RXP470.1. MMP-1, -2,-3,-8,-9, -10,-12, -13, -14 (228)
RXP470, MMP-1, -2, -3,-7, -8, -9, -10, -12, -13, -14 (229)
Compound 4

Abbreviations: R-phosphonate, (1-(4’-methoxybiphenyl-4-sulfonylamino)-2-methylpropyl) phosphonate; EDTA, Ethylenediaminetetraacetic acid.

effects of MMP-9 (126). On the other hand, E2F1 is a
transcription factor that modulates cell cycle regulation,
proliferation and apoptosis, and has shown to enhance

MMP expression (127).

6.2. Natural inhibitors of MMPs: tissue inhibitor

of metalloproteinases (TIMPs)
A number of inhibitors for MMPs have been

described over the years. The most common include
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endogenous inhibitors known as TIMPs. This family
consists of four protease inhibitors TIMP 1-4 which
exist as glycosylated or unglycosylated form. TIMPs
are 21 to 29 kDa protein consisting of an N-terminal
oligosaccharide/oligonucleotide binding (OB)-fold of ~125
amino acids, 5 beta-barrels, and a C-terminal portion ~60
amino acids long forming a beta-turn (128-130). The
N-terminal domain interacts strongly with the catalytic
domains of MMPs (129). In some cases, however, the
C-terminal domain can further enhance the MMP/TIMP
interaction (131). Furthermore, TIMPs can also interact
to form complexes with pro-gelatinases suggesting that
the C-terminal domain interacts with the hemopexin-like
domain (131).

TIMP-2: proMMP-2 complex has an important
role in both activation and inhibition of MMP-2 (132).
A ternary model for TIMP-2: proMMP-2 interacting with
MT1-MMP has been proposed (2). Thus, studying MMP/
TIMP ratios enable to define the collective role of TIMPs
in vascular disease. A time course study performed in
rats demonstrated that besides the expression of MMP-9
protein and mRNA the MMP-9: TIMP-1 ratio correlated
with brain water content (BWC)following acute cerebral
infarction (133). TIMP-1 concentration alone did not
correlate BWC in this cerebral edema model suggesting
that there was no disenable relationship between TIMP-1
concentration and edema (133).

An epidemiology study concluded that certain
polymorphism within the promoter regions of MMP-9
and TIMP-2 is statistically associated with varicose
vein development within a subset of the Chinese
population (134). In another study focusing on obesity
increased plasma concentrations of MMP-9 and MMP-9:
TIMP-1 ratio and MMP-8 and MMP-8: TIMP-1 ratio was
observed in obese women versus lean women suggesting
their association with obesity (135). In addition, MMP-9
levels and MMP-9:TIMP-1 ratio was associated with
healing in diabetic foot ulcers (136). However, there was
only a slight variation in TIMP-1, TIMP-2, and MMP-2
when comparing good vs. poor healing outcomes (136).

TIMP-1 has been used in gene therapy by
viral and plasmid delivery systems. Hybridization of
TIMP-1 to urokinase receptor decreased neointimal
formation in vein cultures (137). Furthermore, in an
in vivo model of venous graft interposition to carotid
artery, TIMP-1 urokinase protein reduced graft thickening
suggesting its potential as a therapeutic agent (138).
TIMP-4 was shown to mitigate MMP-2 expression in
an ischemia-reperfusion injury rat model of myocardial
infarction (139). In addition, monocytes isolated from
abdominal aortic aneurysm (AAA)were shown to have
a greater capacity for transmigration and EC adhesion
along with increased MMP-9 and decreased TIMP- 4
levels (140). Furthermore, intermittent hypobaric
hypoxia has been shown to ameliorate the effects of
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ischemia-reperfusion by decreasing MMP-2 activation,
and increasing TIMP-4 (141).

A study focusing on ataxia telangiectasia,
mutated heterozygous kinase knockout (ATM hKO)mice
showed decreased levels of TIMP-4 within the infarct
tissue which was associated with increased MMP-9
expression and fibrosis (142). In another study, fibrinogen
induced caveolae formation as well as caveolin protein
1 expression, and its phosphorylation was mitigated in
presence of the TIMP-4 and MMP-9 modulation (143).

Sirtuin1 (SIRT1)is a protein/histone deacetylase
known for its protective effects against development of
pulmonary emphysema in smokers (144). In a study by
Yaoetal, SIRT1 deficiency was associated with decreased
TIMP-1 and increased MMP-9 activity in human subjects
suffering from COPD and in the lungs of mice exposed
to cigarette smoke, whereas increased SIRT1 in
transgenic mice was associated with decreased MMP-9
activity (144). The above study did not demonstrate
changes in the levels of MMP-2, -12 and TIMP-2, -3
or -4 were observed (144). Additionally, in an in vitro rat
cardiac fibroblast model, El Hajj et al demonstrated that
ethanol exposure up-regulated TIMP-1, -3, and -4 levels
with no significant changes in MMP profile (145). They
concluded that MMP/TIMP imbalance favors collagen
accumulation in the development of myocardial fibrosis
and cardiac dysfunction in chronic alcohol abuse (145).

6.3. Epigenetic regulation of MMPs

Epigenetics is defined as reversible events and
consists of gene silencing mechanisms which stabilize
gene expression without modifying the DNA sequence.
In mammalian cells, the major epigenetic mechanism
includes, DNA methylation, histone modification, and small
non-coding RNA (146). DNA methylation is carried out by
three DNA methyltransferases (DMNT): DNMT 1, DNMT3,
and DNMT 3b. Although epigenetic regulation of MMPs
have not been extensively studied in vascular diseases
much of what is known has been uncovered through
cancer research. Several cancers have overlapping
vascular pathology which we discuss in the following
paragraphs. In a recent study, methylation of cytosine
within the promoter region of dystrophin was examined
by using Duchenne muscular dystrophy (DMD)knockout
mice, and this deficiency was shown to increase MMP-2
expression levels (150). In breast cancer cells MD-MB-231,
high glucose led to the phosphorylation of histone 3 at the
Ser10 residue while dephosphorylating the Ser9 residue
(151). This event correlated with the increase in DNMT1
expression (151). Silencing GSK-3f by siRNA inhibited
the phosphorylation of H3, and thus decreasing DNMT1
expression (151). Furthermore, phospho-H3 levels were
directly correlated with MMP-7 expression (151).

MMP-14 was suggested to be a regulator of
H3K9ac in adipogenic collagenolysis (152). Another
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study suggested that proMMP-1 expression is
influenced by epigenetics in human fibrosarcoma cells
even though its promoter is not believed to possess
CpG islands, yet proMMP-1 expression increased
under 5-aza-dC treatment which was mitigated with
cycloheximide  suggesting epigenetic  regulation
through some other intermediate product (153).
Enzymes involved in the pathology, mainly MMP-9 and
superoxide dismutase 2, of diabetic retinopathy have
been reported to be under the epigenetic regulation of
histone lysine demethylase 1, (LSD1)and DNMT (154).
Our lab has recently demonstrated that changes in the
levels of MMP-9, TIMP-1 are regulated by DNMT1,
3a, Methyl CpG-Binding Domain Protein 2 (MBD2),
and H3K9 contributing to aortic remodeling during
hyperhomocysteinemia (156).

The expression of MMP9 is inhibited
by trichostatin A (TSA), a HDAC inhibitor, by its
action on thrombospondin-1 (TSP-1), an adhesive
glycoprotein  (147,148). TSP-1 stabilizes the ECM
and also suppresses VEGF release thus regulating
angiogenesis (148).

Proto-oncogene c-Fos was also shown to be
linked to MMP-2/MMP-9 expression (160). Treatment of
cells with OxLDL caused c-Fos activation to decreased
histone deacetylase 1 (HDAC1)expression levels (160).
Also, shRNA-mediated knockdown of c-Fos restored
HDAC1 mRNA and protein expression (160). The
increased acetylation and decreased methylation of
H3K9 had disappeared in the knockdown of c-Fos
treated with OxLDL suggesting that c-Fos was necessary
for histone modification and lead to MMP-2/MMP-9
overexpression further downstream of the signaling
pathway (160). Furthermore, since c-Fos can activate
transcription factor AP-1, a link between OxLDL, AP-1,
miRNA-29b, and cardiovascular disease had been
suggested (160). MMP-9 has also been shown to be
regulated epigenetically (161).

6.4. miRNA regulation of MMPs

MicroRNAs (miRs)are small non-coding RNAs
which regulate transcriptional and post-transcriptional
gene expression (157). MicroRNA-29b (miRNA-29b)
has been shown to be an epigenetic regulator of
pro-atherogenic genes (158). OxLDL was shown to
up-regulate miRNA-29b expression in a dose-dependent
and time-dependent manner within human aortic smooth
muscle cells (HASMCs) (158). In vivo studies suggest
that increased miRNA-29b levels reduced the expression
of DNA methyltransferase 3b in primary human
aortic smooth muscle cells, and subsequently lead to
reduced MMP-2/MMP-9 silencing (158). These results
suggested a mechanism for OxLDL to induce HASMC
migration via miRNA-29b/DNMT 3b/MMP-2 and MMP-9
pathway (158). These findings reveal that miRNA-
29b may generate atherosclerosis (158). Furthermore,

increased miRNA-29b levels were shown to dysregulate
ECM homeostasis by impacting the expression of
collagen (Col1A1 & Col3A1), and elastin (159).

Among miRs, miR133a, miR133b, and miR145
target SP-1 transcription factor which in turn decreases
MMP-9 expression in renal cancer (162). In oral
squamous cell carcinoma, miR2 targeted STAT3 which
in turn decreased MMP-2 in WP1066 treated cells (163).
Propofol administration was shown to induce miR-143
which targeted MMP-13 in an osteosarcoma cell line (164).
This was shown to inhibit the cell proliferation and invasion
which facilitated apoptosis (164). Moreover, miR-143
levels indirectly correlated with MMP-13 levels, which
were restored with the application of anti-miR-143 (164).
Under hypoxic conditions, neovascularization and
therefore MMP-9 and VEGF were suggested to be under
the control of miR-126 in monkey chorioretinal vessel ECs
(RF/B6A) (165). The miR21 expression was suggested to
be induced by Ang Il which induced MMP-2 expression in
mouse cardiofibroblasts (166). TNF- o signaling leading
to IL-6, INOS, and MMP-9 expression and endothelial
dysfunction was suggested to occur when miR-149 was
down-regulated in a p38MAPK-dependent manner (167).
MMP-14 was suggested to be downregulated by miR-9
expression (168). Finally, miR-98 is reported to inhibit
tumor angiogenesis and invasion in part by targeting
MMP-11 (169).

6.5. Pharmacological inhibitors of MMPs
Pharmacological inhibitors of MMP fit into
two classes: non-specific and specific. The non-
specific inhibitors act by chelating the catalytic Zn?
ion (170,171). These inhibitors include but are not
limited to batimastat, marimastat, ilomastat, PD-166793,
and ONO-4817 (172,173). Peptide inhibitors containing
motifs HWGF, CRRHWGFEFC and CTTHWGFTLC
provide targeted inhibition of MMP-2 and MMP-9 (174).
Antibiotics have also demonstrated the ability to inhibit
MMPs, such as the tetracycline class (175). Furthermore,
chemically modified tetracyclines maintain MMP
inhibition in the absence of antimicrobial activity (33).

Statins are a class of drugs used to lower
cholesterol levels and have been shown to inhibit MMP-
2, MMP-7, and MMP-9 (11). Although cerivastatin was
withdrawn from the market due to cases of muscle
breakdown, it has exhibited dose-dependent inhibition
properties for MMP-1, MMP-3, and MMP-9 secretion in
human VSMC (176). Lovastatin inhibited the inducible
activity of MMP-1, -3 and -9, while it blocked the MMP-2
constituent activity in rabbit SMC whereas, TIMP-1
and -2 secretions remained uninhibited (176). Both
cerivastatin and lovastatin inhibited the secretion of
MMP-1, -3, and -9 in rabbit foam cells with cerivastatin
demonstrating greater inhibition (176). In a study, aortic
mRNA expression demonstrated elevated levels of
MMP-1, MMP-9, and MMP-12 in rabbits that were fed
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a high cholesterol diet which was decreased but not
normalized upon fluvastatin treatment (177). Although
MMP-2 level remained the same for normal diet, and
cholesterol diet with or without fluvastatin, MMP-
12 showed a pronounced decrease with fluvastatin
treatment (177).

Interestingly, a recent study focused on
a series of MMP inhibitors known as o-sulfone
hydroxamates which were conjugated to various
dyes for visualizing cells that express MMPs for as
a way to measure their synthesis and potency in
disease conditions (178). In particular, N-O-lsopropyl
sulfonamido-based hydroxamates have shown to be
selective inhibitors of MMP-12 and -13 (179,180).

Sulphonamides are another class of inhibitors
whichhave beenshowntoinhibitMMP activity in vitro(181).
However, their inhibitory effect in vivo remains known as
it may be dependent on intracellular signaling and cross-
talk between different compounds (181).

In order for proMMP-2 to become activated, the
hemopexin domain has to interact with the C-terminal
domain of TIMP-2 (182). Using recombinant technology,
the activation of proMMP-2 was successfully blocked by
TIMP-2 (C-TIMP-2) (182). The C-TIMP-2 was shown to
interact with the inactive MMP-254%4A and hemopexin
domain of MMP-2 in a dose-dependent manner (182).
Furthermore, C-TIMP-2 was shown to compete with
TIMP-2initsinteraction with proMMP-2 (182). 5-hydroxy,5-
substitute-pyrimidine-2,4,6,-triones  demonstrate high
potency in their IC50 values for gelatinases (183). Also,
5-hydroxy moiety may enhance the pharmacokinetics of
this inhibitor (183).

A new class of inhibitors has been identified
with the ability to selectively inhibit MMP-13 (184). This
class of pharmacological inhibitors is unique because
they are non-zinc chelating (184). The structure-activity
relationships (SAR)studies on this lead compound
revealed that reducing the lipophilic property conferred
metabolic stability, and lowered clearance rate
in vivo (185).

Methyl rosmarinate derivatives have also
been identified as a potential class of inhibitors for
MMP-1 (186). A molecular scaffold has been identified
and tested with SAR studies identifying potential lead
compounds with IC_., on micro molar scale (186).
Alendronate and EDTA, divalent chelators, have been
shown to inhibit MMP-9 activity irreversibly via plasmin-
mediated inactivation (187). Cryptic plasmin degradation
sites within the catalytic domain of MMP-9 become
accessible to form hemopexin-domain fragments which
have the inhibitory property (187).

Cilostazol inhibits MMP-9 in a dose-
dependent manner and on the transcriptional level by

suppressing its promoter and blocking the translocation
of NF-kB (188). Treatment with Cilostazol, reduced
MMP-9 activity on and decreased transcript and protein
expression (188). The study above presents a mechanism
for anti-atherosclerosis by inhibiting monocyte invasion
and further differentiation by modulating MMP-9 and
TIMP-1 (188).

Anti-hypertensive drug captopril has been
shown to inhibit MMP-2 and -9 in a rat model of right
ventricular hypertrophy (189), and to decrease plasma
MMP-9 in acute myocardial infarction patients (190).
Similarly, serum MMP-9 levels were found to decrease
in patients with candesartan treatment (191). However, a
recent study focusing on the inhibitory action of captopril
and lisinopril using purified MMP-2 concluded that
these two ACE inhibitors do not act as pharmacological
inhibitors of MMP-2 (192).

Hydroxysafflor yellow A, an active ingredients
of Chinese herb Carthamus tinctorius L, was also shown
to inhibit MMP-2 and MMP-9 activity, and also reduces
associated apoptosis which helps to mitigate the effects
of left ventricular remodeling within the hypertensive
heart (193). In addition, kaempferol has shown to act as a
pharmacological inhibitor of MMP-2 through the inhibition
of the ERK1/2 as well as activator protein-1 pathway
making it a good candidate for cardiac disease and
cancer (194). Recently, we have shown that hydrogen
sulfide treatment confers vascular protection within the
kidney and neuronal tissues of hyperhomocysteinemic
mice as observed through the decrease of MMP-2 and
MMP-9 levels (195-197). Furthermore, phosphinic peptide
RXP470.1. is a selective inhibitor of MMP-12 which was
shown to mitigate plaque instability in ApoE KO mice (92).

7. SUMMARY AND CONCLUSION

MMPs in general have a fundamental
role in matrix homeostasis of vascular health. In
disease conditions, MMP activity is altered causing a
dysregulation in ECM synthesis and degradation. As
a result, vessels become weaker in performing their
normal physiological function, such as maintaining blood
pressure. In order to keep up with the increased metabolic
demand of tumor cells, angiogenesis is facilitated by
MMPs in cancer. Similarly, cardiovascular diseases
including atherosclerosis, inflammation and ischemia are
influenced by MMPs activity. The endogenous inhibitors,
TIMPs regulate the expression of MMPs however, they
lack specificity. Our current knowledge on interventions
to modify MMP activity by pharmacological agents,
genetic manipulation and/or by biological agents for
prevention or even cure of vascular diseases are limited.
Therefore, more research is needed to develop strategies
to regulate specific MMPs in a particular disease without
affecting other MMPs that are vital for maintaining normal
physiological functions.
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