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1. ABSTRACT

DEAD box protein family of RNA helicases 
are vital players of RNA metabolism, and constitute the 
largest family of RNA helicases. Members of this family 
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share nine conserved motifs including an Asp-Glu-Ala-
Asp motif, giving this family its characteristic name as 
DEAD box RNA helicases. These conserved motifs 
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confer RNA binding and RNA unwinding properties. 
Besides functioning in RNA metabolism, emerging 
evidences suggests several DEAD box RNA helicases 
to possess potential roles in regulating gene expression 
by acting as a transcriptional co-activator. Many of 
them are deregulated in cancers, and are implicated in 
possessing oncogenic potential. On the contrary, each 
of them also possesses tumor suppressive property in 
a context dependent manner. In this review, we discuss 
the mechanistic insights of gene regulation by DEAD box 
RNA helicases, and their significance in cancers.

2. INTRODUCTION

The genomic instability is a hallmark of cancer 
that involves gradual accumulation of genetic alterations 
leading to aberrations of gene expression programs; 
it contributes largely to oncogenesis (1). The gene 
expression programs that maintain cellular homeostasis 
are controlled by myriads of transcription factors, 
co-factors, chromatin regulators, and non-coding RNAs 
such as siRNAs and miRNAs. Defects in these are 
frequent in cancers. Emerging evidences indicate that 
overexpressed oncogenic transcription factors can alter the 
core autoregulatory circuitry of the cell (2). RNA helicases 
are essential regulator of gene expression, exerting its 
effect in almost every aspects of RNA metabolism.

RNA helicases are present in almost all 
organisms. These enzymes unwind double-stranded 
RNA molecules using energy derived from hydrolysis 
of NTP. RNA helicases functions in large complexes 
of ribosome or spliceosome. However, purified RNA 
helicases demonstrate poor activity compared to when it 
is present in the complex. This is due to interaction with 
protein factors present in the complexes that regulate its 
activity (3). Helicases in general are classified into three 
superfamilies and two families (SF1 to SF5), based on 

the presence of characteristics of conserved motifs. The 
DEAD box along with DEAH, DExH and DExD families are 
commonly referred to as the DExD/H helicase family, and 
belongs to SF2 (3‑6). The DEAD box family is the largest 
family of RNA helicases characterized by the presence 
of about twelve conserved motifs (5‑7). They were first 
identified and reported as a distinct family in 1989 when 
protein sequence alignments of eight homologues of 
the yeast eIF4A translation initiation factor showed the 
presence of several conserved motifs (8). The name was 
derived from the amino-acid sequence D-E-A-D (Asp–
Glu–Ala–Asp) of its motif II (3).

DEAD box RNA helicases are key components 
of life, and are essential for RNA metabolism. Besides, 
emanating evidences suggest that many DEAD box RNA 
helicases possess multiple functions and plays significant 
roles in transcriptional regulation of gene expression. 
This is mostly attributed to them as they function as 
co-activator or co-repressor by their interaction with other 
factors which are crucial in transcriptional regulation of 
gene expression. There are numerous studies which links 
DEAD box proteins to oncogenesis, its deregulations, and 
ensuing altered gene expressions of crucial oncogenic 
players. This review presents current evidences of gene 
regulation by multi-talented DEAD box proteins, in the 
context of cancer.

3. STRUCTURAL ORAGANIZATION OF DEAD 
BOX RNA HELICASES

SF2 helicases including DEAD box proteins 
are comprised of two covalently linked identical globular 
domains; each contains five beta-strands surrounded by 
five alpha-helices, resembling bacterial RecA. The two 
domains (Domain 1 and Domain 2) form the helicase 
core comprising of at least twelve conserved motifs, 
serving binding sites for ATP and RNA (Figure 1). Domain 

Figure 1. Schematic representation of structure of DEAD box RNA helicases. The helicase core of DEAD box proteins consists of two RecA-like domains, 
comprising of twelve conserved motifs which functions in ATP binding and hydrolysis, RNA binding, and communication between ATP and RNA binding 
sites. Additionally, DEAD box proteins also contain ancillary amino-terminal domain and carboxyl-terminal domain which provides specificity of function 
through interaction with other factors.
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1 and 2 form a cleft between them that harbors the ATP-
binding site, and the cleft must be closed to effectively 
bind and hydrolyse ATP; RNA binds opposite to that of 
the ATP-binding site. Domain 1 contains the ATP binding 
and hydrolyzing motifs Q, I and II, the RNA-binding motifs 
Ia, Ib and Ic, and motif III which coordinates between 
ATP and RNA binding sites. Motif II includes the D-E-AD 
sequence (6,7,9). The Q motif and upstream conserved 
phenylalanine are characteristic and specific features 
of DEAD box proteins (10). The Q motif serves as 
adenine recognition motif and regulate ATP binding and 
hydrolysis. The Q-motif was also reported to affect the 
helicase activity through regulating the affinity between 
the proteins with RNA substrates (11,12). Domain 2 
contains the RNA-binding motifs IV, IVa and V, motif 
VI which serves for ATP binding and hydrolysis, and 
motif Va, which may coordinate ATPase and unwinding 
activities. An additional beta-strand and two alpha-
helices, which are located upstream of motif I form a cap 
like structure on top of domain 1. In addition to the RecA-
like domains, DEAD box proteins have ancillary amino-
terminal domain and carboxyl-terminal domains which 
confers to the diverse functions by allowing interactions 
with other protein and RNAs (6,7).

4. FUNCTIONS OF DEAD BOX RNA 
HELICASES

4.1. Basic biochemical properties
4.1.1. ATPase activity

DEAD box RNA helicases possess an ATPase 
activity; facilitated by RNA. Specific RNA substrate is not 
required for the stimulation of ATPase activity (6,7,13,14).

4.1.2. RNA binding
DEAD box proteins bind RNA through 

interactions with the 2′ hydroxyl group. The binding of 
RNA is stronger in the presence of ATP, but it is drastically 
reduced upon binding of ADP. The helicase core does not 
provide substrate specificity. The substrate specificity is 
likely to be attributed by the ancillary amino-terminal and 
carboxyl-terminal domains, and extensive interactions 
with other factors (6,7).

4.1.3. RNA unwinding
RNA unwinding mechanism of DEAD box 

proteins is unique. Unlike other helicases, they do not 
employ translocation; rather they deploy local strand 
separation by a tethering interaction that holds the 
helicase core in proximity to targeted RNA duplexes. 
DEAD box helicases binds to the duplex region of RNA, 
aided by single-stranded or structured nucleic acid 
regions. These regions needs to be proximal but do not 
require to be covalently bonded to the helix. Multiple 
protomers of the protein, or a single helicase possessing 
accessory domains might be involved while binding. 
Binding can take place at an end of the RNA, internally, 
and on either strand. Processivity of DEAD box proteins 

is low; unwinding becomes ineffective when the length 
of the helix reaches above 10 to 15 base pairs. Also, 
efficiency of unwinding is strongly dependent not only on 
the length but also on the stability of the helix.

Binding of a DEAD box protein requires ATP 
but not necessarily ATP hydrolysis. Unwinding occurs 
as long as ATP is bound in the active site, regardless 
of hydrolysis. However, ATP hydrolysis results in the 
formation of ADP which promotes the release of the 
DEAD box protein from the RNA; this step is important 
for the turnover of multiple RNA substrates. ATPase 
cycle consists of ATP binding, ATP hydrolysis, strand 
separation, generation of a segment of single-stranded 
RNA, and finally release single-stranded RNA from 
the helicase core. For each unwinding event, a single 
ATP molecule is involved. Events in the ATPase cycle 
varies for different DEAD box proteins; unwinding may 
be coupled to ATP binding in some cases and to ATP 
hydrolysis in others. As discussed earlier, the two RecA-
like domains in the helicase core form a cleft which 
binds ATP and RNA on opposite sides. But there exists 
a close energetic flow between them, and each ligand 
strengthens the binding of the other. This cooperative 
effect is reversed in the presence of ADP (7,13‑15).

4.1.4. RNA clamping
The tethering of DEAD box proteins with 

the RNA could remain intact through prolonged 
time period, enabling to unwind the same structure 
repeatedly or facilitate additional structure disruptions of 
intermediates (7).

4.1.5. Displacement of proteins from RNA
DEAD box proteins can also remove proteins 

from RNA in an ATP dependent manner but independent 
of unwinding. As for example, removal of yeast Mud2 by 
the DEAD box protein Sub2 during pre-mRNA splicing, 
and the removal of mRNA export factor Mex67 during 
mRNA export by DEAD box protein Dbp5  (47–52). 
Protein displacement is crucial for the physiological 
function of RNA helicases as RNAs are generally bound 
to other proteins in vivo (7,16).

4.1.6. Strand annealing activity
Several DEAD box proteins also demonstrate 

strand annealing activity. Ded1 which functions in 
cytoplasmic translation and Mss116 which is important 
for mitochondrial RNA metabolism are potent 
strand annealers. The annealing activity is mostly 
ATP independent. This trait of DEAD box proteins 
is crucial in RNA remodelling reactions, and RNA 
chaperoning (7,13,14).

4.1.7. RNA chaperone activity
DEAD box helicases also acts as RNA 

chaperones by promoting folding of RNA. For example, 
Mss116 and CYT19, which act as RNA chaperones 
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promotes folding of several mitochondrial RNA introns 
into their native conformations (7,14,16).

4.1.8. Proofreading activity
DEAD box helicases also act as proofreaders 

in splicing events. They distinguish between correct and 
incorrect substrates, and promote processing of correct 
ones while discarding of incorrect ones (13).

4.2. Cellular functions
In cells, DEAD box RNA helicases plays vital 

roles in every aspects of RNA metabolism (Figure  2). 

Most of them perform specialized functions that require 
them to act on specific RNAs; some participate solely in 
a single process. Table 1 lists various DEAD box RNA 
helicases required for specific cellular functions. The 
specificity for the targets is achieved through interactions 
either through specific loops or surfaces within the 
helicase core, or by the ancillary domains adjacent to the 
helicase core in many DEAD box proteins.

4.2.1. Ribosome biogenesis
A large number of DEAD box proteins are 

associated with the maturation of rRNA. They are 
required for the unwinding of short duplexes of snoRNA 
with rRNAs, or between rRNAs. Also, some of them 
are required for the dissociation of RNA–protein 
interactions (6,7,17).

4.2.1. pre-mRNA splicing
Newly transcribed pre-mRNAs are spliced 

to create mature mRNAs. Splicing requires trans-
esterification reactions and structural rearrangements 
in the stepwise assembly of the large ribonucleoprotein 
complex known as spliceosome which involves five 
snRNAs and several proteins including DEAD box 
helicases. Several DEAD box proteins play vital functions 
in splicing, majorly at the early events of pre-spliceosome 
assembly, and the formation of active spliceosome. 
They are required for the unwinding of short RNA–RNA 
duplexes that are formed between the different snRNAs 
or pre-mRNA molecules (6,7,17).

4.2.2. RNA export
Cellular compartmentalization in cells requires 

regulated transport of RNAs, proteins and complexes 

Table 1. DEAD box RNA helicases in various 
cellular functions (7)
Cellular functions DEAD box RNA helicases

Ribosome 
biogenesis

DDX3X, DDX3Y, DDX5, DDX10, DDX18, DDX21, 
DDX24, DDX27, DDX31, DDX47, DDX48, DDX49,
DDX50, DDX51, DDX52, DDX54, DDX55, DDX56

RNA decay DDX5, DDX6, DDX17, DDX48

Organelle specific 
RNA metabolism

DDX28

snRNP biogenesis DDX20

Transcription DDX5, DDX17, DDX20, DDX21, DDX3

pre‑mRNA splicing DDX3X, DDX3Y, DDX23, UAP56, DDX42, DDX46

Translation DDX2A, DDX2B, DDX3X, DDX3Y, DDX4, DDX19

RNA storage DDX6

RNA export DDX3X, DDX3Y, DDX5, DDX17, DDX19, DDX25, 
DDX39, UAP56

Figure 2. Physiological roles of DEAD box RNA helicases. General functions of DEAD box RNA helicases includes ribosome biogenesis, RNA export, 
RNA decay, RNA storage, pre-mRNA splicing, snRNP biogenesis, organelle specific RNA metabolism, translation, and in general transcription machinery 
as well as specific transcriptional regulation of gene expression.
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from the nucleus to the cytoplasm, and vice versa. 
Several DEAD box proteins are involved in this process. 
Notably, Dbp5 is required for the export of mRNA from 
the nucleus (6,7,17).

4.2.3. Translation
Yeast DEAD box proteins DDX2A/eIF4A and 

Ded1, and their homologues in higher eukaryotes are 
essential for translation initiation. eIF4A rearranges 
RNA duplexes at the 5′ end of eukaryotic mRNA. It 
also removes proteins from mRNA, after exiting the 
nucleus. In higher eukaryotes, DEAD box protein Vasa 
is required for translational activation of germline-specific 
mRNAs (6,7,17).

4.2.4. Organelle gene expression
DEAD-box proteins are also required for the 

expression of mitochondrial genomes in fungi. As for 
example, Neurospora crassa Cyt-19 RNA helicase is 
required for the splicing of group I introns. Recent reports 
also suggests that DDX28 resides in RNA granules, 
and function in assembly of mitochondrial ribosomes 
(mitoribosomes) (7,17,18).

4.2.5. RNA decay
mRNA turnover is initiated with shortening of 

the 3′ poly (A) tail followed by decapping complex and 
5′–3′ exonucleolytic decay. In mammalian cells, proteins 
involved in mRNA silencing and degradation localize to 
specific cytoplasmic foci called processing or P-bodies. 
DDX6/p54 present in the P-bodies activates decapping 
by remodelling mRNPs. They are also required for 
the accumulation of the mRNA degradation factors in 
P-bodies (19‑21). Spliced mRNAs harboring a premature 
termination codon (PTC) are degraded by nonsense-
mediated decay (NMD). In mammals, the termination 
codon is located at least 50–55 nucleotides upstream of 
an exon–exon junction. Some mRNAs also possesses 
uORFs or alternative splicing introducing non-sense 
codons or frameshifts, are also targeted to NMD as well. 
Degradation is triggered by the exon junction complex 
(EJC) through recruitment of upstream frame shifting 
(Upf) proteins forming Upf complex (22). Several DEAD 
box proteins are part of NMD. DEAD box protein DDX48/
eIF4AIII is an integral part of EJC (22). DDX5/p68 and 
its homologous protein DDX17/p72 also participates in 
NMD by binding to the Upf complex (7,23). In Escherichia 
coli, RhlB protein forms a complex with RNase E and 
PNPase, and unwinds RNA for degradation (17).

4.2.6. RNA storage
In the P-bodies untranslated mRNAs are stored 

for later release. DDX6/p54 is abundant in P-bodies. 
After formation of translational repressor complex, DDX6 
catalyzes ATP-dependent mRNA unwinding which leads 
to sequence-independent association with multiple 
DDX6 molecules. Thereafter, the silenced mRNP is 
localized to P-bodies and the transcript is either stored 

and subsequently released for translation, or targeted to 
decapping and degradation (7,20,21).

4.2.7. snRNP biogenesis
snRNPs combines with pre-mRNAs to form 

spliceosomes. DDX20/Gemin3 plays essential roles in 
the biogenesis of snRNPs (7,24).

4.2.8. Transcription
As discussed earlier, the ancillary amino and 

carboxyl-terminal domains of DEAD box proteins are 
highly divergent. Some DEAD box RNA helicases, 
through interaction with components of the transcriptional 
machinery though their ancillary domains play important 
roles in transcriptional regulation. Notably, mounting 
evidences suggests that DDX3, DDX5/p68, DDX17/p72, 
DP103/DDX20, DDX21 regulates transcription, and are 
significantly implicated in oncogenesis. Their roles in 
transcription and significance in cancer are major focus 
of this review, and discussed in details in the following 
sections.

5. DEAD BOX RNA HELICASES IN 
REGULATION OF GENE EXPRESSION AND 
ONCOGENESIS

Emanating evidences suggests several DEAD 
box proteins to be critical regulators of gene expression 
and potent contributors of oncogenesis. This section 
describes the mechanisms of gene regulation of DEAD 
box proteins, and their involvement in regulation of other 
important proteins significantly implicated in cancers.

5.1. DDX1
DDX1 is located on chromosome 2p24 within 

the distance of 400 kilobases 5’ to the MYCN proto-
oncogene (25). DDX1 is expressed in all cell lines and 
tissues; the highest being in the cells of neuroectodermal 
origin, and cancer cells (26,27). The possible indications 
of the involvement of DDX1 in tumorigenesis came 
from reports which suggested its co-amplification 
along with MYCN gene in retinoblastomas and 
neuroblastomas (26,28‑30). Co-amplification of DDX1 
and MYCN was also observed in Wilms tumors and 
alveolar rhabdosarcomas (31,32). DDX1 was speculated 
to be tumorigenic as it caused increased cell survival 
and anchorage-independent growth in non-transformed 
mice embryonic fibroblasts; these traits being hallmarks 
of cancer (33). Also, DDX1 and MYCN was frequently 
co-amplified in higher stages of neuroblastoma, and 
was associated with reduced disease-free survival as to 
those having only MYCN amplification, implicating DDX1 
in tumorigenesis (28,34). A  recent report suggested 
that in breast cancer, overexpression of the DDX1 RNA 
and elevated cytoplasmic DDX1 protein are associated 
with early recurrence, and DDX1 could serve as an 
independent prognostic marker for early recurrence in 
breast cancer (35).
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There are several contradicting reports 
regarding the contribution of DDX1 in oncogenesis. 
One report suggested that co-amplification of MYCN 
and DDX1 correlated with a better patient survival in 
neurobastoma  (36). A  recent study also demonstrated 
that high DDX1 expression was associated with improved 
local, metastasis-free and overall survival in early-
stage node-negative breast cancer (37). These findings 
advocate plausible tumor suppressive roles of DDX1. 
However, there are reports stating that there is no effect 
of DDX1 amplification on prognosis of patients diagnosed 
with MYCH-amplified neuroblastomas (38,39). Also, the 
prognostic effect of DDX1 co-amplification with MYCN 
is different between subgroups of MYCN-amplified 
neuroblastomas (40,41). Therefore circumstantial 
evidences and precise functions of DDX1 in oncogenesis 
are needed to address the genuine oncogenic role of 
DDX1.

Functions of DDX1 are well documented in the 
replication of several viruses, including HIV (27). DDX1 
is generally a nuclear protein; present in both nucleus 
and cytoplasm of cells where it is amplified. It is involved 
in 3’ end processing of pre-mRNAs, RNA transport, 
cell migration, and a part of several ribonucleoprotein 
complexes (42). It is known to associate with the 
hnRNP-K  (43). hnRNP-K is a multifunctional protein 
involved in transcription, translation, nuclear transport, 
and signal transduction, and implicated in neoplastic 
transformation and metastasis (44‑46). Therefore its 
association with hnRNP-K might aid in oncogenesis. 
DDX1 is also reported to interact with 14-3-3 proteins (42) 
which plays a central role in cell proliferation, survival, 
and inhibits apoptosis in multiple cancers. It is a potential 
candidate for cancer therapy (47). This again highlights 
potential oncogenic role of DDX1.

A direct evidence of DDX1 in tumorigenesis 
came from a report which stated that DDX1 is critical for 
testicular tumorigenesis. The study showed that DDX1 
is required for the transcriptional activation of stem cell 
associated genes including cyclin D2; it directly regulated 
the transcription of cyclin D2 by occupying its promoter. 
Also, inhibition of DDX1 abrogated tumor formation 
in mice (48). This study provides a mechanism of 
oncogenesis by DDX1 through transcriptional regulation 
of gene expression. In cells exposed to ionizing radiation, 
DDX1 is phosphorylated by ATM and is involved in RNA 
clearance at double stranded break sites, suggesting 
its significance in DNA repair (49). Recently, DDX1 has 
been identified to promote maturation and expression of 
miRNAs leading to ovarian cancer suppression. Majority 
of these miRNAs are induced after DNA damage through 
ATM mediated phosphorylation of DDX1. This report 
suggests that inhibition of DDX1 promotes ovarian tumor 
growth and metastasis in mice. Also, analysis of The 
Cancer Genome Atlas suggested that low DDX1 levels 
are associated with poor clinical outcome in patients 

with serous ovarian cancer (50). Hence, it seems that 
highly contextual roles of DDX1 in tumorigenesis might 
be due to tissue specificity. A lot remains to be explored 
regarding the involvement of DDX1 in other cancers and 
its mode of actions.

5.2. DDX3
DDX3 has two homologs designated as 

DDX3X and DDX3Y, located on X and Y chromosomes, 
respectively. DDX3X is ubiquitously expressed in most 
tissues, while DDX3Y expression is restricted to the male 
germline where it functions in male fertility (51). Mutations 
in DDX3X have been reported in head and neck squamous 
cell carcinomas, chronic lymphocytic leukemia, Burkitt’s 
lymphomas and medulloblastomas (52). A study reported 
somatic mutations in DDX3X along with mutations in 
beta-catenin and stated DDX3X as a part of aberrant 
beta-catenin signaling in medulloblastoma (53).

DDX3 and its yeast homolog Ded1p function 
in multiple cellular processes involved in the regulation 
of gene expression including transcription, pre-mRNA 
splicing, mRNA export and translation. Ded1p is 
required for global translation; the role of DDX3 in global 
translation is controversial (42,51,54). DDX3 is required 
for the replication of several viruses such as HCV, HBV 
and HIV. It is considered as a potential therapeutic target 
for anti-viral drug against HCV and HIV (42,51).

Several evidences suggest that DDX3 regulates 
transcription of genes which are crucial in oncogenesis. 
The first connection of DDX3 with oncogenesis was 
established from a study which showed that DDX3 mRNA 
is overexpressed in hepatocellular carcinoma tissues. Its 
ectopic expression in hepatocellular carcinoma cells led 
to anchorage independent growth, a trait of aggressive 
cancers. (55). BPDE, present in tobacco smoke is 
a potent carcinogen. Exposure of BPDE to breast 
cancer cells increased DDX3 expression (56). EMT is 
a phenomenon in which epithelial cells lose their cell 
polarity and gain mesenchymal phenotype which includes 
increased migration, invasion and evasion of apoptosis. 
This process is a salient feature of metastasis. Loss of 
E-cadherin and induction of Vimentin and Snail are critical 
events of EMT (57). Overexpression of DDX3 in breast 
cancer cells led to EMT as a consequence of repression 
of E-cadherin expression. DDX3 was found to occupy 
E-cadherin promoter and repress its transcription; it also 
repressed transcription of tumor suppressor p21WAF1/
CIP1  (56). Cyclins regulates progression of cell cycle 
through the activation of cyclin-dependent kinases. 
p21WAF1/CIP1 is a cyclin-dependent kinase 2 inhibitor, 
and functions as a crucial regulator of G1/S progression 
of the cell cycle. It also mediates cellular senescence, 
and is tightly controlled by tumor suppressor p53  (58). 
DDX3 also aids in cancer progression by upregulating 
Snail transcription; Snail represses expression of cellular 
adhesion proteins for increased cell migration and 
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metastasis. Expression of Snail and DDX3 exhibited 
significant correlation in glioblastoma multiforme 
samples (59). Positive DDX3 expression is also reported 
to be a biomarker of metastasis and poor prognosis of 
gall bladder cancers (60).

Other possible oncogenic effect of DDX3 is 
through the regulation of cell cycle. It induces cell cycle 
through induction of G1/S transition, thereby promoting 
cellular growth. It regulates the translation of G1/S specific 
cyclin E1 mRNA; RNA helicase activity is required for the 
process (61,62). Moreover, DDX3 interacts with DDX5 
in the G2/M phase of the cell cycle, and also regulates 
cell cycle during mouse embryonic development (63,64). 
A recent report stated that DDX3 regulated Rac1 mRNA 
translation through interaction with its 5’ UTR, and affected 
beta-catenin protein stability in a Rac1-dependent 
manner, thereby modulating beta-catenin target genes. As 
a consequence, DDX3 was responsible for invasiveness 
and metastasis through Rac1 dependent signaling (65). 
Its mechanism of oncogenesis is not only limited to 
direct regulation of transcription or translation but also in 
modulation of signaling. DDX3 is also reported to inhibit 
death receptor mediated apoptosis by associating with 
TRAIL-R2/DR5; one of the most common death receptor. 
It blocks death receptor mediated apoptotic signaling by 
interaction with GSK3 and inhibitor of apoptosis protein-1, 
forming an antiapoptotic complex (66,67). A  recent 
study also showed that breast cancer cell lines with low 
expression of DDX3 were more sensitive to antibodies 
targeting TRAIL-R2 (68). In the presence of Wnt signaling, 
DDX3 interacts with oncogenic casein kinase CK1 and 
activates beta-catenin (69). Hypoxia is a characteristic 
feature of solid tumors. Hypoxia driven gene expression 
is majorly regulated by hypoxia inducible factors HIFs. 
In breast cancer, DDX3 is aberrantly expressed and 
exhibits positive correlation with HIF-1 expression and 
other related proteins of hypoxia. HIF-1 occupies DDX3 
promoter stimulates its transcription (70,71).

Paradoxically, DDX3 also possess tumor 
suppressive activity. Significant decrease in the 
expression of DDX3 in hepatocellular carcinoma was 
observed in case of hepatitis B-positive but not in hepatitis 
C-positive patients. Moreover, depletion of DDX3 in the 
non-transformed mouse cell line resulted in enhanced 
G1/S transition of the cell cycle leading to heightened cell 
proliferation. This was the consequence of upregulated 
cyclin D1 and the downregulation of p21WAF1/CIP1 in 
the DDX3 knockdown cells. Furthermore, reduction in 
DDX3 expression increased resistance to apoptosis, 
and enhanced the oncogenic ras-induced anchorage-
independent growth (72). Another study revealed that 
DDX3 inhibited the colony forming ability of various tumor 
cells, due to upregulation of p21WAF1/CIP1 expression. 
DDX3 upregulated p21WAF1/CIP1 promoter activity in 
an ATPase-dependent but helicase-independent manner, 
and interacted with the Sp1 sites present in the promoter. 

DDX3 mRNA and protein was found to exhibit diminished 
expression in 58% to 73% of hepatoma specimens. 
Additionally, an alteration of subcellular localization from 
nuclei to cytoplasm was observed in more than 70% 
of cutaneous squamous cell carcinoma samples  (73). 
Interestingly, DDX3 promoter contains binding sites 
of tumor suppressor p53 through which it can directly 
regulate DDX3 expression. In human papilloma virus-
associated lung tumorigenesis, altered p53-DDX3 
pathway results in reduced p21WAF1/CIP1 expression 
due to hampered sp1 binding in its promoter, and is 
associated with poor relapse-free survival (74). DDX3 
loss by p53 inactivation also promotes oncogenesis 
through the MDM2/Slug/E-cadherin pathway and results 
in poor patient outcome in non-small-cell lung cancer (75). 
In contrast to the modulation of death receptor mediated 
extrinsic apoptotic signaling, DDX3 also regulates 
intrinsic apoptotic signaling following DNA damage. 
DDX3 associates with p53, increases its accumulation, 
and positively regulates DNA damage induced intrinsic 
apoptotic signaling in cells expressing functional wild-type 
p53. DDX3 inhibits extrinsic apoptotic pathway in cells 
harboring non-functional p53 (76). Low DDX3 expression 
is reported to have poor prognostic significance in non-
smoker patients with oral squamous cell carcinoma (77).

Taken together DDX3 has both oncogenic 
and tumor suppressive properties. Further research is 
required to decipher its exact contribution in cell growth 
and tumorigenesis, and its dominance as a tumor 
suppressor or oncogene.

5.3. DDX5 (p68) and DDX17 (p72)
An expansive body of evidences suggests DDX5 

and DDX17 to be crucial regulators of gene expression. 
DDX5 was identified when an antibody against the simian 
virus 40 large T oncoprotein cross-reacted with a 68 kilo 
dalton nuclear protein. Sequence analysis revealed 
homology to the eukaryotic translation initiation factor 
eIF4A, and it was the first protein to demonstrate RNA 
helicase activity in an ATP dependent manner. DDX17, 
the highly homologous partner of DDX5 shared a 90% 
identical helicase core. DDX17 was shown to encode two 
isoforms: p72 and p82 RNA helicases. p82 arises due to 
alternative translation initiation at a non-AUG start codon. 
These two isoforms are generally expressed at similar 
levels and possess identical properties. Moreover, p72/
p82 and p68 RNA helicases can form both homo- as well 
as heterodimers, suggesting that these proteins might 
have overlapping functions (42,52,78‑80). Both DDX5 
and DDX17 was originally demonstrated to be a nuclear 
proteins but later DDX5 was established as a nucleo-
cytoplasmic shuttling protein (81). mRNA expression of 
DDX5 and DDX17 is ubiquitous but varies in an organ 
specific manner (78).

DDX5 and DDX17 regulates various 
cellular processes including pre-mRNA and rRNA 
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processing, alternative splicing, RNA export and miRNA 
biogenesis (78,42,52). Apart from these functions, DDX5 
and DDX17 are essential in gene transcription as they act 
as co-activators of several transcription factors through 
their ancillary domains. Both DDX5 and DDX17 play 
essential roles in development. Mutations in yeast ortholog 
of DDX5 showed lethal phenotype; both DDX5 and DD17 
knockout mice exhibited embryonic lethality. DDX5 gene 
passed three litmus tests for a proto-oncogene: ectopic 
expression of DDX5 in non-transformed mice embryonic 
fibroblasts led to formation of colonies in soft agar, 
implying anchorage-independent growth. Also, these 
were able to form tumors in nude mice (78). Depletion of 
DDX5 and DDX17 by RNA interference in colon cancer or 
cervical carcinoma cells suppressed cell proliferation. Also 
depletion of DDX17, but not DDX5, in breast cancer cells 
abrogated estrogen-dependent growth. These evidences 
suggested DDX5 and DDX17 to have major effects on cell 
growth and survival, and oncogenesis.

The first link between DDX5 and oncogenesis 
came from the study which reported it to be overexpressed 
in colon cancer samples unlike normal tissues, and the 
expression was more in the higher grade tumour than 
the lower one (82). In addition, studies showed that 
DDX5 overexpression protects lung carcinoma cells 
from the topoisomerase-1 poison, camptothecin, which 
is often employed against cancer (83). Both DDX5 
and DDX17 are overexpressed in tumors of colon and 
breast (84-86). DDX5 is also overexpressed in prostate 
cancer, glioma, leukemia, head and neck squamous 
cell carcinoma, cutaneous squamous cell carcinoma, 
hepatocellular carcinoma, ovarian carcinoma and multiple 
myelomas (87-93). Initial reports suggested DDX5 to be 
phosphorylated in a tyrosine residue (Y593) in several 
cancer cells unlike normal cells, and this phosphorylation 
was induced by PDGF and decreased by TNF. Another 
PDGF induced phosphorylation on Y595 was further 
reported in glioblastoma cells, which along with Y593 
conferred resistance to TRAIL induced apoptosis (94,95).

Ample of evidence suggests that DDX5 and 
DDX17 is involved in the initiation of gene transcription 
and are important regulators of gene expression. 
CBP and p300 are acetyl-transferases that acetylate 
histones, and PCAF is another acetyltransferase that 
forms complexes with CBP/p300. Histone acetylation 
is generally associated with gene transcription, while 
histone deacetylation induced by HDACs is associated 
with transcriptional repression (96). These are general 
transcription co-factors participating in the functioning 
of myriads of transcription factors (97). Both DDX5 and 
DDX17 interacts with RNA polymerase II, CBP, p300 and 
PCAF (98,99). On the other hand, DDX5 and DDX17 
also interact with HDACs (100). Therefore DDX5 and 
DDX17 are vital for transcriptional regulation, and can act 
as an activator or repressor in a context specific manner. 
DDX5 and DDX17 were reported to co-activate MyoD; 

a regulator of muscle differentiation (101). DDX5 was 
also shown act as a co-activator of Runx2, required for 
osteoblast development. RNA helicase activity was not 
required in these cases (102).

A key event during colorectal cancer is the 
aberrant activation of Wnt/beta-catenin signaling (103). 
DDX5 and DDX17 acts as a co-activator beta-catenin-
dependent transcription of target genes such as c-myc, 
cyclin D1 and c-jun. Furthermore, depletion of DDX5/
DDX17 in colorectal cancer cells induced the expression 
of p21WAF1/CIP1, reduced cellular proliferation and 
tumor formation in nude mice (84). Another mode of 
interplay between DDX5 and beta-catenin is through 
the phosphorylation of DDX5. In colon cancer cells, 
PDGF is reported to phosphorylate DDX5 on Y593. This 
phosphorylation was required for interaction with beta-
catenin and the induction of EMT. Also, the RNA helicase 
activity of DDX5 was required for the upregulation of 
beta-catenin target genes (104,105). The phosphorylated 
p68 also activates transcription of the Snail by promoting 
dissociation of HDAC from the Snail1 promoter; Snail 
being a critical player of EMT. PI3K/AKT pathway is largely 
implicated in cancers; it is a major target for colorectal 
cancer prevention (106,107). Tumor suppressor 
FOXO3a, the legitimate target of AKT is reported to be 
downregulated in colon cancer (108). A  recent finding 
suggested that in colon cancer, DDX5 co-activates beta-
catenin and NF-kappaB in upregulating AKT transcription 
and consequently downregulating tumor suppressor 
FOXO3a. As a consequence colon cancer cells depleted 
of DDX5 exhibited reduced cellular proliferation and 
increased population of cells in G1/S phase of the cell 
cycle. Moreover, DDX5 overexpression led to increased 
primary tumor growth and lung metastasis in colorectal 
mice tumor model (109). Collectively, these evidences 
highlight DDX5 and DDX17 to be a major contributor of 
colorectal cancer.

Aberrant estrogen signaling is largely associated 
with breast cancers and a major chemotherapeutic 
target; approximately 70% of human breast tumors are 
positive for ER-alpha (110,111). Both DDX5 and DDX17 
co-activate ER-alpha dependent gene transcription, 
independent of its RNA helicase activity. The steroid 
receptor co-activator (SRA) gene encodes a non-
coding RNA molecule and the SRA protein, SRAP. The 
co-activation was dependent on interaction with SRA 
RNA. Moreover, DDX17 was found to be more implicated 
in estrogen dependent stimulation of endogenous 
ER-alpha responsive genes (86,112,113). NFAT signaling 
is gaining importance in oncogenesis, and functions in 
invasive migration, differentiation and survival of cells in 
the tumor and its microenvironment. NFAT5 is reported 
to be involved in the migratory ability of breast cancer 
cells (114). DDX5 and DDX17 act as co-activators of 
NFAT5, inducing NFAT5 target genes required in tumor 
cell migration. DDX5 and DDX17 also regulates splicing 
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of NFAT5 reducing its protein level thereby exerting fine 
regulation on NFAT5 signaling (115). DDX5 and DDX17 
leads to tumor invasiveness by modulating alternative 
splicing of several DNA and chromatin-binding factors, 
including the macroH2A1 histone (116). DDX5 was found 
to promote G1/S phase progression of the cell cycle 
by upregulating DNA replication factor expression by 
promoting the recruitment of RNA polymerase II to its 
promoters. Additionally, DDX5 locus was observed to 
be frequently amplified in breast cancer (117). A recent 
finding suggests that Wnt/beta-catenin signaling 
upregulates DDX5 transcription in breast cancer. 
Beta-catenin/TCF4 occupies the promoter of DDX5 in 
regulating its transcription. Additionally, DDX5 along with 
beta-catenin upregulates TCF4 expression and maintains 
a positive feedback loop responsible for EMT in breast 
cancer (118). DDX5 regulates miRNAs miR-21 and miR-
182 in breast cancer cells. Depletion of DDX5 resulted 
in reorganization of actin cytoskeleton and reduction of 
cellular proliferation, as a consequence of downregulation 
of miR-182  (119). Other than transcriptional regulation, 
DDX5 also interacts with Ca-calmodulin (CaM); a protein 
triggered by Ca2+ signaling and a major factor in relaying 
the signaling to cell motility (120). The interaction facilitates 
cellular migration and promotes metastasis in breast 
cancer (121). In prostate cancer, DDX5 co-activates 
AR, and promote tumorigenesis (87). Deregulated 
androgen dependent signaling mediated though AR 
is the key cause of prostate cancer (122). DDX5 also 
potentiate beta-catenin and RNA polymerase II mediated 
AR dependent gene expression (123). A  recent study 
stated that DDX5 and DDX17 are master regulators of 
the estrogen and androgen mediated signaling through 
modulation of transcription, and splicing both upstream 
and downstream of the ER and AR (124).

NF-kappaB signaling pathway is frequently 
deregulated in glioma (125). DDX5 acts as a co-activator 
of NF-kappaB signaling through direct interaction with 
p50 subunit of NF-kappaB. DDX5 promoted glioma 
cell proliferation and tumor formation in mice though 
binding with p50 subunit of NF-kappaB (88). In T-ALL, 
aberrant activation of Notch1 prevails over 60% of the 
cases (126). Notch signaling is a cell–cell communication 
based pathway. Its activation eventually releases the 
Notch intracellular domain (NICD), which translocates 
in the nucleus and complexses with RBP-J. This 
complex is joined by MAML co-activator, activating the 
transcription of genes containing RBP-J binding sites 
on their promoters (127). DDX5 has also been shown to 
interact with RBP-J/NICD and occupy the promoters of 
Notch target genes thereby functioning as a co-activator 
in Notch signaling. Again, SRA RNA acts as an additional 
co-activator in this case (128). A  separate study also 
demonstrated that DDX5 binds MAML1, and is associated 
with the Notch1 transcription activation complex in human 
T-ALL leukemic cells thereby acting as a co-activator of 
oncogenic Notch signaling (126).

Though majority of the evidences proves DDX5 
and DDX17 as oncogenic, DDX5 may also possess 
growth suppressive functions in some specific contexts. 
p53 is a major tumor suppressor that executes cell cycle 
arrest, cellular senescence and apoptosis, in response 
to specific stimulus (129,130). Interestingly, DDX5 acts 
as a co-activator of p53, and was found to be recruited 
to p53-responsive promoters in response to DNA 
damage including p21WAF/CIP1 promoter, facilitating 
transcription. Hence, p68 helps in maintaining cellular 
homeostasis in a context specific manner (131,132). 
Another study showed that p38 MAP kinase activated 
by drug oxiplatin phosphorylates DDX5 at threonine 
residues (T564  and/or T446) which cause apoptosis 
induction  (133). Also, DDX5 co-activates the vitamin 
D receptor, stimulating its response in the presence of 
vitamin D ligand, suggesting its growth suppressive 
role (134). This contextual regulation of gene expression 
by DDX5 and DDX17 is not only exerted through 
transcriptional regulation but also by miRNA processing. 
As discussed earlier, DDX5 is essential for miRNA 
processing, and is a part of the Drosha complex. 
RNase III endonuclease Drosha is essential for miRNA 
processing in the nucleus. Interaction with DDX5 leads 
to the recruitment of the TGF-beta/BMP specific Smad 
signal transducers, ER-alpha as well as p53 into the 
Drosha complex; processing of several miRNAs that play 
key roles in cancer progression are executed. DDX5 and 
DDX17 have been implicated in promoting the processing 
of both oncogenic and tumor suppressor miRNAs. DDX5 
was found to promote not only the processing of the 
oncogenic miR-21 through TGF-beta/BMP but also of 
several growth suppressive miRNAs that are modulated 
by p53. In a context dependent manner, DDX5 and 
DDX17 also promote ER-alpha mediated inhibition of 
tumor suppressive miRNAs (42,80).

Post-translational modifications like ubiquitylation, 
sumoylation and acetylation are also predominant 
modes of DDX5/DDX17 modifications. Some reports 
provide possible causes of overexpression of p68 in 
cancers. As mentioned earlier, DDX5 mRNA was found 
to be overexpressed in ovarian carcinoma and multiple 
myeloma. Moreover Wnt/beta-catenin signaling regulated 
the transcription of DDX5 in breast cancer. Besides, in 
colon cancer, poly-ubiquitylated DDX5 was observed 
implying possible defects in its proteasomal degradation 
leading to its overexpression. SUMO modifiation 
stabilizes DDX5 and DDX17 in breast cancer  (85). 
Additionally, sumoylation and acetylation have also been 
shown to modulate DDX5/DDX17 function in case of 
ER-alpha and p53 mediated transcription. Sumoylation 
enhances also repressive function of DDX5 and DDX17 
in a contextual manner (85,135,136). SUMO1, the SUMO 
conjugating enzyme Ubc9 and the SUMO ligase PIAS3 
are upregulated in breast cancer cells, whereas the 
SUMO protease SENP6 is downregulated, suggesting 
that posttranslational modification by SUMO is generally 
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enhanced in breast tumors (78,85). This provides 
possible explanation of p68 overexpression in breast 
cancers (78,80). Thus, p68 overexpression may be due 
to increase in transcript level or stabilization due to post-
translational modifications. Altogether, DDX5 and DDX17 
are involved with crucial signaling pathways of the cell in 
regulating gene expression and oncogenesis (Figure 3).

5.4. DDX6/p54/Rck
The first instance of the involvement of DDX6 

in cancer came from a study involving its mapping 
at a chromosomal breakpoint region 11q23 in B-cell 
lymphoma cell line (137,138). DDX6 was found to be 
present in majority of human and mouse tissues except 
undetectable protein levels in lumbar muscle and lung 
tissues, and very low protein expression in human brain; 
although it’s mRNA was abundant in these tissues. It 
was overexpressed in neuroblastoma, glioblastoma, 
rhabdomyosarcoma, lung cancer cell lines, and in 
hepatocytes of HCV-mediated chronic hepatitis and 
hepatocellular carcinoma (139,140). Also, it exhibited 
overexpression in human colorectal tumors, and its 
abundance strongly correlated with the abundance of 
proto-oncogene c-myc (141,142). Recently, it has also 
been shown to be overexpressed in gastric cancer 
tissues (143).

DDX6 plays significant roles in mRNP assembly, 
translation regulation, RNA export, RNA degradation, RNA 
export and viral RNA expression (20,21,42,52). Besides, 
regulation of expression of genes required for cellular 
proliferation attributes oncogenic properties to DDX6. In 
colorectal cancer cells, DDX6 significantly regulates the 
transcriptional activity of TCF, and expression levels of Wnt 
target genes. Downregulation of DDX6 by RNA interference 
significantly diminished the viability of colorectal cancer 
cells, causing cell cycle arrest in the S phase. It also led 
to induction of apoptosis, and inhibited tumor growth in 
mice (144). DDX6 also contributes to the development of 
human colorectal tumors by stabilization and increased 
translation of the c-myc (142). Proto-oncogene c-myc is the 
major downstream effector of Wnt signaling pathway (103). 
Therefore in colorectal cancer, DDX6 regulates gene 
expression profile of Wnt signaling by exerting transcriptional 
as well as translational control. Yeast homologue of DDX6 
was also reported to be significant in the recovery of G1/S 
cell cycle arrest following DNA damage. Its function in 
the modulation of mRNA metabolism is responsible for 
the recovery (145). In human cervical cancer cell line 
Hela, expression of DDX6 was upregulated during cell 
proliferation and downregulated during differentiation. 
Depletion of DDX6 hampered cell growth by induction of 
cell cycle arrest at S phase. Interaction of DDX6 with eIF4E 
implicated possible modulation of translation initiation of the 
genes involved in the cell proliferation (146). Expression 
levels of miRNAs are frequently downregulated in cancers. 
miR-143 and  -145 are downregulated in most cancers. 
A  recent study showed that DDX6 post-transcriptionally 
downregulated miR-143/145 expression by prompting the 
degradation of its host gene product, NCR143/145 RNA in 
human gastric cancer cell line (143).

DDX6 also possess anti-tumorigenic traits. Its 
overexpression led to inhibition of growth in guinea pig 
cancer cell line (147). VEGF is critical in angiogenesis; 
5’UTR of its mRNA harbors IRES responsible for its 
sustained translation in hypoxia when cap-dependent 
mRNA translation is inhibited. DDX6 interacts with 
the VEGF mRNA 5’-UTR and inhibits IRES-mediated 
translation in normoxia; its expression declines during 
hypoxia. Additionally, depletion of DDX6 increases VEGF 
expression in breast cancer cells (148). Dhh1p, the yeast 
homologue of DDX6 inhibited growth in yeast through 
general translation repression acting as an activator 
of mRNA decapping (149). While several evidences 
advocate growth promoting roles of DDX6, its specific 
functions might rely on its tissue specific expression, 
physiological amount and interaction with other factors.

6. OTHER DEAD BOX RNA HELICASES 
SIGNIFICANT IN ONCOGENESIS

6.1. DDX2/eIF4A
DDX2 is majorly implicated in eukaryotic 

translation initiation. DDX2A is a subunit of eIF4F 

Figure  3. Involvement of DDX5 and DDX17 in oncogenic signaling 
pathways. DDX5 and DDX17 act as co-activators of several oncogenic 
transcription factors. Both co-activate beta-catenin and ER-alpha in colon 
and breast cancers respectively. They also act as a co-activator of NFAT5 
in enhancing migration of breast cancer cells. DDX5 also co-activates 
NF-kappaB in glioma; RBP-J and MAML (mediators of Notch signaling) in 
leukemia; In DNA damaging stress DDX5 co-activates tumor suppressor 
p53 to induce cell cycle arrest and apoptosis.
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complex which binds 5’ cap structure of mRNA through 
eIF4E, thereby playing crucial roles in translation 
initiation. Tumor suppressor PDCD4 controls the 
availability of eIF4A. Elevated eIF4AI expression 
has been reported in a several types of tumor cells; 
physiological significance is poorly understood. 
DDX2 promotes T-cell acute lymphoblastic leukaemia 
development in vivo. Besides, decreased levels of 
PDCD4 are found in gliomas, hepatocellular carcinomas, 
and tumors of lung, colon and breast. Further, depletion 
of DDX2 resulted in reduced proliferation of melanoma 
cells. Inhibition of DDX2 displayed reduction in xenograft 
tumor (52,150). The oncogenic MUC1 C-terminal subunit 
is overexpressed in most human breast cancer; targeting 
the DDX2 blocks MUC1-C overexpression in breast 
cancer cells  (151). DDX2 has also been shown to be 
a potential therapeutic target for modulating tumor cell 
response to chemotherapy (152). LEF-1, a Wnt mediating 
transcription factor is important for cell survival and 
metastasis in cancer, and is produced by IRES-directed 
translation. LEF-1 mRNA is overexpressed in cancers. 
Hippuristanol, an inhibitor of DDX2 has been shown to 
thwart translation of IRES mRNA, and is proposed to 
be used in combinatorial chemotherapy against chronic 
myelogenous leukemia (153). Hippuristanol is also 
reported as a potential therapeutic agent against ATL 
through inhibition of tumorigenesis (154). An intriguing 
recent finding reports that DDX2 promotes oncogenic 
translation through RNA G-quadruplex structures present 
in the 5’ UTR region of its target transcripts which includes 
several oncogenes (155).

6.2. DDX10
DDX10 maps to a chromosomal location on 

11q22–23. It is involved in the leukemia-associated 
chromosomal translocation Inv11 (p15q22). This leads to 
fusion of N-terminus of the nucleoporin gene NUP98 to 
the C-terminal region of DDX10. This has been reported 
in acute myeloid leukemia, myelodysplastic syndrome, 
and blast crisis of chronic myelogenous leukemia. NUP98 
encodes a member of the nucleoporin complex, which 
is involved in the active transport of proteins and RNA 
between the nucleus and cytoplasm (52,150). Ectopic 
expression of the NUP98–DDX10 fusion increased 
proliferation and self-renewal property of primary human 
CD34+ cells, and disrupts their erythroid and myeloid 
differentiation. The NUP98–DDX10 fusion regulates the 
transcription of a several oncogenes, including MYCN and 
COX-2. Mutation of motif VI within DDX10 of the NUP98–
DDX10 fusion diminished its transformation potential 
and transcriptional activation potential, indicating the 
significance of its helicase activity in oncogenesis (156). 
Recently, whole genome mate pair sequencing studies 
revealed fusion between DDX10 and SKA3 in breast 
cancer. Moreover, RNA interference studies have shown 
DDX10 to be a as potential cancer gene with significant 
impact on the growth and proliferation of breast cancer 
cells (157).

6.3. DDX11
DDX11 is vital for the maintenance of sister 

chromatid cohesion. DDX11 is overexpressed in 
melanomas; its depletion by RNA interference halts 
proliferation, and induces apoptosis and defective 
chromosomal segregation in melanoma cells (158). 
DDX11 knockout mice display embryonic lethality (52).

6.4. DDX20/DP103/Gemin3
Apart from its functions in snRNP assembly, 

murine homologue of DDX20 was shown to interact though 
its C-terminal domain with the nuclear steroidogenic 
factor SF-1; crucial in regulation of genes for reproductive 
and endocrine development. Moreover its C-terminal was 
shown to possess an intrinsic transcriptional repression 
activity, and repressed SF-1 function. Moreover, DDX20 
was also found to recruit HDAC2/5, suggesting its 
repressive effect on transcription (159).

It was first implicated in cancer with its 
association with Epstein–Barr virus proteins EBNA2 and 
EBNA3C, which are involved in B-cell immortalization. 
EBNA3C interacts with DDX20 leading to its increased 
stability. Also, EBNA3C promotes formation of a complex 
with p53 and DDX20 which blocks the DNA binding affinity 
of p53, inhibiting its apoptotic functions (160). Recent 
studies in breast cancer showed that DDX20 increases 
MMP9 levels, which are associated with metastasis 
and invasion through activation of NF-kappaB. Also, 
there exists a positive DDX20/NF-kappaB feedback 
loop exerting constitutive NF-kappaB activation. DDX20 
impeded metastasis in a mice xenograft model. DDX20 
has been suggested as a biomarker in human breast 
cancers (161).

DDX20 also has tumor suppressive functions. 
It can mediate apoptosis through transcription factor 
FOXL2, a protein required for proper development and 
function of the ovaries. DDX20 complexes with mitogenic 
Ets transcriptional suppressor; blocks transcription 
of genes required for Ras-dependent proliferation of 
murine macrophages. DDX20 is a major component of 
miRNA RNP complexes. Loss of function of miRNAs, 
and deregulation of miRNA machinery components 
are involved in hepatocarcinogenesis. Reduced 
expression of DDX20 is frequent in human hepatocellular 
carcinomas; DDX20 is a part of miRNP. DDX20 is 
required for the preferential loading of miRNA-140 into 
the RNA-induced silencing complex (RISC). Impairment 
function of miRNA-140 due to reduction of DDX20, 
leads to hepatocarcinogenesis (162). DDX20 was stated 
as a tumor suppressor gene in a mouse liver cancer 
model  (52). Inhibition of DDX20 is reported to activate 
the NF-kappaB pathway. Moreover, DDX20 suppresses 
NF-kappaB function through miR-140-3p activity; it loads 
miRNA140-3p into the RISC. Hence, it participates in 
the loading of specific miRNAs into the RISC complex 
to control gene expression (163). A  study assessing 
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genetic variations in miRNA biogenesis genes in non-
muscle-invasive bladder cancer stated that the most 
significant single nucleotide polymorphisms is harboured 
in DDX20 (164).

6.5. DDX21/RHII/Gu
DDX21 is a nucleolar protein, essential in rRNA 

processing and ribosome biogenesis. It is involved in the 
processing of 20S rRNA to 18S rRNA (52). Besides it is 
also a modulator of transcription. A recent report stated that 
DDX21 can sense the transcriptional status of both RNA 
polymerase I and II to regulate multiple steps of ribosome 
biogenesis (165). It is a transcriptional co-activator of 
c-Jun; its RNA helicase activity was required for the c-Jun 
mediated transcription. c-Jun play significant roles in G1/S 
cell cycle progression, cancer cell proliferation and survival. 
Moreover, it is also involved in rRNA processing (166). 
The N-terminal transcription activation region of c-Jun 
interacts with the C-terminal domain of DDX21. It was also 
shown to be involved in the c-Jun mediated transcription 
in stress response (167). A  recent finding suggests that 
DDX21 is highly abundant in breast cancer tissues 
and cell lines. DDX21 in breast cancer cells promotes 
tumorigenesis by regulating the transcriptional activity of 
c-Jun, and also through rRNA processing. Depletion of 
DDX21 results in significant reduction of tumorigenicity in 
vitro and in vivo  (168). In breast cancer tissues, DDX21 
mRNA expression has been correlated with disease-free 
survival (169); overexpression of accumulation of DDX21 
is reported in colon cancers and lymphomas (170,171).

6.6. DDX39
DDX39 is overexpressed in lung squamous 

cell carcinomas. Its overexpression in HeLa cells 
enhances cell proliferation and colony formation possibly 
through elevation of translation (172). DDX39 is stated 
as a prognostic biomarker of gastrointestinal stromal 
tumors (173,174). Upregulation of DDX39 was observed 
in human malignant pleural mesothelioma cell lines (175), 
and in drug resistant pancreatic cancers cells (176). On 
the other hand low expression of DDX39was associated 
with disease progression of bladder cancers. Depletion of 
DDX39 in bladder cancer cells stimulated their invasion 
ability, thereby suggesting it as a suppressor of invasion 
and disease progression in bladder cancers  (177). The 
mechanistic insights of these varied properties of DDX39 
remains to be elucidated. One intriguing finding suggests 
that DDX39 is required for global genome integrity as well 
as telomere protection, and maintenance by regulating 
telomere length homeostasis. Overexpression of DDX39 in 
human cancer cells led to progressive telomere elongation; 
depletion of DDX39 resulted in telomere shortening. This 
might be one of the mechanisms of enhanced cell survival 
and oncogenesis posed by DDX39 (178).

6.7. DDX43/HAGE
DDX43 was identified as an RNA helicase 

with tumor specific expression in human sarcoma cell 

line. DDX43 transcript abundance was shown to be 
100-fold higher in a number of tumors compared to 
normal tissues, except testis. DDX43 mRNA was found 
to be overexpressed in salivary gland neoplasms, 
CMLs, AMLs, multiple myelomas and melanomas. 
In protein level, it was shown to be overexpressed in 
melanomas and cancers of bladder, brain, breast, 
colon, esophagus, kidney, liver, lung, stomach and 
small intestine. In normal tissues, the protein level of 
DDX43 is undetectable with the exception of testis 
(52,150,179). Recent reports suggest that DDX43 is 
overexpressed in uveal melanoma cell lines; its mRNA 
expression is significantly upregulated in MEK inhibitor 
resistant uveal melanoma, and in liver metastases of 
patients with uveal melanoma. DDX43 induces RAS 
protein expression and signaling, mediating MEK 
inhibitor resistance in uveal melanoma (180). A recent 
report also states DDX43 to be a biomarker for poor 
prognosis, and a predictor of chemotherapy response 
in breast cancer (181). In an approach to assess novel 
biomarkers and target antigens for immunotherapy 
in glioma, glioma cell lines derived from high-grade 
glioma patients were used. DDX43 was identified 
among the most relevant ones in this regard (182). 
DDX43 is reported to be over-activated by promoter 
hypomethylation and this hypomethylation might be 
a favorable prognostic factor in AML (183). DDX43 
is considered a suitable target for immunotherapy 
due to its expression in broad range of tumours. In 
deciphering the modes of oncogenesis, recent studies 
in malignant melanoma-initiating cells (MMIC) which are 
subpopulation of cells responsible for melanoma growth 
and progression, DDX43 was found to be required for 
tumor growth in vitro and in vivo. DDX43 suppression 
caused a reduction in N-Ras protein expression, and 
weakening of its downstream oncogenic signaling 
pathways. DDX43 colocalizes with N-Ras mRNA and 
modulates its expression at the posttranscriptional 
level (184). A separate study showed that DDX43 was 
responsible for transcriptional repression of tumor 
suppressor PML in MMICs. DDX43 promoted unwinding 
of the SOCS1 mRNA, thereby increased its protein 
expression at the post transcriptional level. SOCS1 is 
an established inhibitor of JAK-STAT pathway; PML 
is a downstream target of interferon alpha which acts 
though JAK-STAT pathway. DDX43 dependent increase 
in SOCS1 inhibited JAK-STAT pathway mediated gene 
expression of PML, in response to anti-proliferative 
effects of interferon alpha (185).

6.8. DDX48
DDX48 is a human nuclear matrix protein (150); 

it has been identified to be upregulated in a specific type 
of gastric cancer (186). DDX48 has also been stated to 
be a potential serum marker for pancreatic cancer (187). 
It has been also shown to be overexpressed in vaginal 
carcinoma (188). Its functions in oncogenesis remain to 
be deciphered.
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6.9. DDX53/CAGE
Like DDX43 whose amino acid sequence 

closely resembles DDX53, it shows low levels of 

expression in normal tissues except testis. It is 
overabundant in various cancer tissues and cell lines. 
Hypomethylation of the DDX53 promoter was associated 

Figure 4. Summary of the involvement of DEAD box RNA helicases in oncogenesis. Substantive evidences implicate role of DDX1, DDX3, DDX5, DDX6 
and DDX17 in oncogenesis. Others include DDX2, DDX10, DDX11, DDX20, DDX21, DDX39, DDX43 and DDX53. In the Figure oncogenic properties are 
depicted in red whereas tumor suppressive traits are presented in green.
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with its overexpression (52,150). DDX53 has been 
shown to enhance the migration of cervical cancer cells, 
hepatocellular carcinoma cells, and melanoma cells 
through ERK and p38 MAPK pathways. It has also been 
reported to promote motility of hepatocellular carcinoma 
cells through the activation of focal adhesion kinase, a 
kinase with recognized tumorigenic potential (52). In 
cervical cancer cells, DDX53 overexpression stimulated 
tumor growth in vitro and in vivo in mice. This was the 
consequence of DDX53 mediated enhanced cell cycle 
progression by inducing AP-1 and E2F-dependent 
expression of cyclins D1 and E (189). Recent evidences 
suggest DDX53 to be implicated in chemosensitivity. 
In the drug-resistant human melanoma and the human 
hepatic cancer cell line showed induction of DDX53 
expression. Increased expression of DDX53 resulted 
from displacement of DNMT1 from its promoter 
sequence. DDX53 conferred resistance to drugs through 
negative regulation of p53. DDX53 suppression led to 
induction of p53 expression, and activation of apoptosis. 
Furthermore, reduced expression of DDX53 decreased 
their invasion potential. DDX53 induced the interaction 
between HDAC2 and Snail, exerting a negative effect 
on p53 expression (190). In a recent finding miRNA 
miR-200b was shown to occupy the 3’-UTR of DDX3, 
and negatively regulate the transcription of DDX3 in 
the abovementioned cell lines. miR-200b enhanced 
the sensitivities to chemotherapeutic drugs and had 
negative effects on the tumorigenic and metastatic 
potential in vitro and in vivo. Additionally, miR-200b and 
CAGE constitutes a feedback loop, and regulate the 
chemosensitivity, invasion, tumorigenic potential, and 
angiogenic potential (191).

7. CONCLUSIONS

This review addresses the physiological functions 
of DEAD box RNA helicases having significant impact 
on gene regulation and oncogenesis (summarised in 
Figure 4). From the findings, it is evident that many DEAD 
box proteins play crucial roles in oncogenesis. Though 
DEAD box proteins present themselves as attractive targets 
of combinatorial chemotherapy yet it poses challenges in 
this regard. They cannot be made non-functional as they 
are vital players in normal physiology. In several cases, the 
knockout mice exhibit embryonic lethality. Moreover, most 
of them possess context-dependent tumor suppressive 
functions. As discussed before, specific functions of 
individual DEAD box proteins depends on the interaction 
with other factors. Therefore inhibiting specific interactions 
or targeting the interaction partner might be of translational 
use against cancer. However, several aspects remain to 
be understood regarding the mechanistic insights of gene 
regulation and oncogenesis with respect to DEAD box 
proteins. Therefore further research would shed light into 
the specific mechanisms of oncogenesis which would aid 
in designing of better therapeutic agents to combat their 
oncogenic functions.
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