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1. ABSTRACT

The cellular response to a hypoxic environment 
is regulated by hypoxia inducible factors. Hypoxia 
inducible factor 1 alpha (Hif1alpha) in particular, is 
tightly regulated by the hypoxic environment in most 
cells, and plays an important role in regulating the stress 
response of cells to hypoxia. Interestingly, substantial 
observations are now emerging that point to an important 
role for Hif1alpha in stem cells, including embryonic 
stem cells, neuronal stem cells and hematopoietic stem 
cells. Notably, Hif1alpha has been shown to enhance 
self-renewal of stem cells, mediate a shift to glycolytic 
metabolism, and promote telomerase expression.

2. INTRODUCTION

A cell’s available oxygen can dramatically change 
its metabolic profile. Oxygen is needed in order to drive 
oxidative phosphorylation and provide the Krebs cycle 
with nicotinamide adenine dinucleotide (NAD+). Both of 
these processes occur in the mitochondria and provide 
the large portion of ATP derived from cellular respiration. 
A  hypoxic condition occurs when there is a decrease 
in oxygen partial pressure. Hypoxia, which results from 
injury or disease in complex multicellular organisms, 
can ultimately cause cell death. However, during 
development, cells in the embryo also encounter hypoxic 
microenvironments that facilitate cell differentiation. 
Moreover, these hypoxic niches are essential, since 
they trigger the vascular development of the organism 
and can maintain stem cell populations (1–3). Therefore, 
understanding the response to hypoxia can shed light 
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on the factors triggered in cell death or pertinent to self-
renewal of stem cells.

3. TELOMERASE AND CELLULAR LIFESPAN

It is now well established that the gradual 
shortening of telomeres ultimately causes cell 
senescence in proliferative normal somatic cells (4). 
The direct association of telomere shortening and 
cell senescence was first discovered in the single 
cell eukaryote Saccharomyces cerevisiae, wherein 
mutants that prevented stable maintenance of telomeres 
eventually caused cell senescence and limited lifespan. 
Telomere shortening was shown to be a general 
characteristic of proliferative human somatic cells in vitro 
and in vivo (5,6) over twenty years ago. However, there 
are rare populations of adult human cells, specifically 
certain stem cells and the male germ line, that are 
immune to telomere-induced cell senescence due to the 
presence of telomerase in these cells. Telomerase is a 
ribonucleoprotein complex that functions to complete 
telomere replication, and thereby maintain, or even 
extend, telomeres in proliferative cells. Indeed, human 
telomerase was first discovered in an immortal tumor cell 
line (7).

The active telomerase enzymatic complex 
requires 2 essential components, a catalytic component 
called telomerase reverse transcriptase (TERT), and an 
RNA moiety aptly called the telomerase RNA component. 
The telomerase RNA component is expressed more or 
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less ubiquitously in adults. In most human somatic cells, 
telomerase activity is either very low or undetectable due 
to the lack of expression of TERT. Thus over expression 
of TERT is sufficient to reactivate telomerase activity in a 
variety of different somatic cell types (4). Furthermore, this 
reactivation is sufficient to prevent telomere shortening, 
and extend replicative lifespan indefinitely. The ability of 
over-expression of TERT to extend replicative lifespan 
has now been extended to somatic cells from other 
species as well (8–10).

4. HYPOXIA INDUCIBLE FACTOR 1 (HIF1) 
AND REGULATION OF HYPOXIA

Hypoxic-Inducible Factor 1 (HIF1) is the primary 
transcription factor that mediates the cellular response to 
hypoxia. HIF1, a heterodimer made up of HIF1alpha and 
HIF1beta and belongs to a family of basic helix-loop-helix/
Per-ARNT-Sim proteins (11). HIF1 was first discovered 
when studying the regulation of erythropoietin (EPO), 
a hormone that stimulates blood cell proliferation (12). 
The HIF1alpha subunit is inactivated and degraded 

under normoxic conditions by oxygen-dependent prolyl-
4-hyrodxylase domain (PHD) proteins which bind 
to specific prolines and allow the binding of the von 
Hippel-Lindau protein and subsequent ubiquitination 
that results in proteasomal degradation (13–15). The 
other post-translational modification that is essential to 
activating HIF1alpha, is an oxygen-dependent asparagine 
hydroxylation carried out by factor inhibiting HIF1 that 
targets the transactivation domain located in the C-terminal 
forty amino acids (16) (Figure  1A). This hydroxylation 
interrupts the ability for the C-terminal forty amino acids 
to assemble a transcriptional co-activator complex with 
the cyclic AMP response element-binding protein-binding 
protein (CBP). CBP and E1A-binding protein p300 
(p300/CBP) activate the transcriptional activity of HIF1 (17). 
Stability of the HIF1alpha protein at the bipartite nuclear 
localization signal is essential for the translocation of the 
subunit into the nucleus where it binds with HIF1beta and 
becomes transcriptionally active (18,19). HIF1beta, also 
known as aryl hydrocarbon receptor nuclear translocator, 
is constitutively expressed and, unlike HIF1alpha, is stable 
in normoxic environments (20).

Figure 1. Regulation of HIF1 under hypoxic and normoxic conditions. During normoxic conditions HIF1alpha is inactivated and degraded by oxygen-
dependent prolyl hydroxylases (e.g. PHD), allowing the binding of the von Hippel-Lindau protein that tags the HIF1alpha for ubiquitination and thus 
proteasomal degradation. Hydroxylation of HIF1alpha by an asparagine hydroxylase under normoxic conditions occurs at the transactivation domain and 
prevents the assembly of the transcriptional co-activator complex (HIF1alpha, p300/CBP, and HIF1beta) inside the nucleus. In the presence of oxygen 
SIRT3 regulates the production of ROS inside the mitochondria keeping cellular ROS levels low (A). Under hypoxic conditions the prolyl and asparagine 
hydroxylases are inhibited and active HIF1alpha translocates to the nucleus, forms the transactivation complex at HRE sites, and up-regulates the 
transcription of hypoxia-responsive genes. Inhibition of SIRT3 in the mitochondria permits an increase in ROS production under hypoxic conditions, which 
in turn inhibits the prolyl hydroxylation of HIF1alpha facilitating its stabilization (B).
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In the nucleus, the HIF1 protein is capable of 
binding to hypoxia response elements and serves as an 
activator for a variety of proteins, including EPO, vascular 
endothelial growth factor, pyruvate dehydrogenase 
kinase 1, and enzymes involved in glucose uptake and 
utilization (21–24). The specific reaction to the hypoxic 
condition is variable for different cell types and is partly 
due to the differing amounts of PHDs available (25). 
The HIF1-mediated increase in glycolysis and the 
modification of mitochondrial function, allows some 
cells to reduce oxygen consumption by decreasing the 
number of mitochondria and diverting pyruvate towards 
lactate production to provide the cell with NAD+ (22,26). 
However, HIF1 can mediate cell cycle arrest or stimulation 
in different cell types (27).

Whether or not a cell is stimulated to divide 
or become quiescent under hypoxic conditions is 
intimately tied to the downstream targets of HIF1 in that 
specific cell (28). A sudden drop in oxygen can cause 
a redox imbalance within the mitochondrial electron 
transport chain that results in an increase in reactive 
oxygen species (ROS) (26). This increase in ROS is 
essential for HIF1 activation in hypoxic conditions but 
not anoxic (29). In lymphocytes, the reason for this 
difference is due to the inactivation of PHDs by ROS 
during hypoxia, which stabilizes HIF1alpha and allows 
a transcriptionally active HIF1 to increase levels of 
B-cell lymphoma 2 protein adenovirus E1B 19 kDa-
interacting protein 3 and 3L (BNIP3 and BNIP3L) (30). 
During anoxic conditions ROS are not generated, so 
the lack of oxygen becomes the primary reason that 
PHDs cannot target HIF1alpha for hydroxylation 
and deactivation (29). BNIP3, up regulated by HIF1, 
competes with Beclin1 for binding to B-cell lymphoma 2 
protein, resulting in excess levels of unbound Beclin1, 
which promotes autophagosome formation and results 
in mitophagy (31). However, in embryonic neural 
stem/progenitor cells, HIF1 increases the production 
of miR-210, this miRNA then directly suppresses the 
expression of BNIP3 and allows cell survival (28). 
Consistent with the study done by Wang et al, HIF1alpha 
activation has been found to increase cell proliferation 
in embryonic neural stem/progenitor cells (32). This 
proliferation occurs even though miR-210 represses 
the mitochondrial iron-sulfur cluster assembly proteins 
essential for tricarboxylic acid cycle enzyme aconitase 
and electron transport chain complex I (33). Reduced 
mitochondrial function and increased glycolysis has 
been observed in a variety of stem cells and in the 
developing embryo (34,35).

The downstream effect of HIF1 on 
mitochondria is also dependent on certain sirtuins. 
This family of proteins are NAD+-dependent histone 
deacetylases and under hypoxic conditions they are 
down-regulated due to the decrease in available NAD+ 
from the mitochondrial electron transport chain (36). 

Sirt3, localized in the mitochondria and responsible 
for activating many of the genes required for oxidative 
metabolism, destabilizes HIF1alpha by decreasing 
ROS production (36) (Figure  1B). Sirt6 deacetylates 
histone 3 lysine 9 (H3K9) causing a reduction in HIF1α 
expression (37) (Figure 2).

4.1. Oxygen-independent Regulation of Hif1
HIF1alpha is not only regulated by oxygen-

dependent processes, but also by oxygen-independent 
processes. The phosphoinositol 3-kinase (PI3K) and 
mitogen activated protein kinase (MAPK) signaling 
cascades can increase expression and activation of 
HIF1alpha in certain conditions (38). In many cancers, 
loss of a functional phosphatase and tensin homolog 
tumor suppressor can increase the activity of the PI3K/Akt 
pathway resulting in increased cellular proliferation and 
expression of genes involved in glycolysis (39). It has been 
found that under normal serum conditions, Akt increases 
HIF1alpha translation in a way that is independent 
of the mammalian target of rapamycin (mTOR) (40). 
However, under low serum conditions, mTOR increases 
translation of HIF1alpha through the activation p70S6 
kinase, which then activates the ribosomal S6 protein. 
This pathway results in the increased translation of 
mRNAs containing a 5’-terminal oligopyrimidine tract, 
which HIF1alpha possesses (41). Also important, is the 
effect that the MAPK pathway has on the formation of 
the HIF1-p300/CBP complex, allowing HIF1 to become 
transcriptionally active (42) (Figure 2).

4.2. Hypoxia and embryonic development
Mammalian embryogenesis is a complex 

process that depends on the hypoxic response 
to trigger vascularization, and mesenchymal cell 
development (43). At E8 and E8.5., murine embryos 
that are HIF1alpha null show a lack of cephalic 
vascularization, abnormal neural fold formation, and 
a reduction in the number of somites (2). Supporting 
this, another study showed that a lack of HIF1alpha 
expression by E11 results in developmental arrest and 
lethality due to cardiovascular malformations and cell 
death in the cephalic mesenchyme (44). Figure 3 shows 
the changes in oxygen availability as development 
progresses. Initially, prior to formation of the trophoblast 
shell and cell compaction at the blastocyst stage, the 
developing embryo is small enough that oxygen is 
capable of diffusing through the cellular mass. From the 
blastocyst stage until just prior to vascularization, the 
developing embryo grows in an increasingly hypoxic 
state, until it reaches a mass to surface area ratio that 
no longer allows simple diffusion of oxygen. This hypoxic 
state results in the stabilization of Hif1alpha and initiates 
vascularization and cardiac development. Interestingly, 
development of cardiac vascularization is dependent on 
a continued hypoxic state and it has been found that the 
oxygen partial pressure of fetal blood is at the same level 
as found in hypoxic adult tissues (45).
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5. TELOMERASE FUNCTION IN STEM CELLS

5.1. Telomerase expression in stem cells
In the very early stages of embryonic development 

in mammals telomerase plays the critical role of extending 
the parentally-derived telomeres during the transition 
from morula to blastocyst stages (46). Embryonic stem 
(ES) cells, which are derived from mouse and human 
embryos in the blastocyst stage of development, express 
high levels of active telomerase (47). Stem cells in the 
tissues of adults are often characterized by the presence 
of telomerase, for example the bone marrow is comprised 
of niche environments that contain hematopoietic and 
mesenchymal stem cells. Telomerase activity has been 

found respectively in human and mouse hematopoietic 
stem cells (48,49), intestinal crypt cells (50,51), 
mesenchymal stem cells (52,53), cardiac stem cells (54), 
neural progenitor cells (55,56). Telomerase activity has 
also been detected in human epithelial regenerative 
keratinocytes (57), as well as adult human tissues 
requiring constant turn over of cells and known to contain 
stem cell populations including testis, ovaries, liver, lung, 
and skin (58). Similarly mouse female germ cells (59) and 
kidney stem cells (60) have also been shown to express 
active telomerase.

Telomerase activity is lower in adult stem cells 
and tissue than their embryonic counterparts, which 

Figure 2. Oxygen-independent regulation of HIF1. HIF1 is regulated both by oxygen-independent mechanisms through the PI3K/AKT and MAPK pathways. 
AKT is activated by Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a product of the phosphorylation of Phosphatidylinositol (4,5)-bisphosphate (PIP2) 
by PI3K at the plasma membrane. Under normal serum conditions, Akt increases HIF1α translation independent of mTOR via and unknown mediator. 
However, under low serum conditions AKT activates mTOR which increases translation of HIF1alpha mRNA via p70S6 kinase activation of the ribosomal 
S6 protein. The MAPK signaling pathway up-regulates the transcription of HIF1alpha via its p300/CBP coactivator. In the nucleus, Sirt 6 deacetylates the 
histones in the HRE region of the promoter that HIF1alpha binds, repressing its transcriptional activity by preventing the formation of the transactivation 
complex with p300/CBP.
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in unsurprising given the critical nature of telomere 
maintenance and chromosomal stability during rapid 
growth and development in the embryo. Although 
telomerase activity has been demonstrated to be 
critical to slowing telomere attrition and extending the 
replicative potential of adult stem cells (61), in general 
the activity level of telomerase in adult stem cells is 
adequate only to slow the loss of telomere length relative 
to telomerase-negative somatic cells. It is likely that 
the level of telomerase activity in adult stem cells is an 
evolutionary-derived balance between the need to stave 
of critically short telomere-induced senescence in tissue 
renewing cells and the avoidance of neoplasia arising 
from telomerase-expressing cells.

5.2. Induction or elimination of telomerase 
expression

Much interest in telomerase, particularly its 
expression in stem cells, has derived from a desire 
to impede or reverse the affects of aging. Working 
towards that end and to help understand the role that 
telomerase plays, genetic models have been created 
in mice and in human and mouse cell lines. Increasing 
telomerase activity extended the replicative capacity of 
human somatic cells (4), and restored telomere length 
in serially transplanted T-cells from wild type mice but 
not telomerase RNA component knockout mice (62). 
However, increasing the expression of telomerase to 
restore age-shortened telomeres does not come without 
risks. For example, a study involving K5-mTERT mice 
that have increased telomerase activity in skin found 
augmented hair growth and skin stem cell proliferation, 
but also an increased risk of tumorigenesis (63). That 
being said, a recent study by DePinho and colleagues 
demonstrated that the promise of telomerase activation 
to combat aging is more than just hubris. They generated 

mice with an dysfunctional TERT allele that could have 
functionally active telomerase restored with exposure to 
a chemical and bred homozygous knockouts together 
for four generations (64). These mice showed signs 
telomere attrition, cellular proliferation, and tissue 
morphology associated with advanced age. Following 
restoration of telomerase in the fourth generation adults, 
tissue morphology in the highly proliferative organs testis, 
spleen, and intestine was restore to the appearance of 
wild type mice of the same age (64). Neural stem cell 
proliferation, brain size and olifactory function were also 
restored in telomerase-reactivated mice (64). Maria 
Blasco’s group has shown that it was possible to reverse 
some of the effects of accelerated aging in a line of 
mice lacking the telomerase RNA component TERC by 
backcrossing them with mice carrying the wild type allele, 
thus partially restoring telomerase activity (65). The 
Blasco group then initially demonstrated that constitutive 
TERT expression could counter the effects of aging in 
mice, which also had been made cancer-resistant by the 
over-expression of tumor suppressor proteins (66). In an 
approach more closely modeling potential therapeutic 
intervention they then used viruses to deliver a TERT 
expressing vector into mice at the equivalent of middle 
and old age, and found a reduction in signs of age-
related degeneration such as osteoporosis and an 
extension of lifespan without increased incidence of 
cancer in C57BL6 mice (67). A  separate study by the 
Artandi group into the effects of induction of telomerase 
used a telomerase inducible mouse strain to specifically 
study the impact on hair follicles and hair growth (68). 
They found that induction of telomerase induction caused 
a transition from telogen phase to anagen phase and a 
consequent proliferation of the hair follicle stem cells, this 
in turn promoted new hair growth from the follicles (68). 
Findings such as these provide both useful insights into 

Figure 3. Change in the hypoxic environment during mammalian embryonic development.
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the role of telomerase in adult tissue homeostasis and 
hope for those interested in utilizing telomerase as a tool 
to combat age-related loss of function and vitality. The 
case for employing telomerase in the extension of health 
span has been discussed elsewhere (69).

Telomere elongation has been previously been 
demonstrated to be unnecessary for the extension of the 
life-span of immortalized cells (70). However, ES cells 
derived from mice with and telomerase RNA component 
knockout phenotype do not exhibit active telomerase 
and show gradual attrition of telomere length and loss of 
growth rate with continuous passaging (71). In a transient 
comparison, short hairpin RNA knockdown of hTERT 
caused an reduction in TERT expression and telomerase 
activity that lead to loss of telomere length in telomerase-
positive carcinoma cells (72). Likewise TERT knockout 
ES cells lack telomerase and show progressive telomere 
attrition when passaged in culture (73).

This accumulation of more than two decades 
of knowledge into the function, role, and necessity of 
telomerase in the maintenance of telomeres, and the 
self-renewal of stem cells throughout development 
highlights both the importance of this enzyme and the 
distance remaining in our understanding of it.

6. HYPOXIA AND STEM CELLS

Interestingly, hematopoietic stem cells (HSC) 
require HIF1alpha for efficient re-population potential 
and self-renewal (74). Indeed, circulating HSC, which 
reside in a normoxic environment, maintain expression 
of HIF1alpha (75). Recently, it has been shown oxygen 
partial pressure status of HSC and committed HSC 
progenitors is phenotype-dependent rather than 
localization-dependent (76). This has been backed 
by direct measurement of the partial oxygen pressure 
within mouse bone marrow which demonstrated that 
the HSC reside along arterial-like vessels, but that the 
oxygen in these vessels depletes rapidly upon entering 
the bone marrow cavity (77). It seems probable that this 
apparent localization contradiction can be accounted for 
by a specific population of pericytes found in association 
with quiescent HSC but not cycling HSC along these 
arteriolars (78).

Furthermore, hypoxic growth conditions enhance 
the self-renewal of pluripotent stem cells (embryonic 
stem cells) (79), as well as the Yamanaka factor driven 
reprogramming of somatic cells into induced pluripotent 
stem cells (80). Together, these observations support an 
important role for Hif1alpha in stem cell self-renewal.

6.1. HIF1 and telomerase regulation in stem 
cells

The maintenance of longevity of murine 
embryonic stem (mES) cells is also dependent 

on the ability of HIF1alpha to induce telomerase 
expression (81). Telomere dysfunction can trigger p53-
mediated repression of peroxisome proliferator-activated 
receptor gamma, coactivator 1 alpha and beta, which 
in turn impairs mitochondrial biogenesis and leads to 
apoptosis or senescence (82). We have shown (81) 
in murine ES cells that long term short hairpin RNA 
mediated knock down of HIF1alpha leads to reduced 
expression of telomerase reverse transcriptase, 
the catalytic component of telomerase (83). This in 
turn causes reduction of telomerase activity and the 
inability of mES cells to maintain telomere length during 
proliferation (81). Hypoxia-elevated nuclear expression 
of TERT not accompanied by increases in telomerase 
activity is sufficient to maintain stemness in human 
embryonic stem cells (84). This suggests non-canonical 
roles for TERT expression that are related to cell survival 
and retention of phenotype in stem cells. However, it 
remains to be assessed whether HIF1 is also required 
to maintain active telomerase in other types of stem 
cells. It is known that different cancer cell lines do not 
present a consistent telomerase regulation response to 
hypoxia (85,86). The MAPK pathway was suggested to 
mediate the regulation of telomerase under hypoxia as 
demonstrated by the lack of telomerase activation under 
hypoxic conditions and in the presence of a Mitogen-
activated protein kinase kinase 1-specific inhibitor in solid 
tumor cells (85). The MAPK pathway is involved in the 
activation of HIF1 expression (42), and HIF1 has been 
shown by chromatin immunoprecipitation assay to bind 
to the promoter region of hTERT (86), likely at the +1 
hypoxia response element site in mTert (81). All of which 
implies that upregulation of telomerase under hypoxic 
conditions occurs through the MAPK-mediated activation 
of HIF1, and consequentially the direct transactivation of 
the TERT gene by HIF1.

In a survey of normal somatic tissue Hif1alpha 
expression was absent, with the exception of bone 
marrow (87). This does not come as a surprise since 
the bone marrow contains niches that maintain a 
low oxygen environment (77,88), something that is 
essential to maintenance of the hematopoietic and 
mesenchymal stem cells that reside there (89,90). The 
renal papilla, also noted to have a low oxygen tension, 
has been identified as a niche for adult kidney stem 
cells (91). Recent evidence suggests that despite 
extensive vasculature, portions of the brain supporting 
a neural stem cell niche are in fact functionally hypoxic 
and display Hif1alpha expression (92). Most adult stem 
cells express telomerase (93). We already know that 
regulatory relationship exists between telomerase and 
Hif1alpha in the earliest stages of embryonic development 
when telomerase activity is critically important and 
oxygen tension is low. We also know that low oxygen 
and telomerase activity are found together later in 
development in adult stem cell niches. These correlations 
suggest a strong link between Hif1alpha and telomerase, 
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and support the idea that hypoxia response elements 
may have a role in telomere maintenance throughout life.

In conclusion, a number of important roles 
for HIF1alpha in maintenance of stem cells are now 
emerging (Figure  4). First, evidence is emerging in 
support of a role for Hif1 in promoting a shift from 
oxidative metabolism to glycolytic metabolism in ES 
cells (34,35,80). Second, we have shown that Hif1alpha 
is essential for maintenance of telomerase activity and 
telomere length stability in ES cells (81). Third, studies 
have shown that hypoxic growth conditions promote 
self-renewal of ES cells (79). Furthermore, HSC require 
Hif1alpha for efficient re-population and self-renewal 
potential (74). In the future, it will be interesting to assess 
the extent to which different types of stem cells share 
these different roles for Hif1alpha.
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