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1. ABSTRACT

Biomarkers are molecules or features which can 
provide clinically-relevant information about a particular 
disease state, thus providing useful tools for oncologists. 
Recently, a number of studies have demonstrated that 
DNA methylation holds great promise as a novel source 
of cancer biomarkers. Although promoter regions have 
been the focus of most investigations thus far, mounting 
evidence demonstrates that enhancer sequences also 
undergo extensive differential methylation in cancer cells. 
Moreover, enhancer methylation correlates with target gene 
expression better than promoter methylation, providing 
unexplored strategies for biomarker development. Here, we 
review important considerations associated with the clinical 
analysis of DNA methylation at distal regulatory regions. 
Notably, we highlight emerging literature addressing the 
methylation status of enhancers in development and cancer, 
and subsequently discuss how enhancer methylation 
can be exploited to guide disease management. While 
acknowledging current limitations, we propose that the 
methylation state of enhancer regions has the potential to 
headline the next generation of epigenetic biomarkers.

2. INTRODUCTION

In recent years, our understanding of the molecular 
mechanisms underlying malignancy has increased vastly, 
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leading to the identification of numerous biomarkers that 
are currently employed in the clinic (1). A biomarker refers 
to any molecule or characteristic which can be measured 
and accurately provide information about the status of a 
given physiological or pathological process (2). Biomarkers 
are extremely valuable tools for clinicians as they can guide 
disease management throughout the cancer continuum – 
from initiation to progression (3). Notably, biomarkers 
are used to assess cancer risk, ensure early detection, 
determine prognosis, and predict response to therapy (3). 
However, there are still a large number of clinical situations 
in which the development of novel biomarkers would 
greatly improve patient care while reducing treatment-
associated costs (4-6). Emerging studies have identified 
biomarkers which are epigenetic in nature, i.e. that do not 
rely on mutations in the underlying DNA sequence (7,8). 
Epigenetic regulation is conferred by a complex network 
of reversible chemical modifications on DNA and histones 
which define the transcriptional competency of surrounding 
loci (9). In human cancers, numerous epigenetic alterations 
are known to drive tumor initiation and progression, which 
has led to the development of a new class of biomarkers 
based on chromatin alterations (10-12).

Currently, most epigenetic biomarkers involve 
the detection of aberrant DNA methylation since the 
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techniques use for its detection are highly quantitative and 
thus well suited for clinical use (13). DNA methylation at 
CpG dinucleotides was first described in 1975 (14,15) and 
since then a growing body of literature has demonstrated 
that the transcriptional effect of DNA methylation heavily 
depends on the genomic sites at which it occurs (16). 
For example, CpG island methylation in promoter regions 
correlates with transcriptional silencing of corresponding 
genes while methylation within gene bodies typically 
associates with actively transcribed loci (16,17). Cancer 
cells often feature global hypomethylation accompanied by 
promoter-specific hypermethylation of tumor suppressor 
genes (18,19). To date, almost all DNA methylation-based 
biomarkers have focused on methylation occurring in 
promoters regions, with the most notable example being 
the methylation status of the MGMT gene promoter which 
is used to predict whether glioblastoma patients will 
benefit from temozolomide (7). However, recent evidence 
demonstrates that CpG methylation within enhancer 
regions also greatly influences chromatin organization 
during malignant transformation and progression (20,21), 
uncovering novel opportunities for epigenetic biomarker 
development.

Enhancers are relatively short (20-400 bp) DNA 
sequences that bind tissue-specific transcription factors 
and can regulate transcription at distant loci through 
chromosome looping (22). While most enhancers are found 
within intergenic regions, a significant number of enhancers 
can also be found at intragenic sequences (23,24). Active 
enhancers interact with master transcription factors, a 
process which is intricately dependent on the enhancer 
methylation status (25). Hypomethylation of enhancer 
DNA allows transcription factor binding and thus is 
typically associated with transcriptional activation of 
target genes (25). Conversely, inactive enhancers tend to 
display higher levels of DNA methylation and usually result 
in silencing of target genes (26). Increasing evidence 
suggests that these processes are disrupted in cancer cells, 
leading to cellular de-differentiation (27). Despite the fact 
that most epigenetic biomarkers solely address promoter 
status, mounting evidence demonstrates that methylation 
status of enhancer regions correlates better with target 
gene expression than promoters (20). Thus, since altered 
methylation at enhancer sequences represents a unifying 
feature of tumor cells, it may be exploited as a biomarker 
at different stages of cancer management.

In this article, we address the unexploited 
potential of enhancer DNA methylation as a novel class of 
cancer biomarker. First, we summarize key mechanistic 
concepts relating to methylation of enhancer sequences 
and discuss how they relate to transcriptional regulation 
in development and cancer. These experimental findings 
will serve as the basis for proposing novel applications of 
enhancer DNA methylation within the context of cancer 
biomarkers, which will be discussed in light of their 
current limitations. Finally, we outline possible therapeutic 

implications of enhancer DNA methylation and how 
they contribute to the burgeoning field of personalized 
oncology. Overall, we integrate recently described 
evidence to provide a framework for the future use of 
enhancer methylation in guiding treatment decisions.

3. ENHANCER DNA METHYLATION

In parallel with recent technological advances, 
mounting evidence demonstrates that DNA methylation 
is highly dynamic and that its epigenetic effect strongly 
depends on its particular genomic context (28,29). 
Importantly, it has become clear that the methylation status 
of enhancer regions greatly influences cell type-specific 
gene expression programs (30). While the mechanisms 
through which enhancer methylation is coupled to 
transcriptional regulation are not fully understood, 
some important concepts have emerged from genome-
wide studies (20). Interestingly, dynamic modulation of 
enhancer methylation is observed throughout embryonic 
development, correlating with differentiation into specific 
lineages (31). In human cancers, many enhancers 
become dysregulated, leading to cellular de-ifferentiation 
and acquisition of malignant properties (32,33).

3.1. General Mechanisms
While the interdependence between 

enhancer activity and DNA methylation remains under 
investigation, key mechanistic insights have delineated 
principles of DNA methylation at enhancer regions. 
At these genomic sites, DNA methylation usually 
correlates with enhancer silencing and repression 
of target genes while active enhancers are typically 
hypomethylated  (30). Active, demethylated enhancers 
are characterized by the presence of H3K4me1, 
H3K27ac, p300, pol II, TET1, and enhancer RNA (eRNA) 
transcription (26,34, 35). Importantly, enhancer activation 
correlates with nucleosome absence, adding another layer 
to the complex epigenetic regulation of distal regions (33). 
Conversely, inactivation and loss of nucleosomes at 
enhancer regions are followed by de novo methylation, 
thus allowing reversible enhancer methylation in response 
to environmental cues (36). H3K4me1 is a commonly 
used marker of active enhancers, and results from the 
activity of the MLL3/MLL4 methyltransferases and their 
associated complexes (37). Adding to the complexity 
of enhancer regulation, it has also been shown that 
enhancer activity and fidelity is controlled by Polycomb-
dependent H3K27me1 and H3K27me2  (38). While the 
exact mechanism remains incompletely resolved, it is 
now well accepted that many factors regulate enhancer 
activity, and that cellular context influences epigenetic 
regulation at distal enhancers (30).

A critical feature of enhancers is that their 
activity is highly tissue-specific, and increasing evidence 
suggests a tight interplay between active enhancers and 
binding of lineage-specific transcription factors (39,40). 
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This finding was first reported by Saluz et al. almost 
30 years ago who demonstrated that enhancers regulated 
by estrogen receptor (ER) underwent demethylation 
upon treatment with estradiol, and that enhancer 
hypomethylation correlated with increased expression of 
ER target genes (25). More recently, it was also shown 
that CpG demethylation at glucocorticoid receptor (GR) 
binding sites correlates with cell type-specific chromatin 
accessibility and that DNA methylation at the core 
GR-responsive elements can interfere with GR binding 
in vitro (30). Importantly, emerging data suggests that 
enhancer activity is also coupled to the epigenetic status 
of promoters, with active enhancers harboring H3K4me3 
or H3K27ac marks at promoter regions, suggesting 
that transcription factor-induced looping can have long 
range effects on promoter status (32,40). The intricate 
relationship between transcription factors and enhancers 
is further complicated by the recent finding that RNA 
transcripts can be transcribed from active enhancer 
regions, giving rise to enhancer RNAs (eRNAs) (41,42). 
Beyond merely reflecting activation of associated 
enhancer loci, eRNAs have been attributed multiple 
functional roles that are critical for optimal target gene 
regulation (43,44).

From a mechanistic standpoint, a key question 
that has generated a lot of interest recently is how 
enhancers regulate transcription at distant loci (45). 
It is important to recognize that the answer takes root 
in the three-dimensional structure adopted by DNA. 
Given the flexible nature of the double helix, genomic 
regions that are linearly far away may be brought 
together via looping of DNA segments (46). This process 
of looping can therefore bring enhancers in close 
proximity to the promoter of their target genes. Since 
active, demethylated enhancers are bound by factors 
that promote transcription, spatial proximity to target 
promoters also stimulates gene expression (47). Given 
the value of identifying specific enhancer-target gene 
pairs, methods to quantify direct interactions between 
any two genomic regions have been developed. Most of 
them rely on the principle of chromosome conformation 
capture (3C) (48), which has now been adapted for 
genome-wide throughput using techniques such as 
Hi-C (49). This has allowed the generation of 3D maps of 
chromatin loops, which have revealed that the genome 
is preferentially distributed within regions of the nucleus 
called topologically associated domains (TADs) (50). 
Thus, enhancers should be seen as inherent parts of a 
complex epigenetic machinery that operates in a three-
dimensional fashion.

3.2. Normal Cellular Differentiation
Since enhancer activity defines cellular 

differentiation, these genomic regions typically 
represent the most differentially methylated sequences 
between tissues  of  distinct  lineages  (23). Thus, 
enhancer methylation plays critical roles during 

embryonic development. As ES cells differentiate, 
enhancers of pluripotency are inactivated and those 
linked to differentiation are activated upon dynamic 
hydroxymethylation of enhancer DNA (51). For example, 
during neural differentiation, FOXA1-dependent 
enhancers are intrinsic cell-type-specific regulatory 
regions of which activities have to be potentiated by 
FOXA1 through induction of an epigenetic switch 
inducing DNA demethylation (52). Moreover, differences 
in DNA methylation between human neuronal and glial 
cells are concentrated in enhancers and non-CpG 
sites (53). These data are consistent with the strong 
epigenetic nature of cell differentiation during embryonic 
development and highlight the critical role of dynamic 
enhancer DNA methylation in this process.

In addition to its implication in embryogenesis, 
enhancer methylation continues to be critical for numerous 
physiological processes that occur throughout adulthood. 
In order to maintain their terminal differentiation, cells 
must actively maintain lineage-specific enhancer activity 
through enhancer hypomethylation to ensure proper 
homeostasis (31,34). For example, recent studies have 
shown that the tissue-specific expression of SF-1/Ad4BP 
relies on the methylation status of specific distal regulatory 
regions (54). In addition, dynamic regulation of enhancer 
methylation is also required in cells that undergo changes 
in cell fate under physiological conditions such as 
hematopoeisis. For instance, genome-wide methylation 
profiling in different T cell lineages demonstrated 
extensive methylation differences particularly at 
enhancer regions (55). Likewise, analysis of the DNA 
methylome and transcriptome in granulopoiesis revealed 
that differentially methylated sites across different 
myeloid cells were enriched in enhancer regions (56). 
Taken together, these findings suggest that enhancer 
DNA methylation regulates differentiation in normal cells. 
Thus, enhancers of tissue specific-genes must remain 
unmethylated and active to maintain cellular identity. 
Accordingly, misregulation of this process can lead to 
malignant transformation.

3.3. Human Cancers
In parallel with the dynamic role of enhancer 

methylation during development, aberrant methylation of 
distal regulatory regions also characterizes cancer cells 
of both solid and hematological malignancies (33,57). 
While promoter methylation has been extensively studied 
in the context of cancer, mounting evidence suggests 
that enhancer methylation is likely to be equally or more 
important to tumor biology. Pioneering studies by Aran 
et al. have demonstrated that expression of target genes 
correlates better with enhancer methylation than with 
promoter methylation in multiple solid tumor types (20). 
Moreover, the effect of methylation differences on gene 
expression is significantly higher at enhancer sites 
compared to promoters (20). There is also evidence 
reporting that cancer-associated enhancer activation is 
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intricately linked to the acquisition of specific chromatin 
marks such as H3K4me3 or H3K27ac at promoter 
regions (32). These data are consistent with a model in 
which enhancer DNA methylation regulates the epigenetic 
status of associated promoters and target genes. In 
cancer cells, differentially methylated enhancers are 
bound by a larger number of transcription factors than 
predicted for the genomic average and unmethylated 
sites contain more transcription factor binding sites than 
methylated sites, in line with the idea that DNA-binding 
factors reprogram enhancers in a methylation-specific 
manner  (21). Furthermore, enhancer sites frequently 
altered in human tumors are evolutionarily conserved (58), 
suggesting that these regulatory regions are relevant in 
controlling cancer-associated gene expression.

In tumor cells, the target genes affected by 
enhancer hypermethylation and hypomethylation regulate 
subsets of genes with distinct biological properties (21) 
(Figure  1). Recent evidence demonstrates that many 
hypomethylated enhancers are shared across a wide 
variety of tumor types while hypermethylated enhancers 
are mostly restricted to one cell type (20). Based on 
this principle, hypermethylation of these tissue-specific 
enhancers would induce de-differentiation of normal cells 
into malignant cells. In contrast, the genes regulated by 
hypomethylated enhancers are preferentially involved 
in active proliferation and are shared across many 
tumor types (20). Thus, both hypo and hypermethylated 
enhancers may provide distinct but complementary 
information relating to tumor biology. Interestingly, 
emerging evidence suggests that the methylation 
state of specific regulatory regions can be inherited 
transgenerationally (59). Genetic variants associated 
with specific enhancer methylation sites have been 
shown to correlate with disease incidence (60). Such 
variant loci are termed methylation quantitative trait loci 

(meQTLs) and their status may be used to determine 
cancer susceptibility (61), adding another dimension to 
the use of enhancer methylation in cancer management.

4. ENHANCER METHYLATION AS A NOVEL 
BIOMARKER

Given the emerging evidence demonstrating 
that enhancer regions undergo differential methylation 
in tumor cells, we propose that their methylation 
status may be exploited to provide relevant disease-
related information, thereby giving rise to a new class 
of epigenetic biomarkers. Over the past decade, key 
technological advances have led to a dramatic rise in the 
throughput and sensitivity of DNA methylation analyses, 
accompanied by a significant decrease in associated 
costs (1,62). As a consequence, biomarkers based on 
DNA methylation are becoming increasingly attractive, 
particularly given our growing knowledge of how the 
epigenome affects tumor biology. For the first time, we 
outline some clinical scenarios in which biomarkers based 
on enhancer methylation may improve current standard 
of care. It is important to note that significant challenges 
must be overcome before the routine use of enhancer-
based biomarkers is included into clinical practice. 
However, given the exponential increase in epigenomic 
technology observed during the past decades, the 
strategies discussed below provide novel avenues that 
are likely to become feasible in a reasonably near future.

4.1. DNA methylation analysis
Paradoxically, the DNA methylome present at 

enhancers displays less intertumoral heterogeneity than 
the mutational landscape of human tumors (32), making 
this epigenetic mark more conducive to biomarker 
development. Adding to its value as a biomarker, DNA 
methylation represents a stable chemical mark at room 

Figure 1. Molecular model of enhancer methylation in human cancers. Hypomethylated enhancers are typically permissive for chromosomal looping and 
can stimulate the expression of distal proliferation genes, leading to elevated mitotic rate. lternatively, hypermethylation of tissue-specific enhancers may 
result in silencing of genes specifying cellular identity, thus promoting de-differentiation.
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temperature and its degradation is expected to be minimal 
in clinical storage conditions (63). Importantly, DNA 
extracted from formalin-fixed paraffin-embedded (FFPE) 
tissues is suitable for DNA methylation analysis  (64). 
An important advantage of DNA methylation-based 
biomarkers is that cell-free DNA is present in a number 
of body fluids and thus can be isolated through non-
invasive means. To date, researchers have been able 
to successfully detect and quantify methylation of DNA 
originating from multiple body fluids including plasma/
serum (65), urine (66), sputum (67), and saliva (68). As 
the list of body fluids containing detectable DNA continues 
to grow (69), the number of opportunities to develop DNA 
methylation-based biomarkers also expands.

Currently, DNA methylation analysis methods 
can be classified in three main categories based on their 
general mechanism of action: enzyme digestion, antibody/
protein enrichment, and bisulfite modification  (70). 
Additionally, each technique can also be coupled to other 
experimental techniques depending on the question of 
interest (71). First, since DNA methylation occurs only 
on cytidine bases, enzymatic restriction of DNA allows 
the discrimination between methylated and unmethylated 
DNA at restriction sites (72), serving as the basis for 
techniques that quantify DNA methylation using restriction 
enzyme-based assays (72). Secondly, another emerging 
technique to analyze DNA methylation, methylated DNA 
immunoprecipitation (MeDIP), relies on the recognition 
of methylated DNA fragments by an antibody specific to 
5-methylcytidine (73,74). The immunoprecipitated DNA 
can subsequently be analyzed either in a locus-specific or 
genome-wide fashion depending on the particular question 
of interest (71,75). Recently, the Infinium HM450 arrays 
have been highly popular for DNA methylation profiling, 
and they provide the advantage of covering a number of 
annotated enhancers (76). Lastly, techniques relying on 
chemical conversion of DNA are becoming the preferred 
method for analyzing DNA methylation (77). Typically, DNA 
templates are subjected to sodium bisulfite treatment, 
which converts non-methylated cytidines into uracil while 
leaving methylated bases unaffected, thereby providing a 
means to identify the methylation status of specific genomic 
sequences  (78). Among bisulfate-based techniques, 
Sequenom EpiTYPER has been well cited in the literature 
as a platform for DNA methylation analysis  (79). Finally, 
DNA methylation profiling may subsequently be analyzed 
via the UCSC genome browser to identify whether relevant 
differentially-methylated regions (DMRs) reside within 
enhancer sequence. Since enhancer regions have been 
annotated, they have been integrated into computational 
packages that can identify whether a particular sequence 
resides within an regulatory region (80). Thus, DNA 
methylation can be quantified through various methods 
that offer a broad range of sensitivity and specificity.

While there are a wide variety of DNA 
methylation analysis platforms available, a number of 

factors must be considered when selecting a method that 
fits optimally within the context of clinical use. Important 
variables include genome coverage (global vs. loci), area 
studied (CpG islands vs. CpG poor regions), types of 
data (quantitative vs. sensitive), and availability of DNA 
(paraffin-embedded samples vs. high purity DNA), all of 
which influence the choice of an optimal DNA methylation 
detection techniques. For example, while restriction 
enzyme-based methods are able to resolve methylation 
differences in low CpG density regions, the sensitivity of 
these assays is limited to enzymes’ target sites (81,82). 
In addition, they require substantial amounts of DNA 
with high purity and integrity, which is not always 
available in a clinical setting. In contrast, MeDIP allows 
genome-wide coverage but does not provide base 
pair resolution. Currently, the “gold standard” in DNA 
methylation analysis involves bisulfite conversion after 
which the resulting DNA undergoes PCR amplification 
and sequencing (83). An important advantage of these 
techniques is that it requires less DNA while providing 
base pair resolution. Methylation-specific PCR (MSP) 
is another technique requiring chemical conversion 
that provides information at the single-locus level. MSP 
does not require sequencing and is independent of the 
use of methylation-sensitive restriction enzymes (84). 
Pyrosequencing, on the other hand, is a method that 
relies on quantifying bioluminometric signals generated 
followingrelease of pyrophosphates during nucleotide 
incorporation (85). This assay is flexible and can be used 
to quantify methylation in CpG islands as well as CpG 
poor regions. Given that many bisulfite-based methods 
continue to improve as the technology evolves, DNA 
methylation as a biomarker will also become more viable 
for clinical testing as time progresses.

4.2. Cancer predisposition
Previous studies have evaluated the link between 

genetic variants with cancer risk and have overwhelmingly 
revealed that cancer incidence cannot be explained 
solely on the basis of genetic inheritance. Interestingly, 
a large number of cancer-related SNPs have been found 
within regulatory sequences (86). Unfortunately, because 
they are often found in intergenic regions, the SNPs are 
often overlooked and thus a number of these potentially 
relevant SNPs are not exploited. Recent data strongly 
suggest that these intergenic GWAS hits should be 
further investigated as they may represent key elements 
in transcriptional regulation (87,88). Providing novel 
insights into this issue, an increasing number of SNPs 
have been linked to specific DNA methylation patterns 
(meQTLs) in cancer, offering a potential mechanism to 
mask the effect of disease-related SNPs (60). A growing 
number of meQTLs are being linked to many disorders 
outside of cancer, including type 2 diabetes (T2D) and 
other complex diseases (89,90). Interestingly, meQTLs 
have also been discovered in studies involving twins, 
suggesting that meQTLs are important determinants 
of disease predisposition (91). Thus, meQTLs may be 
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used to identify individuals at higher risk of developing 
malignancies, and therefore likely to benefit from an 
earlier and more frequent cancer screening regimen.

In line with this idea, known breast cancer-
associated risk loci have been reported to associate with 
enhancer sites whose methylation status preferentially 
correlates with intertumor variation. These included 
estrogen receptor (ER) enhancers whose methylation 
levels significantly correlated with cyclin D1 and MAP3K1 
expression in ER+ breast cancer cells (21). Further studies 
have shown that correlation of target gene expression 
was higher for enhancer methylation than for SNPs (21). 
In colon cancer, differentially methylated enhancers are 
enriched in haplotype blocks that contain genetic variants 
associated with colon cancer incidence (32). Recently, 
Heyn et al. provided a comprehensive meQTL catalog 
containing DNA methylation associations for 21% of 
interrogated cancer risk polymorphisms spanning 13 solid 
cancer types (61). A key finding was that epigenetic risk 
alleles occur independently of tissue type, which draws 
attention to the stable character and potential function as 
risk epi-polymorphisms. Overall, 72% of meQTLs were 
also detected in paired normal tissues, suggesting that 
relevant meQTLs could be detected in tissues that do not 
require invasive sample collection (61). Overall, these 
data indicate that DNA methylation at enhancer regions 
interacts with clinically relevant SNPs and therefore 
influences cancer predisposition, a phenomenon that 
may be exploited clinically.

4.3. Early detection
It is well appreciated that tumors evolve over 

time and consequently that detecting the disease at an 
early stage increases the likelihood of favorable patient 
outcome (92). Currently, the use of biomarkers for 
screening and early detection is restricted only to a few 
cancer types despite strong evidence demonstrating that 
cancer screening leads to better medical and economic 
consequences (1). The exponentially decreasing cost 
of DNA methylation analysis makes the assessment 
of enhancer methylation an attractive option for large-
scale screening programs (93). In addition, since 
DNA can be extracted non-invasively from numerous 
body fluids, the population may be more likely to 
follow this screening regimen as opposed to more 
invasive screening methods such as a colonoscopy. 
As previously introduced, enhancers that become 
hypomethylated in cancer cells tend to regulate genes 
associated with distinct biological functions compared 
to hypermethylated enhancers. Notably, enhancers 
that become hypomethylated in cancer tend to regulate 
genes promoting cellular proliferation (20). Importantly, 
many of these differentially-methylated enhancers 
are shared across many different cancer types (20), 
suggesting the presence of a conserved epigenetic 
program underlying neoplastic transformation. The 
methylation status of these enhancers could thus be 

used as an early indicator that a tumor may be present 
and that further diagnostic tests should be considered. 
Along similar lines, these biomarkers could also helpful 
in monitoring the presence of recurrent disease after 
therapy. While these recurrently hypomethylated 
enhancers still require extensive validation prior to 
clinical use, current evidence suggests that analyzing 
their methylation status provides an attractive 
opportunity to develop a new generation of affordable 
and non-invasive screening biomarkers.

Another avenue that may lead to earlier 
detection is the identification of specific genetic 
alterations that disrupt enhancer regions and lead to 
their aberrant activity. For example, Northcott et al. 
have shown that somatic structural variants juxtapose 
the normally repressed GFI1B oncogene proximal to an 
active enhancer in medulloblastoma, leading to aberrant 
GFI1B expression (94). Importantly, these genetic 
variants were specifically observed in medulloblastoma 
subgroups  3 and 4, for which a driving alteration had 
not yet been described (94). While few cases like these 
have been reported to date, recent advances in genomic 
sciences suggest that more of these enhancer alterations 
are likely to be discovered. Since multiple body fluids 
contain DNA suitable for sequencing, such pathologic 
variants could also be detected in body fluids and provide 
an early indication that a tumor is likely present. Thus, 
as we characterize more of these enhancer-regulating 
aberrations, the dynamic interplay between the genome 
and the epigenome may also be exploited in the context 
of cancer biomarkers.

4.4. Diagnosis, prognosis and treatment 
response

Demethylated and active enhancers are largely 
unique to individual cell types. Since enhancer methylation 
levels are intimately linked to cell differentiation, 
differentially methylated enhancers may also provide 
information regarding the differentiation status of tumors. 
As such, the gain of methylation at tissue-specific 
enhancers may indirectly serve as a measure of cellular 
differentiation. In general, less differentiated tumors tend 
to be more metastatic and aggressive compared to more 
differentiated neoplasms (95), thus differential enhancer 
methylation may help determine patient prognosis. Hu 
et al. recently investigated genome-wide methylation 
changes in renal cell carcinoma (RCC) (96). Their results 
indicate that altered methylation was particularly enriched 
in kidney-specific enhancers, and was correlated with 
downregulation of target genes (96). Furthermore, many 
differentially methylated enhancer regions were enriched 
in transcription factor binding sites, particularly those 
associated with hypoxia, a key feature of RCC  (97). 
Importantly, hypermethylation of those enhancers 
correlated with lower overall survival in both univariate 
and multivariate analyses (96). These novel findings 
suggest that the relationship between hypermethylation 
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of specific enhancers and prognostic features may 
represent a widespread feature of human cancers that 
could be exploited in biomarker development.

Currently, the clinical diagnosis of human 
tumors is made by taking into account a number of 
factors that may vary from one cancer type to the other. 
For example, breast tumors can be subdivided on the 
basis of histological and molecular findings into distinct 
clinical entities such as ER/PR+, HER2+, luminal A/B, 
and triple negative breast cancer (TNBC) (98). However, 
even within these subtypes there exists considerable 
molecular heterogeneity such that the clinical course is 
highly variable from one patient to the other (98). Thus, 
since the methylation status of key enhancers can 
greatly influence cancer-specific gene expression (21), 
analysis of enhancer DNA methylation may improve 
the establishment of a diagnosis and also a prognosis 
even within well-established clinical subtype. Along the 
same lines, integrative genomic and epigenomic studies 
may be conducted to identify combinations of specific 
enhancer activation/loss and somatic gene mutations that 
can accurately and reproducibly provide relevant clinical 
information (99), a concept which can be adapted to many 
tumor types. Moreover, we speculate that enhancer DNA 
methylation could also be useful for patients diagnosed 
with a genetic cancer syndrome, who must often live with 
the fear that a tumor may arise at any time (100). For 
some of these patients, it may take years before cancer 
appears, and some may even live cancer-free all their 
life. If we can identify enhancers whose methylation state 
can predict the likelihood that these patients can develop 
cancer at different stages of their lifespan, it would greatly 
reduce anxiety and improve quality of life in this patient 
population (100). This would also stimulate research into 
the epigenetic implications of familial cancer syndromes, 
an aspect that has often been overlooked.

Another difficult clinical problem to address is 
determining the primary site of a metastatic lesion with 
unkown origin. In these particular cases, very little is 
known about the molecular features driving progression, 
thus treatment remains difficult to select and often 
fails  (101). To address this problem, enhancer DNA 
methylation may be used to help identify the origin of the 
primary tumors. A recent study conducted in colorectal 
cancer has shown that inactivated enhancers are highly 
crypt-specific whereas those who gain active enhancer 
marks are relatively noncrypt-specific, suggesting that 
enhancer status can discriminate between tumors 
originating from different cell types (32). Thus, tumors 
retain an epigenetic “fingerprint” of their tissue of 
origin at enhancer regions. Accordingly, the enhancer 
methylation profile of the metastases could be compared 
with signatures of normal cell types to infer the most 
likely organs from which the tumor has originally spread. 
The information provided by enhancer methylation could 
therefore allow clinicians to request more specialized 

tests to identify the primary tumor with more accuracy, 
which would lead to improved diagnosis and more 
appropriate treatment selection.

In recent years, the number of FDA-approved 
targeted therapies has continued to dramatically 
rise  (102). However, the rate at which biomarkers 
predicting response to the agents has not followed 
this trend, such that a number of new drugs are given 
to an unselected population of patients because of the 
lack of appropriate biomarker (103). As a result, there 
is a wide range of responses to these treatments, 
which significantly hampers clinical management. For 
example, the use of antiangiogenic drugs has been 
successfully implemented in the clinic for some years 
now, but remains without a clear biomarker to predict 
whether a given tumor may be intrinsically resistant or 
sensitive to these therapies (104). Given recent reports 
linking neoangiogenesis and aberrant DNA methylation, 
it is probable that the enhancer methylome may hold 
promising candidate biomarkers to predict response to 
antiangiogenic agents (105-107). In parallel, there is an 
emerging interest in developing novel immune-based 
therapies, and there are currently very few molecular 
biomarkers available to determine which patients 
are likely to benefit from these treatments, which are 
often very expensive (108). Finally, we propose that 
biomarkers based on enhancer DNA methylation hold 
tremendous promise in numerous diseases outside of 
cancer. Since some of the most common diseases in the 
world such as heart disease (109) and diabetes (110) 
have a strong epigenetic basis, it logically follows that 
the enhancer methylome may emerge as a key source of 
next-generation biomarkers.

5. THERAPEUTIC IMPLICATIONS

It is now widely accepted that genetic and 
epigenetic aberrations drive the initiation and progression 
of human neoplasms (111). However, the inherent 
reversibility of the epigenome, as opposed to static 
mutations occurring within the DNA sequence, makes 
it more amenable to therapeutic manipulations (112). 
In line with this idea, many antagonists of epigenetic 
regulators have shown success in clinical testing for 
a number of tumor types (113). Moreover, inhibitors 
of DNA methyltransferases (DNMTs) and histone 
deacetylases (HDACs) are currently in clinical use for 
some haematological malignancies (114-116). All this 
evidence suggests that cancer cells hijack the epigenetic 
machinery to promote their survival and tumorigenic 
properties. Given that enhancer activity plays critical 
roles in regulating the cancer epigenome (117), abnormal 
enhancer methylation may therefore be exploited in the 
development of novel therapeutic strategies.

Along those lines, one potential approach 
represents the use of compounds targeting the enzymes 
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catalyzing the addition of methyl marks at enhancer 
regions, the DNA methyltransferases (DNMTs). As 
previously mentioned, tissue-specific enhancers become 
hypermethylated in transformed cells, leading to loss 
of tumor suppression and normal differentiation. This 
implies that the lost gene function of these lineage-
specific genes can potentially be reinstated by simply 
reversing the abnormalities in DNA methylation. Currently, 
azacytidine and decitabine are the two most widely used 
FDA-approved demethylating drugs (118). Despite the 
efficacy of these drugs in haematological neoplasms, 
their pleiotropic effects and incompletely understood 
mechanism-of-action indicate that their activity may be 
related to methylation changes in enhancer regions. 
Another exciting development has been the recent 
discovery that a significant fraction of tumor-suppressive 
microRNAs (miRNAs) becomes epigenetically silenced 
in various neoplasms (119,120). Since enhancer 
methylation often dictates the transcriptional competency 
of target genes, hypomethylating agents may lead to the 
re-induction of these miRNAs, thereby hampering tumor 
growth (120,121).

As previously mentioned, enhancer activation 
involves an intricate interplay of various macromolecules 
including a novel class of non-coding transcripts 
derived from active enhancers which are termed 
eRNAs (122,123). Stimulus-dependent transcription 
of eRNA itself has been associated with transcriptional 
activation of nearby coding genes, suggesting it that 
eRNAs actively regulate expression of target genes 
(124-126). For example, eRNA production from p53-
bound enhancer regions was shown to be required for 
efficient p53 transactivation (127). Given the widespread 
alterations in enhancer methylation observed in tumor 
cells, this enhancer-eRNA interdependence may be 
therapeutically exploited in cancer. Accordingly, RNA-
interfering agents such as antisense oligonucleotides 
and small interfering RNAs (siRNAs) may be employed 
to degrade selected eRNAs, which in turn attenuates 
enhancer-mediated transcriptional activation of target 
oncogenes. This strategy has been previously employed 
in a pioneering study which showed that antisense RNA-
mediated degradation of DNA methyltransferase mRNA 
significantly inhibited tumorigenesis (128). Recently, 
functional studies have demonstrated that targeted 
eRNA-degradation via siRNAs resulted in specific 
inhibition of target gene-regulation from the associated 
enhancer sites (127,129). The successful depletion of 
eRNAs via RNA-interference highlight the potential of 
such epigenetic therapies in human cancers and provide 
the rationale for further investigation of their clinical 
efficacy (96).

The epigenome is inherently regulated by cues 
originating from the extracellular microenvironment 
through the activation of specific signaling pathways 
that converge into chromatin remodeling (130). To 

date, the molecular signals that initiate the methylation 
and/or demethylation of enhancer regions have not 
been elucidated. However, as our understanding of the 
interplay between cellular signaling and epigenetics 
improves, it might become possible to predict the relative 
activation state of specific signaling pathways based 
on the methylation profiles of critical enhancers. This 
therapeutic strategy would thus couple metabolism and 
epigenetic regulation, an emerging connection in the field 
of cancer biology (131). The potential of this approach 
has been recently demonstrated in neuroblastoma, 
where inhibition of CDK7 attenuated the downstream 
tumor-promoting effect of n-Myc activity at enhancer 
regions (132). Interestingly, this strategy was particularly 
successful in tumor cells with MYCN amplification, 
suggesting that therapeutic strategies based on 
enhancer dysregulation could be targeted to patient 
populations harbouring specific genetic alterations (132). 
As such, enhancer DNA methylation represents valuable 
molecular information that should be integrated within the 
framework of personalized cancer therapy.

6. CONCLUSIONS

In this article, we build on recently uncovered 
concepts in transcriptional regulation to propose that 
the DNA methylation status at enhancer regions may 
reflect many aspects of tumor biology and provide 
useful information in disease management. Importantly, 
we highlight that DNA is a very stable molecule that 
can be harvested from a number of body fluids and 
that quantification of DNA methylation is increasingly 
accurate and sensitive, which are key features of 
effective biomarkers. In addition to these technical 
advantages, mounting evidence demonstrates that 
enhancer DNA methylation correlates better with 
expression of cancer-related genes than promoters, 
thus representing an improvement over current 
biomarkers based on promoter methylation. Specific 
subsets of enhancers preferentially undergo differential 
methylation in different contexts, thus providing a wide 
range of potential biomarkers to help clinicians assess 
cancer risk, detect cancer early, and define patient 
prognosis. Overall, we believe the information provided 
by enhancer methylation will not only help guide disease 
management but also stimulate research into novel 
frontiers in biomarker development.
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