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1. ABSTRACT

Non-homologous end-joining (NHEJ) is an 
essential DNA double strand break repair pathway 
during all cell cycle stages. Deficiency in NHEJ factors 
can lead to accumulation of unrepaired DNA breaks or 
faulty DNA repair, which may ultimately result in cell 
death, senescence or carcinogenesis. The Ku70/80 
heterodimer is a key-player in the NHEJ pathway and 
binds to DNA termini with high affinity, where it helps to 
protect DNA ends from degradation and to recruit other 
NHEJ factors required for repair. The mechanism of 
Ku70/80 detachment from the DNA helix after completion 
of DNA repair is incompletely understood. Some data 
suggest that certain DNA repair factors are ubiquitylated 
and targeted for proteasomal degradation after repair. 
Recent studies suggest that Ku80 is conjugated to 
lysine48-linked ubiquitin chains by the Skp1-Cullin-
F-box (SCF) complex and/or the RING finger protein 
8 (RNF8) ubiquitin-protein ligases, followed by rapid 
proteasomal degradation. In this review we address the 
structure and function of the Ku70/80 heterodimer and 
how ubiquitylation may affect the release of Ku70/80 
from chromatin and its subsequent degradation via the 
ubiquitin-proteasome system.

2. INTRODUCTION

DNA double strand breaks (DSBs) are among 
the most cytotoxic DNA lesions, resulting in chromosomal 
breakage and fragmentation. The accumulation of 
unrepaired DSBs usually triggers initiation of apoptotic 
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or senescence pathways (1). In the absence of such 
terminal pathways, a cell may survive with deleted, 
translocated or incorrectly repaired genomic fragments, 
which increase the potential for carcinogenic events (2). 
DSBs are caused by either exogenous factors, including 
exposure to radiation or radiomimetic chemicals, or 
endogenous factors such as genomic rearrangements, 
including recombination of gene segments, variable (V), 
(diversity (D)), joining (J), (V(D)J recombination). The 
two major DNA repair pathways dedicated to the repair 
of DSBs are homologous recombination (HR) and non-
homologous end-joining (NHEJ). HR is restricted to the 
late S and G2 phases, where it uses the sister chromatid 
as a template to guide error-free repair of the DSB. 
NHEJ, on the other hand, does not require a homologous 
sequence (3). Due to the lack of a guidance template, this 
pathway is more prone to introduce errors (4). However, 
unlike HR, the NHEJ pathway can function throughout 
the cell cycle (3,5). The NHEJ pathway is essential 
for a number of cellular processes such as telomere 
maintenance, V(D)J recombination and DSB repair in 
postmitotic cells (Figure  1) (6-9). Therefore, defects in 
NHEJ are generally associated with a spectrum of clinical 
problems, including severe combined immune deficiency 
(SCID), radiation-sensitivity, an increased occurrence of 
cancers, and certain neurodegenerative diseases such 
as Huntington’s disease (10,11).

Proteins involved in DNA repair are tightly 
regulated by posttranslational modifications (PTMs), 
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including phosphorylation, ubiquitylation, sumoylation, 
and acetylation (12,13). These PTMs generally serve 
to regulate the repair factors’ subcellular localization, 
enzymatic activity and recruitment to sites of DNA 
damage (13). In recent years there has been an increased 
interest in the regulatory roles of PTMs in DNA repair, e.g. in 
processes such as detection of DNA damage, recruitment 
of other repair factors, and post-repair dissociation from 
the DNA break site (14). Post-repair dissociation of repair 
enzymes from chromatin is important, since repair factors 
trapped on re-ligated DNA could interfere with subsequent 
transcription and replication (15). Some repair proteins bind 
very efficiently to DNA breaks, but are constrained in their 
dissociation from the repaired DNA because of structural 
restrictions, for instance by being wrapped around the 
DNA such as proliferating cell nuclear antigen (PCNA) and 
Ku70/80 (16,17). In other words: these proteins are quick to 
associate with damaged DNA, but are apparently harder to 
remove after the damage is repaired. Like PCNA, Ku70/80 
removal is associated with ubiquitylation catalyzed by at 
least two different E3 ubiquitin-protein ligases (15,18-20). 
In this review, we summarize the essential elements of 
the NHEJ pathway, discuss the pre-repair association of 
Ku70/80 with DSBs, as well as the post-repair dissociation 
of Ku70/80 from the DNA, and evaluate the pathways and 
factors that potentially influence this removal.

3. THE NON-HOMOLOGOUS END-JOINING 
DNA REPAIR PATHWAY

NHEJ is based on unguided re-ligation of the 
two DNA termini, which are created as a result of DNA 

breakage. Ligation takes place either directly or after 
limited processing of the DNA ends, the latter potentially 
resulting in deletion or insertion of a few nucleotides 
at the break site. The central proteins in the process 
are: Ku70, Ku80, the DNA-Dependent Protein Kinase 
catalytic subunit (DNA-PKcs), DNA Ligase IV, and the 
X-Ray Cross-Complementation group 4 protein (XRCC4) 
(Figure  2). Several NHEJ associated factors facilitate 
the process at the DSB site such as Artemis, XRCC4-
like factor (XLF), polynucleotide kinase/phosphatase 
(PNKP), aprataxin polynucleotide kinase/phosphatase-
like factor (APLF), aprataxin (APTX), paralog of XRCC4 
and XLF (PAXX) and the polymerases Pol λ and Pol μ 
(Figure  2) (21-28). Several factors are essential in cell 
type specific processes such as Artemis and terminal 
deoxynucleotidyl transferase (TdT) during the process 
of V(D)J recombination in lymphocytes (29,30). Most of 
these NHEJ factors are phylogenetically conserved in 
higher eukaryotes.

Ku70  (69 kDa) and Ku80  (83 kDa) are two of 
the central components of the NHEJ pathway. The two 
proteins form a heterodimer with a ring-shaped structure 
of which the central canal fits a double-stranded DNA 
helix. The Ku70/80 heterodimer possesses a high 
affinity for double stranded DNA ends. After introduction 
of a DSB, Ku70/80 binds swiftly to DNA termini and 
subsequently recruits and activates the DNA-PKcs 
kinase to the damage site. The Ku70/80 – DNA-PKcs 
complex (also referred to as the DNA-PK complex) 
protects the DNA ends from degradation (31) and 
juxtaposes the DNA ends in a synaptic complex (31-33). 
The DNA-PK complex phosphorylates a large number 
of substrate proteins on serine and threonine residues 
after DSB introduction, including the Ku70/80 subunits 
and itself (34-36). Autophosphorylation of DNA-PKcs 
at the DSB site has been shown to modify the synaptic 
complex in such a manner that the DNA termini become 
accessible for further processing and repair (37-39). 
Interestingly, although a large number of proteins are 
phosphorylated by DNA-PKcs, only autophosphorylation 
of DNA-PKcs has been confirmed to play a functional role 
in the DSB repair process (36,39,40). DSBs that require 
limited or no resection can be repaired independently of 
DNA-PKcs (41,42). Eroded DNA ends require resection 
by the RecQ helicases; WRN, RECQL1 or RECQL4 (43-
51) and the nucleases exonuclease 1 (EXO1) and 
the MRE11-RAD50-NBS1 (MRN) complex  (52-54). 
Minor DNA processing is catalyzed by DNA Pol λ and 
Pol  μ  (23). The final ligation step in the DNA repair 
process is promoted by APTX, APLF, PNKP, PAXX and is 
carried out by XLF and Ligase IV/XRCC4 (24-28,55,56). 
XLF interacts with XRCC4 which stimulates Ligase IV to 
ligate the nick (57).

3.1. The Ku70/80 heterodimer
The crystal structure of the Ku heterodimer 

reveals that Ku70 and Ku80 share a similar topology, 

Figure 1. The Ku70/80 heterodimer is vital in several cellular processes. 
Ku70/80 has a role in DSB repair, V(D)J recombination and telomere 
maintenance.
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forming a toroidal structure. Each subunit can be divided 
into three domains: an N-terminal α/ß domain which 
resembles a von Willebrand A (vWA) domain (residues 
37-260 in Ku70 and 9-235 in Ku80) (17), a ß-barrel 
domain (residues 256-438 in Ku70, and 247‑424 in 
Ku80) and a C-terminal extension of each subunit 
forming a three-helical bundle in Ku70 and a six-helical 
structure in Ku80 (Figure 3a,b) (17,58). Dimerization of 
Ku70 and Ku80 is facilitated by the ß-barrel domains; 
their α-helical extensions and their extended loops which 
form interconnected ß-strands (antiparallel ß-sheets) in 
the so-called arms, which are present in both proteins 
(Figure 3a). Ku70/80 threads onto a DNA end and binds 
in a DNA-sequence independent-manner (59,60). The 
heterodimer fits onto the major and minor groves of the 
DNA helix, which follows a defined path through the 
protein ring. The Ku70/80 central canal makes contact 
with only a few phosphates of the DNA backbone, and 

not with the DNA bases (17). The inner surface of the 
central canal is positively charged (Figure  3b) which 
stimulates the heterodimer to slide easily over a double 
stranded DNA end. Once bound to the DNA termini, 
the Ku70/80 complex has the ability to move along the 
DNA molecule in an ATP-independent manner (61-
63). Binding of the Ku heterodimer to DNA is mediated 
by the central regions (including the β barrel domain) 
of both Ku70 (residues 266-529) and Ku80 (residues 
244-543) (Figure  3c) (36). Ku70/80 can bind to ends 
of duplex DNA, including hairpins, nicked and forked 
structures  (64). Electrophoretic mobility shift assays 
(EMSA) have revealed that Ku70/80 is not able to 
bind supercoiled, circular, or linear single-stranded 
DNA and therefore will not bind on internal positions in 
chromatin (17,65). Quantitative binding analyses showed 
that Ku70/80 binds to duplex DNA with dissociation 
constants in the nM range (66-68). Studies have shown 

Figure 2. Schematic overview of the NHEJ DSB repair pathway. The Ku70/80 heterodimer recognizes and binds to the DSB, followed by recruitment of 
DNA-PKcs. Next, the NHEJ associated factors are recruited for processing and repair of the DNA ends. The NHEJ associated factors dissociate after 
DSB repair (some regulated by PTMs), from the chromatin. The Ku70/80 heterodimer remains and will be removed by ubiquitylation (UB).
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that when Ku70/80 is bound at a DNA end or break, the 
Ku70 subunit is located proximally from the DNA end, 
whereas the Ku80 subunit is more distally located (60). 
Several atomic force microscopy (AFM) studies have 
showed that the structure of Ku70/80 enables the protein 
complex to slide or translocate inward along the length 
of a DNA molecule, with histones capable of blocking the 
passage (60,62,63,69).

3.1.1. Regulatory roles of the C-terminal 
extension of Ku70 and Ku80?

The C-terminal domain (CTD) of Ku70 (residues 
530-609) consists of a linker or flexible arm connected 
to a SAF-A/B, Acinus and PIAS (SAP) domain (residues 
560-609) (36,70). The NMR solution structure of the Ku70 
SAP domain showed a three α-helix bundle, which in the 
crystal structure of the DNA-free heterodimer contacts 

Figure 3. Structures of the Ku70/80 heterodimer alone and with DNA. a) Schematic overview of the two subunits of Ku70/80 indicating the positions and 
extent of the folded domains (vWAs, β-barrels, SAP and the 6-α-helical bundle (6HB)). Highly flexible linkers are indicated by zig-zag lines. b) Structure of 
the free Ku70/80 heterodimer (PDB code: 1JEQ) (17), with the vWA domains on the edges, the β-barrels with the arms and the extended helical regions 
in the core of the heterodimer. Of the C-terminal extensions, only the SAP domain was resolved in this structure. Below, in blue, red and white is shown 
the electrostatic surface of the heterodimer with blue indicating positive charges and red negative charges. The inner surface of the DNA binding tunnel 
is positively charged. To the left is shown the NMR solution structures of the isolated CTDs, the SAP domain of Ku70 in orange (PDB code: 1JJR) (71), 
and the 6HB of Ku80 in green (PDB code: 1RW2) (71). Below them are the two vWA domains with the 5 bladed β-sheet of 4 parallel and 1 antiparallel 
strand surrounded by helical structures. c) Structure of the DNA-Ku70/80 complex (PDB code: 1JEG) (17), shown from the front (top) and tilted to show 
the interaction part with W276 and the succeeding loop in green (highlighted in the zoom window with W276 in red sticks). In all illustrations Ku70 is 
shown in orange, Ku80 in green, and DNA in black.
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the vWA domain of Ku80 via a flexible, unresolved linker 
from residues 536-560 (Figure 3a) (17,71). This domain 
was not visible in the crystal structure of the DNA-
bound heterodimer. Bioinformatics as well as further 
NMR studies suggested that this SAP domain binds 
DNA (71‑74). Interestingly, one study revealed a structural 
change in the Ku70 SAP domain upon DNA binding (73). 
The biological functionality of either Ku80 binding or DNA 
binding by the Ku70 SAP domain is still not fully resolved.

The CTD of Ku80 (residues 544-732) comprises 
a folded domain consisting of six α-helices (residues 
595‑704) flanked by an unstructured linker (residues 
544‑594) and a flexible C-terminal end (36,72,75). 
The helices α2 and α4 form a hydrophobic pocket and 
may represent a protein binding domain (73,75). It has 
been reported that the last 14 residues of the Ku80 
C-terminus are essential in activation of DNA-PKcs 
kinase activity (76,77). In contrast, biochemical and 
cellular studies showed that Ku70/80 lacking these 
Ku80 C-terminal residues was still able to activate DNA-
PKcs, albeit to a lower extent (77,78). Additionally, it was 
reported that the Ku80 C-terminus stimulates Artemis-
mediated DNA-end processing (78), and that a Ku70/80 
heterodimer lacking the entire Ku80 CTD (truncated at 
residue 548) binds less efficiently to DNA, which is either 
caused by minor structural changes in the truncated 
protein (79) or lack of potential CTD-DNA interaction. 
Interestingly, it was reported that the Ku80 C-terminal 
region is involved in dimerization of Ku70/80 and can 
tether DNA ends in the absence of DNA-PKcs; the latter 
suggesting an important role in repair of simple DSB 
lesions which require no processing (61,62). Whether 
the Ku80 CTD connects with the Ku70 vWA in a similar 
manner to those interactions formed between Ku70 CTD 
and the vWA domain of Ku80, or if it binds DNA, has not 
yet been addressed.

3.1.2. Function of the N-terminal domain of 
Ku70 and Ku80

Recently, it has been suggested that the vWA 
domain of the Ku70 subunit is essential in the detection of 
DNA damage in response to ionizing radiation (IR) (80). 
Mutagenesis experiments in mouse embryo fibroblasts 
(MEFs), showed that mutations of S155/D156 in the Ku70 
vWA domain unexpectedly increased cell survival after 
IR and suppressed activation of transcriptional factor 2 
(ATF2) (80). The S155A substitution alone was sufficient 
to confer enhanced survival, whereas alteration to a 
phosphomimetic residue (S155D) reversed this effect, 
and induced pronounced hypersensitivity to IR compared 
to cells lacking Ku70. These findings suggest that S155 
may be a critical phosphorylation site, affecting ATF2 as 
well as downstream apoptotic pathways (80). The Ku80 
vWA domain is associated with binding several proteins 
including APLF (56). Based on a cellular study, mutations 
in the Ku80 vWA domain (L68R, Y74R and I112R) 
contribute to a reduced interaction with APLF during 

repair (56). Additionally, screens in yeast demonstrated 
that the mutations L240S, Y49H, M16I, and L149R were 
all defective in telomere silencing, but only minimally 
perturbed in telomere length (81), suggesting that the 
Ku80 vWA domain is a site for interaction with proteins 
important for telomere maintenance.

3.2. Ku70/80 heterodimer in relation to disease
Mice deficient in the Ku70 or Ku80 genes 

display premature aging characterized by osteoporosis, 
incomplete plate closure, growth failure, atopic skin 
disease, liver pathology, sepsis, cancer and a shortened 
life span (82-84). Moreover, Ku70-/- and Ku80-/- mice are 
defective in V(D)J rearrangement (82,83,85). In contrast 
to mouse cells, human cells depleted in Ku70 are not 
viable (86). Human cells depleted in Ku80 display cell 
death accompanied by massive telomere loss (87,88). 
Several case studies suggest that down-regulation in 
mRNA levels of Ku70 or Ku80 can contribute to cancer 
(89-94). Moreover, several reports indicate that single 
nucleotide polymorphisms (SNPs) in Ku70 or Ku80 
potentially contribute to different types of cancer including 
breast, lung and gastric track cancers (93-96). This is 
consistent with data showing that single point mutations 
in either Ku70 or Ku80 can contribute to enhanced cell 
survival (allowing for carcinogenesis rather than cell 
death) or block removal of the Ku70/80 heterodimer DNA 
post-repair (80,97) (discussed in detail below).

4. THE E3-LIGASES, SCFF-BXL12 AND RNF8 
IN RELEATION TO DSB REPAIR

A major function of the ubiquitin system is to target 
proteins to the 26S proteasome for degradation. However, 
ubiquitylation also plays important regulatory functions 
that are independent of protein degradation (98,99). 
Accordingly, the human genome encodes more than 600 
different E3 ubiquitin-protein ligases that are the main 
factors determining the specificity of the ubiquitylation 
process. In recent years, several E3-ligases have been 
associated with DSB repair. The Skp1-Cullin-F-box 
(SCF) complexes form a large group of really interesting 
new gene (RING) family E3-ubiquitin-ligases, which 
primarily functions to ubiquitylate signaling proteins 
such as those regulating the cell cycle. In the SCF-
complexes, various F-box proteins mediate substrate 
binding and therefore control substrate specificity. The 
SCF-complex most commonly promotes K48-  and 
K63-linked poly-ubiquitylation (100). In general, K48-
linked ubiquitin chains are associated with proteasomal 
degradation, whereas the K63-linked poly-ubiquitylation 
plays roles in DNA damage recognition and regulation of 
DSB repair (101,102). Dysfunction of the SCF-complex 
is associated with skin and lymphoma cancers, but is 
also related to neurodegenerative disorders, expanded 
tri-repeat diseases such as Huntington’s disease and 
Machado-Joseph disease (103). Interestingly, the SCF 
complex is itself subject to regulation by conjugation 
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to the ubiquitin-like (UBL) modifier neural precursor 
cell expressed, developmentally down-regulated 
8 (NEDD8). Conjugation of NEDD8 (called neddylation) 
to the Cullin subunits in the SCF complexes stimulates 
the SCF ubiquitin-protein ligase activity. Neddylation is 
an essential process in most organisms and has been 
associated with DNA damage repair (104-106).

The RNF8 and RNF168 E3 ligases are not SCF-
type ligases, but free RING domain family E3s that also 
regulate DNA damage signaling by ubiquitylation at the 
DSBs. It is reported that the RNF8 E3 ligase promotes 
K48-  and K63-linked poly-ubiquitylation via differential 
RING-dependent interactions (107). RNF8 is also involved 
in telomere regulation; uncapped telomeres accumulate 
ubiquitylated histone H2A in a manner dependent on 
the E3 ligase RNF8 and stimulate both accumulation 
of DNA damage response (DDR) associated proteins 
tumor suppressor p53-binding protein 1  (53BP1) and 
phosphorylated ataxia telangiectasia mutated (ATM), 
and promote NHEJ at the uncapped telomeres (108). 
Recently, it was suggested that RNF168 promotes K63-
linked poly-ubiquitylation of 53BP1 before it localizes to 
DSBs, and controls its response to DSB independently of 
the H2A-RNF8 route (109). Depletion of RNF8 or RNF168 
reduces telomere-induced genome instability (108). 
Thus, the RNF8 pathway, which usually suppresses 
carcinogenesis by promoting DSB repair, possibly also 
enhances telomere-induced genome instability (108).

4.1. Removal of Ku70/80 from DNA
Post-repair dissociation of Ku70/80 from 

chromatin has been associated with two different 

E3-ubiquitin-ligases. A  screen for DSB-binding F-box 
proteins revealed that the F-box protein Fbxl12 was 
recruited to double stranded DNA in a Ku-sensitive 
manner (110). Immunodepletion of Fbxl12 prevented 
Cul1 and Skp1 binding to DSBs and reduced Ku80 
ubiquitylation, suggesting that Fbxl12 targets Ku80 for 
degradation (110). Interestingly, only Ku80 and not Ku70 
has been found to be modified with K48-linked ubiquitin 
chains (97). Moreover, in one study, it was shown that 
a W276R mutant (numbered W275 in (97)) in the Ku80 
vWA domain was functional in NHEJ and could be K48-
polyubiquitylated, but was not removed from DNA (97). 
Therefore, it would be interesting to determine the 
efficiency of Ku70/80-W276R in NHEJ (97). It is possible 
that minor structural changes in the Ku80-W276R variant 
interfere with efficient degradation, but also possible 
that the Ku80-W276R mutant is unable to interact with 
chaperones such as p97 that are often required for 
segregating ubiquitylated proteins from chromatin prior 
to degradation (111,112). Structurally, W276 is located 
in the descending limb of the arm with its side chain 
pointing towards Ku80 and not towards DNA and the 
succeeding loop from W276 enters the major groove of 
DNA (Figure 3c). It is possible that insertion of a positive 
charge leads to rotation of the side chain and that this 
minor structural change will allow the arginine to interact 
with the DNA phosphates and hence increase DNA 
affinity. Such a model certainly needs further testing both 
in contexts of in vitro and in vivo settings.

Previously, mass spectrometry data have 
shown that NEDD8 covalently attaches to DNA-PKcs, 
but the functional relevance of this modification is 
unknown (104). Recent data suggest that the ubiquitin-
conjugating enzyme E2M (UBE2M) E2 enzyme 
responsible for NEDD8-conjugation localizes to DNA 
damage sites, which lends support to the role of the 
SCF-complex in ubiquitylation of Ku70/80  (110,113). 
Accordingly, depletion of NEDD8 in cells showed a 
hypersensitivity to IR (113), and phleomycin treatment 
followed by mass spectroscopy analysis suggested that 
K114 of Ku70 and K195, K265 and K481 of Ku80 were 
increased in ubiquitylation (Table  1) (113). However, 
when K195, K265 and K481 were mutated to arginine 
(R), the data showed functional redundancy, suggesting 
that either yet unidentified lysines of Ku70 and/or Ku80 
can be ubiquitylated or that multiple lysines can support 
the removal of Ku70/80 post-repair. In support, another 
study on the structural change of Ku70/80 imposed by 
DNA binding mapped accessible lysines by covalent 
binding of NHS-biotin and showed that K317 of Ku70 
and K534 and K543 of Ku80 were accessible after DNA 
binding (Table  1) (73). Interestingly, K265 (on Ku80) 
makes contact with the DNA (17), while the NHS-biotin 
was conjugated in the absence of DNA, but not in the 
presence of DNA. Therefore, the reported ubiquitylation 
of K265 is probably not relevant for DNA-bound 
Ku70/80 (73,113).

Table 1. Lysine ubiquitylation sites after DNA 
damage and possible accessible lysines after DNA 
bind
Protein Reported 

ubiquitylation 
sites in 

DNA‑free dimer

Lysines 
accessible in 
the presence 

of DNA

Remarks References

Ku70 K117 (113)

Ku70 K317 (73)

Ku80 K195 (113)

Ku80 K265 K265 DNA 
interactions

(73,113)

Ku80 K481 (113)

Ku80 K534 (73)

Ku80 K543 (73)

The table lists reported lysine (K117, K195, K265 and K481) 
ubiquitylation sites in Ku70 and Ku80 after pheomycin treatment. 
Other lysines (K317, K265, K534 and K543) were detected by mass 
spectrometry to be accessible on Ku70/80 for covalent binding of 
NHS‑biotin after DNA binding
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In case of Ku80, its ubiquitylation has also been 
reported to be catalyzed by the E3 ubiquitin-protein ligase 
RNF8  (114). Observations support that RNF8 regulates 
the abundance of Ku80 at sites of DNA damage, and that 
RNF8 depletion results in prolonged retention of Ku80 (for 
up to four hours) at damage sites and in impaired NHEJ 
repair (114). However, it is not uncommon that DNA repair 
enzymes linger at the DSBs for more than four hours (114), 
for example it is reported that several DSB repair proteins 
related to the NHEJ, can remain more than 16 hours at a 
break site (115-117). Interestingly, RNF8, but not RNF168, 
promotes degradation of Ku80  (114). The ubiquitylation 
status of Ku70 was not tested in this study (114).

5. CONCLUSION AND PERSPECTVES

The Ku70/80 heterodimer has a vital role in 
cellular processes of DNA repair and maintenance. 
Removal of Ku70/80 from chromatin post-repair is 
essential to avoid that trapped Ku-complexes accumulate 
and interfere with transcription and replication. It is known 
that some proteins can be ubiquitylated by multiple 
E3 ligases (118,119). It is therefore possible that more 
than one E3 ligase promotes K48-linked ubiquitylation 
and subsequent degradation of Ku70 or Ku80. Future 
studies to address the role of chaperones such as p97 in 
dissociating ubiquitylated Ku70/80 from DNA could also 
reveal some analogies to the mechanisms employed 
for HR-mediated DNA repair. The RNF8 E3-ligase was 
shown to be essential in DSB repair and in telomere 
maintenance and is therefore favored over the SCF-
complex in post-repair degradation of Ku80. The SCF-
complex is primarily a cell cycle regulator, while Ku70/80 
operates independently of the cell cycle and is the key DSB 
repair pathway in postmitotic cells such as neurons (9). 
However, interestingly, it has been shown that the SCF-
complex is essential in both mitotic and postmitotic 
cells (103,120). In support of SCF-mediated degradation 
of Ku70/80, a recent study suggested that neddylation 
stimulates ubiquitylation and DNA dissociation of 
Ku70/80 post-repair (113). Until now, one point mutation 
has been suggested to block post-repair removal of 
Ku70/80  (97). For future studies, it will be important to 
generate other mutants in Ku70  and/or Ku80, where 
ubiquitylation and DNA dissociation are uncoupled. In 
the studies addressing this so-far, the essential lysine(s) 
in Ku70/80 that is ubiquitylated was not determined, but 
it is possible that more ubiquitylation sites in Ku70/80 are 
essential for its degradation (97,110,113,114). Identifying 
such residues as well as their interdependence and 
redundancy will be critical to determine the order of 
events, i.e. if ubiquitylation, as suspected, is a prerequisite 
for its DNA dissociation.
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