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1. ABSTRACT

A mammalian brain contains numerous types 
of cells. Advances in neuroscience in the past decade 
allow us to identify and isolate neural cells of interest 
from mammalian brains. Recent developments in high-
throughput technologies, such as microarrays and 
next-generation sequencing (NGS), provide detailed 
information on gene expression in pooled cells on a 
genomic scale. As a result, many novel genes have 
been found critical in cell type-specific transcriptional 
regulation. These differentially expressed genes can 
be used as molecular signatures, unique to a particular 
class of neural cells. Use of this gene expression-
based approach can further differentiate neural cell 
types into subtypes, potentially linking some of them 
with neurological diseases. In this article, experimental 
techniques used to purify neural cells are described, 
followed by a review on recent microarray- or NGS-based 
transcriptomic studies of common neural cell types. The 
future prospects of cell type-specific research are also 
discussed.

2. INTRODUCTION

The brain is one of the most complex and 
important organs in a mammal’s body. A typical mammalian 
brain contains 108 (mouse) to 1011 (human) neurons and 
even larger numbers of glia (1). It has been the subject 
of a great deal of research, due to its importance with 
respect to behavior, perception, thought, and emotion. It 
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is also the root of a number of serious diseases, including 
dementia, epilepsy, strokes, headache disorders, 
Parkinson’s disease, and Alzheimer’s disease. The World 
Health Organization (WHO) published a report in 2007 
estimating that up to 1 billion people, or one in six of the 
world’s population, suffer from neurological disorders (2). 
This indicates that these diseases pose a great threat to 
public health. Responding to this threat, the United States 
has launched the Brain Research through Advancing 
Innovative Neurotechnologies (BRAIN) Initiative to 
develop new tools and technologies for deepening our 
understanding of the brain (3-5).

Neural tissues in mammals include a large 
number of cell types. Although much progress has 
been made in the development of techniques to identify 
common neural cell types, the total number of neural cell 
types and subtypes is still far from clear. As such, one of 
the priority research areas of the BRAIN Initiative is to 
differentiate neural cell types and determine their roles 
in health and disease (5). Successful implementation of 
the Initiative would facilitate a better understanding of 
various neurological diseases, aiding in their diagnosis 
and treatment.

High-throughput technologies, including 
microarrays (6, 7) and next-generation sequencing 
(NGS) (8, 9), have helped dissect numerous neurological 
diseases (reviewed in ref. 10-12) and allow brain functional 
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annotations at different levels. For instance, at the level 
of brain regions (e.g.,  prefrontal area), several studies 
have provided a comprehensive atlas of gene expression 
across the brain (13-15). At the level of single cells, 
expression profiling of tens of thousands of genes (16-19) 
has been achieved using multiplex PCR (20). However, 
the brain-wide data are difficult to interpret because 
the information is not available for the localization of 
individual transcripts at the cellular level (21, 22), whereas 
the single-cell methods have issues of increased false 
negatives and reduced reproducibility (23, 24). Given 
these difficulties, understanding of gene expression at the 
cellular level mainly comes from pooled cells obtained by 
several techniques such as laser-capture microdissection 
(LCM) (25-27), fluorescence-activated cell sorting 
(FACS) (28-32), immunopanning (PAN) (32-34), and 
translating ribosome affinity purification (TRAP) (35-38).

In this article, we will first provide an overview 
of common cell types in mammalian brains and of 
experimental techniques for cell purification and 
identification. Then, we will review recent microarray- and 
NGS-based studies on transcriptomics of specific neural 
cell type. The future prospects of cell type-specific studies 
are also discussed.

3. IDENTIFICATION AND ISOLATION OF 
CELL-TYPE SPECIFIC POPULATIONS IN A 
MAMMALIAN BRAIN

3.1. Common neural cell types
A mammalian brain is made up of a large 

number of cell types that are vital to proper functioning 
of the central nervous system (CNS). Foremost among 
them is neuron, a primary vehicle for long-distance 
electrical communication and computation among cells 
in mammals (39). Neurons are interconnected cells, 
each possessing a large cell body (soma), as well 
as cell projections called dendrites and an axon. The 
dendrites are thin, branched projections that receive 
neurotransmitters from other neurons, while the axon is 
a long projection sending electrical signals to the next 
neuron. Neurons send signals among themselves by 
changing electrical potentials, which can spread along the 
axon of a neuron. The bulb-like end of the axon, termed 
axon terminal, is separated from the dendrites of the next 
neuron by a narrow space (synapse). When electrical 
signals travel to the axon terminal, neurotransmitters 
are released across synapse and bind post-synaptic 
receptors, stimulating receiving neurons to modulate 
electrical potentials and continue nerve impulse. 
Neurons are arguably the most important cell type in the 
body, enabling computations required for vital behaviors 
such as balance, communication, and the ability to learn 
and make decisions. Changes in the gene expression 
of neurons can lead to an over- or under-expression of 
important genes, which can radically change the overall 
topology of the CNS and lead to severe disorders. For 

example, the Parkinson’s disease is characterized by 
an accumulation of alpha-synuclein and a subsequent 
deficiency of dopamine in the brain as the dopamine-
producing cells die (40). The Huntington’s disease is 
caused by the production and accumulation of mutant 
Huntingtin (Htt) proteins (41).

Glial cells are non-neuronal cells, including 
astrocytes, oligodendrocytes, and microglia, which 
are smaller in size (compared with neurons) and vary 
in structure (42). Astrocytes are star-shaped cells 
with great structural complexity (43-45). Traditionally, 
astrocytes are considered to be ancillary, satellite cells 
that provide a physical support network to neurons, and 
regulate the environment so that neurons can function 
properly. As such, astrocytes maintain extracellular ion 
balance and pH homeostasis (46). They hold important 
stores of glycogen, providing surrounding cells with 
glucose as needed (47). Moreover, astrocytes interact 
with the synapses of neurons, and work to both produce 
and remove neurotransmitters and other compounds 
from the intercellular space (48). Recent studies 
have revealed new roles of astrocytes (49-52). First, 
astrocytes establish separate territories that define 
functional domains of a brain (49). Second, astrocytes 
can release neuroactive agents such as glutamate to 
modulate synaptic transmission (50). Third, astrocytes 
interact with neurons and endothelial cells to form 
higher-order gliovascular units, bridging neuronal and 
vascular structure to match local neural activity and 
blood flow (51). Currently, astrocytes are seen as an 
important communication element of the brain, and their 
dysfunction may lead to aberrations of neuronal circuitry 
that underlies several neurodevelopmental disorders 
such as the Rett syndrome (53) and the fragile X mental 
retardation (54) (reviewed in ref. 55, 56).

Besides astrocytes, oligodendrocytes and 
microglia are two types of glial cells. The main function of 
oligodendrocytes is to produce and maintain myelin sheath 
which wraps around axons. Myelin helps to support and 
insulate axons in the CNS. Oligodendrocyte progenitor 
cells (OPCs) are precursors to oligodendrocytes and can 
also differentiate into neurons and astrocytes. Microglial 
cells are resident macrophages that provide the first line 
of immune defense in the CNS. Oligodendrocytes and 
microglial cells account for 75.6.% and 6.5.% of the 
cerebral cortex glia, respectively (57).

3.2. Experimental techniques to isolate and 
purify specific neural cell types

Cell type-specific transcriptomics require 
completion of several steps (Figure 1). First, brain tissues 
need to be isolated as fixed/frozen sections or live 
samples. Second, cells of interest need to be identified 
and collected. Third, RNA from the collected cells needs 
to be extracted and, if necessary, amplified. Fourth, 
relative mRNA expression levels need to be measured 
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by microarray or RNA-seq. Finally, downstream analyses 
need to be performed using bioinformatics tools. In this 
section, we focus on the first two steps because tissue 
heterogeneity of a mammalian brain has been a major 
obstacle (Figure  1). A  pure collection of neural cells is 
the key to profiling cell-type specific transcriptomes. It is 
worth noting that the problem of neural cell identification 
has been discussed (58, 59). Cell type-specific markers 
and Cre-driver mouse lines are available to identify 
specific neural cell types (see online resources in ref. 60).

Technically, specific neural cell types can 
be harvested by four methods: (1) laser-capture 
microdissection (LCM) or laser-directed microdissection 
(LDM) (25-27); (2) fluorescence-activated cell sorting 
(FACS) (28-32); (3) immunopanning (PAN) (32-34); 
and (4) translating ribosome affinity purification 

(TRAP) (35-38). A  quantitative analysis on cell type-
specific microarray data has revealed that LCM and TRAP 
samples show significantly higher levels of contamination 
than FACS and PAN samples (60). Below, we provide a 
brief overview of these four methods.

3.2.1. LCM/LDM
LCM and LDM use a laser to isolate specific cell 

populations under a microscope from mounted thin-tissue 
sections that are either fixed or frozen. In LCM, a laser 
excises a small region (~7.5. µm) of a plastic membrane 
on the surface of tissue sections. Cells underneath 
adhere to the membrane upon cooling and are collected 
after the membrane is removed. One limitation of this 
method is that it does not allow users to extract a given 
cell by tracing its particular morphology. To overcome this 
limitation, LDM uses a much narrower ultraviolet laser 

Figure 1. Typical workflow of cell type-specific transcriptome profiling experiments. Cell-specific transcriptome profiling requires completing several steps 
such as brain sample collection, cell purification, RNA extraction, and RNA abundance measurement by microarray or RNA sequencing. At the last step, 
genes that are differentially expressed are identified by bioinformatic tools. If the protein products of these genes are directed to the surface of target cells, 
they can be used as cell markers. The cells presenting these proteins on the surface can be identified and purified by FACS and PAN. This process can 
undergo multiple iterations to differentiate a neural cell type into many subclasses.
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(~0.5. µm), which allows users to make precise cuttings 
along the outline of target cells.

3.2.2. FACS
FACS requires that target cells are labelled 

by fluorophores. The fluorophores are typically 
attached to antibodies that recognize a target feature 
on the cells. Based on the specific light scattering and 
fluorescent characteristics of each cell, FACS can 
sort a heterogeneous mixture of a cell population into 
subgroups that may belong to specific cell types. In 
FACS, the live, acutely-dissected brain tissue is digested 
in a protease solution with artificial CSF (ACSF), which 
keeps dissociated cells in a healthy condition. One main 
advantage of the FACS method is that it can sort a large 
number of cells in a high-throughput manner.

3.2.3. PAN
PAN relies on antibodies against specific 

proteins on the surface of target cells, not fluorescent 
signals. Panning plates are first coated with antibodies, 
and dissociated cells are then placed in the plates for 
30  minutes to 1 hour, allowing target cells to bind the 
antibodies. The plates are then washed to collect the 
cells of interest. Multiple iterations of plating and antibody 
interactions may be required, which may be more time-
consuming than other techniques.

3.2.4. TRAP
TRAP uses special transgenic mice with 

restricted cell populations in the CNS. TRAP harvests 
RNA on labelled polysomes directly from tissue 
homogenates. Only ribosome-associated mRNA rather 
than the full population of transcribed RNA is detected. 
As a result, the noncoding RNAs that play an important 
role in gene regulation are discarded. Since tissue 
homogenates are used for analysis, TRAP samples often 
have contamination, as shown by previous studies (61).

4. CELL TYPE-SPECIFIC TRANSCRIPTOME 
PROFILING

4.1. Expression profiling of acutely-isolated 
cells

Microarrays have been used to analyze the 
functional genomics of different cell types acutely purified 
from the brain (Table 1). One of the first examples came 
from Dugas et al. (62) who compared gene expression 
in the oligodendrocytes (OLs) generated from cultured 
oligodendrocyte progenitor cells (OPCs) in vitro and the 
OLs isolated acutely from animal brains. The OLs and 
OPCs were purified by PAN. Dugas et al. (62) found that 
OL differentiation occurs in at least two sequential stages, 
the early stage and the late stage, which are characterized 
by different expression patterns of transcription factors 
and myelin genes. Genes encoding cytoskeletal proteins 
are up-regulated during the OL differentiation. These 
findings were confirmed later by Cahoy et al. (32) 

who found that multiple signaling pathways including 
actin cytoskeleton signaling are enriched in the OLs. 
A separate study showed that a miRNA species, miR-9, 
is important for the OL differentiation and its expression 
inversely correlates with the expression of peripheral 
myelin protein PMP22  (64). This finding highlights the 
importance of miRNAs in neuronal cell specification (75).

Transcriptomic analyses of pooled neurons 
have shown that neurons have an elevated expression 
of genes involved in glycolysis and oxidative 
metabolism  (63). The enzymes in the tricarboxylic 
acid (TCA) cycle are expressed at low levels. Several 
pathways involved in calcium signaling, axonal guidance 
signaling, glutamate receptor signaling, and GABA 
receptor signaling are enriched in neurons (32). Further 
studies on transcriptomes of rostral and caudal serotonin 
neurons provide evidence for the complexity of gene 
regulatory networks in different types of neurons (66). 
In particular, hundreds of transcripts are differentially 
expressed in rostral and caudal serotonin neurons, in 
which a homeodomain code seems to play a key role in 
differentiating these two types of neurons. Finally, gene 
expression profiling of neural stem cells (NSCs) has 
revealed that the growth factor insulin-like growth factor 
2 (IGF2) is expressed at high levels, which suggests that 
IGF2 plays an important role in adult neurogenesis (68).

Expression profiling on isolated astrocytes 
has uncovered that the enzymes in the tricarboxylic 
acid (TCA) cycle are expressed at higher levels than 
in neurons (61). Not surprisingly, the TCA cycle is 
found to be one of the metabolic pathways enriched in 
astrocytes (32). Moreover, the Notch signaling pathway is 
one of the top pathways enriched in astrocytes. Although 
Notch signaling has been suggested to play a role in 
differentiating neural progenitor cells into astrocytes, 
these findings indicate that Notch signaling may be 
required for maintaining astrocyte fate, preventing them 
from reverting to undifferentiated states (76). Note 
that gene expression patterns in astrocytes vary as a 
function of age: young astrocytes have high expression 
levels of genes involved in neuronal differentiation and 
hemoglobin synthesis, whereas aged astrocytes are 
characterized by increased inflammatory phenotypes 
and zinc ion binding (70).

Transcriptomic analyses of purified microglia 
reveal distinct gene expression patterns for young and 
aged microglia. Young microglia cells are characterized 
with increased transcript levels of chemokines such as 
Ccl2 and Ccl7 (70). These chemokines have been linked to 
differentiation and maturation of neurons (77). By contrast, 
genes within the tumor necrosis factor-ligand family, 
such as Tnfsf12 and Tnfsf13b, are up-regulated in aged 
microglia (70, 78, 79). Microarray analyses on acutely-
isolated brain endothelial cells (65) and Purkinje cells (67) 
have also provided cell type-specific gene signatures.
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The aforementioned gene expression profiling 
experiments are performed by microarrays. While 
microarray-based methods have been used for many 
years, these methods have numerous limitations. For 
example, microarrays can have cross-hybridization 
artifacts, detection difficulties due to the dye, and can be 
very limited in terms of alternative splicing (80). In recent 
years, next-generation sequencing (NGS) has become a 
popular tool for accurate, reproducible measurements of 
transcriptomics. This technique can provide sequences 
of all RNA molecules present within a cell, allowing for an 
accurate counting of different RNA species. RNA samples 
can be prepared from pooled cells, brain regions, or even 
individual cells (81).

Due to its unique ability to uncover details on 
both the expression level and isoform diversity, RNA 
sequencing (RNA-seq) has been used to identify gene 
expression signatures and gene splicing in acutely-
isolated neurons (72) and microglia (71). Recently, Zhang 
et al. (73) used RNA-seq to generate transcriptome 
databases for eight cell types including neurons, 
astrocytes, oligodendrocyte precursor cells, newly 
formed oligodendrocytes, myelinating oligodendrocytes, 
microglia, endothelial cells, and pericytes from the mouse 
cerebral cortex. Remarkably, they found that the majority 

(~92%) of differentially expressed genes identified by 
microarray (32) are found by RNA-seq. As expected, the 
authors uncovered well-known cell type-specific markers, 
e.g., Aqp4 and Aldh1l1 for astrocytes, and Dlx1 and Stmn2 
for neurons (32, 62, 65, 69, 71). Moreover, they have 
detected a large number of new genes with previously 
unknown cell type-specific distributions, highlighting 
the improved sensitivity of RNA-seq over microarrays. 
For example, the autism and schizophrenia-associated 
gene Tspan7 is enriched in astrocytes, whereas a gene 
encoding a novel transmembrane protein Tmem59l is 
enriched in neurons. These data have provided a set of 
cell type-specific transcription factors that are important 
for cell fate determination and differentiation. These 
databases also allow the detection of alternative splicing 
events in glia, neurons, and vascular cells of the brain. 
One important finding is that PKM2, the gene encoding the 
glycolytic enzyme pyruvate kinase, has unique splicing 
forms in neurons and astrocytes. This may explain how 
neurons and astrocytes differ in their ability to regulate 
the glycolytic flux and lactate generation (82-86).

4.2. Expression profiling of cultured cells
Before the development of technologies like 

LCM/LDM, FACS, PAN, and TRAP, primary cultures 
of neural cells such as astroglia (87) had served as 

Table 1. Cell type‑specific transcriptomic studies in mammalian brain
Cell preparation Purification Cell type Exp. method References

Acutely purified PAN Oligodendrocyte Microarray 62

Acutely purified LDM Neuron Microarray 26

Acutely purified FACS Astrocyte Microarray 63

Acutely purified TRAP 24 Cell types Microarray 35

Acutely purified FACS, PAN Astrocyte, neuron, oligodendrocyte Microarray 32

Acutely purified FACS Oligodendrocyte Microarray 64

Acutely purified FACS Endothelial cell Microarray 65

Acutely purified FACS 5HT neuron Microarray 66

Acutely purified LCM Purkinje cell Microarray 67

Acutely purified FACS Neural stem cell Microarray 68

Acutely purified FACS Microglia Microarray 69

Acutely purified FACS Astrocyte, microglia Microarray 70

Acutely purified FACS Microglia RNA‑seq 71

Acutely purified LCM Neuron RNA‑seq 72

Acutely purified FACS, PAN Astrocyte, neuron, oligodendrocyte, endothelial cell, microglia, pericyte RNA‑seq 73

Cultured Oligodendrocyte Microarray 62

Cultured Astroglia Microarray 32

Cultured Microglia Microarray 69

Cultured Neuron RNA‑seq 74

Cultured Astrocyte, neuron, oligodendrocyte progenitor cell RNA‑seq 92
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an in vitro proxy for studying in vivo astrocytes. These 
cultured astrocytes have phenotypic characteristics that 
are significantly different from their in situ counterparts. 
For instance, astrocytes in situ are highly polarized 
cells, with distinct sets of processes that project to either 
synapses or vascular walls (88, 89). Cultured astrocytes, 
however, appear non-polarized with an epithelioid-
like shape in the cultures. Several studies have found 
that genes that are induced in the cultured astrocytes 
are not necessarily expressed in vivo, suggesting that 
cultured astroglia do not represent the same cell type as 
in vivo astrocytes (32, 90). This is not true however for 
oligodendrocytes and retinal ganglion cells (see below), 
suggesting that at least for certain neural cell types, 
cells cultured in vitro mimic those in vivo. Understanding 
the differences in gene expression between cells 
grown in vitro and those acutely purified from animal 
brains is critical for making the right decision on what 
cells can be used under which situation.

Dugas et al. have compared the transcriptomic 
profiles between cultured OLs and acutely-purified OLs, 
and found a remarkable similarity in gene expression 
between the two groups (62). This result indicates that 
normal OL differentiation can take place in the absence of 
heterologous cell-cell interactions. This similarity between 
cultured and acutely-isolated cells is also observed for 
retinal ganglion cells (91), but not for astrocytes (32) and 
microglia (69).

Recently, we conducted a comprehensive 
analysis of transcriptomes in cultured neurons, astrocytes 
and OPCs through RNA-seq, and identified cell-specific 
marker genes and characteristic pathways that are 
known for these cell types (92). We compared our RNA-
seq data with those from Zhang et al. (73) and found a 
number of genes are differentially expressed in cultured 
cells compared to acutely isolated cells. We conclude 
that the findings obtained from cells cultured in vitro 
should not be extrapolated to cells in vivo, especially 
when targeting genes or pathways associated with 
neurological diseases.

5. CONCLUSIONS AND FUTURE 
PROSPECTS

During the past decade, various types of neural 
cells have been identified and isolated by experimental 
techniques such as LCM, FACS, PAN, and TRAP. Most 
of these techniques depend on antibodies recognizing 
a small number of cell type-specific surface markers. 
Transcriptomic studies on the isolated cells of interest 
(Table  1) have identified numerous cell type-specific 
genes and pathways. Some of these genes can be used 
as molecular signatures to identify subclasses of neural 
cells. That is, if the protein products of these genes 
are directed to cell surface, they can be recognized by 
antibodies. A subclass of cells with these surface proteins 

can be isolated by FACS or PAN. This gene expression-
based method allows us to identify many subtypes of a 
given neural population. This information may be very 
useful if we intend to link a neurological disease with a 
particular class of neurons. This gene expression-based 
classification of neural cells is a promising approach for 
cell type-specific research in the future.

Most cell type-specific studies so far are 
focused on transcriptomics, aiming to elucidate gene 
expression patterns of a given cell type. Few studies are 
dedicated to epigenomics. Analyses of genome-wide 
chromatin organization, including histone modification 
and DNA methylation, may shed new light on: (1) novel 
cell type-specific markers, (2) chromatin accessibility 
during differentiation, and (3) mechanisms underlying 
differential gene expression observed.

Finally, most studies to date have used cells 
from normal subjects. It would be more valuable to 
extend cell type-specific research to disease models. 
Understanding gene regulatory networks in the cell types 
responsible for a neurological disease would help to 
uncover the genetic and metabolic basis of this disease, 
which in turn, could open up new ways to diagnosis and 
new treatments of the disease. It would be an invaluable 
contribution to the BRAIN Initiative from which millions of 
people would benefit.
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