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1. ABSTRACT

Articular cartilage is exquisitely sensitive to 
mechanical loading, one of the most important external 
factors that regulates its development, integrity and long-
term maintenance. Cartilage undergoes degradation by 
its misuse or overuse. In this review, we elaborate on this 
role and discuss the application of mechanical stress on 
chondrocytes and mesenchymal stem cells in order to 
foster chondrogenesis.

2. INTRODUCTION

Articular cartilage is a highly specialized 
connective tissue that provides a nearly frictionless 
bearing surface, and can absorb and transmit 
compressive, tensile, and shear forces. These 
forces are crucial to its healthy development and 
maintenance, as cells play an important role in 
transducing mechanical stimuli into biochemical 
output, known as mechanochemical signaling or 
mechanotransduction. However, both excessive and 
insufficient force could promote the onset of cartilage 
degeneration. In this review, we will discuss both 
normal and abnormal types of mechanical forces and 
their effects. Furthermore, we will highlight recent 
progress in understanding the effects of mechanical 
loading (i.e. dynamic compression, fluid shear, tissue 
shear, and hydrostatic pressure) on chondrocytes and 
mesenchymal stem cells used in the development 
engineered cartilage, and explore the mechanism 
of mechanical stress transduction into biochemical 
signals that regulate and synergize with signaling 
cascades induced by other stimuli.
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3. THE ROLE OF MECHANICAL STRESS IN 
THE DEVELOPMENT AND MAINTENANCE 
OF ARTICULAR CARTILAGE

3.1. The characteristics of mechanical stress in 
articular cartilage

The need of mechanical stimuli to control 
chondrogenesis has been well established. During 
embryonic and fetal development, compression of 
embryonic limb bud mesenchymal cells triggers the 
expression of chondrogenic markers, most notably the 
master gene Sox9, which is responsible for activating 
many other genes to promote differentiation of the 
cells  (1, 2). Meanwhile, mechanical stimulus also 
promotes growth and organization of the extra cellular 
matrix (ECM) during maturation of fetal cartilage for 
many species. For example, at 20-to-36 weeks gestation 
human fetal articular cartilage exhibits a 2.5. fold 
increase in compressive stiffness, and a 3-fold increase 
in collagen content and integrity (3). Similarly, fetal and 
newborn bovine tissue reveals a correlation between 
tissue strength and specimen age (4).

In adults, articular cartilage is subjected to 
various mechanical stresses, including compressive, 
pressure, tensile, and fluid (shear flow) forces, which 
activate chondrocyte synthesis of aggrecan and collagen 
macromolecules that govern mechanical properties. 
Under normally active physiological conditions, peak 
dynamic mechanical stresses can reach 18 megapascals 
(MPa) (5). And this kind of moderate exercise can 
stimulate ECM synthesis (6-8). Additionally, static 
physiological stresses applied to knee joints for 5-30 min, 
as generated by standing, can result in approximately 



Function of mechanical loading on chondrogenesis

	 1223� © 1996-2016

40% compressive strains in knee cartilages (9). 
Opposingly, joint immobilization or reduction of loading 
can result in rapid loss and degradation of ECM content.

As we all know, articular cartilage is the primarily 
load-bearing tissue in the joint. In the human hip, contact 
pressure between cartilaginous surfaces is 1 MPa while 
standing (static loading), 0.1. to 4 MPa while walking 
(dynamic loading), and can reach 20 MPa when going 
from sitting to standing or while jumping (10).

There are conflicting results regarding the 
loading effects on chondrocyte macromolecule synthesis. 
Hydrostatic pressure (5 MPa) applied to agarose gel 
embedded with bovine chondrocytes was found to 
upregulate mRNA of aggrecan (4-fold) and type  II 
collagen (50%) (11), and also increased proteoglycan 
biosynthesis (12). However, a similar level of static 
pressure (5-10 MPa) applied to bovine cartilage explants 
was found to suppress proteoglycan synthesis (13). 
Intermittent hydrostatic pressure (10 MPa, 1 Hz for 6-24 
hours) has been reported to have protective effects by 
downregulating the release of matrix metalloproteinase 
(MMP) and pro-inflammatory mediators (14). But for 
monolayer-cultured human osteoarthritic chondrocytes, 
intermittent hydrostatic pressure (5 MPa, 1 Hz for 4 hours) 
can trigger apoptosis, increase mRNA expression of 
tumor necrosis factor-α (TNF-α), and induce production 
of nitric oxide synthase (15).

When cells proliferate and/or large amounts 
of ECM deposit in regions, compressive pressure will 
typically arise in order to resist rigidly external boundaries 
or prevent tissue expansion. This kind of compression 
plays a key role in controlling cell proliferation, growth, 
and differentiation, which directly affects cartilage ECM 
formation. For example, in the developing skeleton, 
immature cartilage tissue is always encapsulated by a 
perichondrium, a rigid connective tissue, which exerts a 
compressive force on the immature ECM. Removal of the 
mechanical constraint of the perichondrium can result 
in accelerate hypertrophic process of chondrocytes, 
which could affect the growth of articular cartilage and 
bone (16, 17). Chondro-progenitor cells continue to grow 
rather than differentiate into cartilage and lead to ectopic 
cartilage formation.

In articular cartilage, interstitial fluid flow 
generates shear stresses, which trigger physiological 
responses (18). In compression, the induced fluid flow 
may increase the transportation of nutrients and growth 
factors into or out of the tissue. Many studies have 
shown that flow induced shear has both positive and 
negative effects on chondrocyte metabolism. During 
vitro cultivation, monolayer chondrocytes exposed 
to flow-induced shear stresses that range from 0.2. 
to 1.6. Pa showed an increase of proteoglycan, 
prostaglandin E2, and nitric oxide synthesis, and a 

downregulation of collagen II and aggrecan mRNA 
expression (19, 20).

Tensional forces, such as the flexion of tendon 
or muscle contraction pulling on bone, are prominent 
in the skeletal system, and remarkably, also derive 
from the highly directional and asymmetric growth of 
articulating joint tissues. For example, there is stretching 
of periosteal tissue that is anchored to the bone shaft 
and the epiphyses, which expands tangentially (21). 
Tensional forces can profoundly affect the development 
of skeletal system (22). Severe osteogenic defects 
occur when the periosteal tension is reduced after 
resection of the epiphyses (21), and ectopically applied 
tensional forces transform cartilaginous tissue into 
bone  (23, 24). In addition, loss of muscle-induced 
tension via experimentally induced paralysis or limb-
tissue transplantation shows limited effects. These 
changes could alter the formation of specific sesamoid 
bones, such as the plantar tarsal sesamoid and patella, 
and may reduce the formation of bony ridges for tendon 
attachment (25).

3.2. Mechanical stress in cartilage disease
As mentioned above, chondrocyte response 

to moderate mechanical loading is necessary for 
normal cartilage homeostasis (26). Consistently, 
in vivo experiments on articular cartilage have shown 
that cellular responses (catabolism or anabolism) 
depend on frequency, duration and magnitude of 
loading  (27). Moderate exercise and dynamic loading 
at specific frequencies in young rodents can produce 
an anabolic response in chondrocytes, which increases 
proteoglycan content and decreases proteoglycan 
degradation (26, 27). Conversely, high-intensity exercise, 
long-term immobilization, abnormally static loading and 
even a sudden increase in joint loading can lead to 
osteoarthritis (OA)-like matrix catabolism, which damages 
the collagen fiber network, degrades proteoglycans, 
and reduces cartilage stiffness (26-28). In addition to 
these homeostatic effects, normal joint loading may be 
an important regulator of developmental and postnatal 
growth of cartilage. Recently published data indicate that 
paralyze the shoulder via injecting botulinum toxin A into 
supraspinatus muscles of newborn mice can delay the 
development of tendon-bone insertions (29). Although 
these results pertain to tendon and/or attachment 
intervention, it is possible that a similar dysregulation of 
articular cartilage development and/or growth can occur 
in joints when suffering abnormal mechanical loading.

Injury to articular cartilage or supporting 
structures, such as the meniscus, would presumably 
lead to altered biomechanics, cytokine production, and 
eventual cartilage catabolism (26). Specifically, cytokines 
such as Interlukin-1 (IL-1) and TNF-α are the inducers of 
cartilage matrix degradation by inducing the expression 
of genes to encode matrix catabolic proteins, such as 
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MMPs, collagenases and aggrecanases (30, 31). On 
the other hand, both IL-1 and TNF-a can induce PGE2 
production and nitric oxide (NO) metabolism, which act 
as strong catabolic signals by promoting injuries and 
enhancing apoptotic potential in chondrocytes (32).

4. TAKING ADVANTAGE OF MECHANICAL 
STRESS TO PROMOTE THE ACTIVITY OF 
CHONDROCYTES

4.1. Tissue engineering factors of 
chondrocytes

Because of the crucial role of mechanical stimuli 
in the development and maintenance of articular cartilage, 
more attention has been drawn to the use of exogenous 
mechanical stimulation of engineered cartilage. Functional 
tissue engineering has focused on dynamic compression, 
fluid flow-induced shear, and hydrostatic pressure, paying 
special attention to the magnitudes and frequencies 
of normal physiologic ranges. The effectiveness of the 
mechanical stimuli is usually assessed by evaluating 
ECM quality and production, gene expression, and tissue 
functionality (i.e. mechanical stiffness and perviousness). 
Accordingly, it is considered that mechanical stress plays 
an important role in culturing of engineered cartilage, 
and lack of appropriate mechanical stimulus may cause 
inappropriate function.

It is well-known that compressive loading 
on cartilage explants can modulate chondrocyte 
viability (33), gene expression (34-37), and biosynthesis 
of various ECM molecules (33, 37-40). For example, 
dynamic compression at moderate conditions (2-10% 
strain (37, 38), 0.5.-1.0. MPa (33, 40) and physiological 
frequencies (0.1. to 1.0. Hz)) can stimulate the biosynthesis 
of collagen  (38), proteoglycan (37, 38, 40) and 
fibronectin  (33). In the literatures, numerous short- and 
long-term studies have used unconfined dynamic 
compression protocols, spanning a wide range of 
frequencies (0.1. to 1.0. Hz), strains (3-15%) and stresses 
(0.5.-2.5. MPa) to a variety of engineered tissue types. 
Of those types, hydrogels or macroporous scaffolds and 
differentiated, undifferentiated, or de-differentiated cells 
were used to stimulate cell differentiation, proliferation 
and biosynthetic activity, and to promote the development 
of a functional ECM.

Although dynamic compression at physiological 
levels generally has positive effects on ECM biosynthesis, 
several studies have demonstrated the negative 
effects of abnormal dynamic compression on cartilage 
development. Although various investigations have 
reported that cyclic loading can lead to an increased 
release of matrix molecules such as proteoglycan 
and glycosaminoglycan (GAG) (41-46), prolonged 
continuous loading (± 4% strain, 0.1. or 1.0. Hz, 10 or 
20 days) will cause inferior mechanical and biochemical 
properties in chondrocyte-seeded fibrin hydrogels (44). 

Similarly, Kisiday et al. found that daily intermittent 
compression (0.5. hours loading/0.5. hours free-swelling 
or 1 hour loading/1-7 hours free-swelling) could suppress 
sulfate incorporation, whereas alternate day loading 
(4×45  minute loading cycles applied every other day) 
could stimulate sulfate incorporation in chondrocyte-
agarose constructs (41).

In order to detect the effects of fluid flow, 
Frank et al. (47) and Jin et al. (48) applied direct shear 
to cartilage explants. Dynamic shear deformation 
(1-3% strain, 0.1.-1.0. Hz) was shown to stimulate 
collagen and proteoglycan biosynthesis up to 50% and 
25%, respectively (48). Waldman et al. showed that 
chondrocytes cultured in porous calcium phosphate 
scaffolds for four weeks with daily dynamic shear 
strain (2% shear strain at 1  Hz, superimposed on a 
5% compressive tare strain for six or thirty minutes per 
day) had higher synthetic ratios of collagen (40%) and 
proteoglycan (35%) and significantly higher equilibrium 
modulus and maximum stress (six-  and three-fold 
increases, respectively) than chondrocytes cultured 
under free-swelling for four weeks (49). These findings are 
similar to the changes from dynamic compression (50).

The benefits of intermittent hydrostatic pressure 
on the development of engineered tissues have also 
been explored. Intermittent hydrostatic pressure at 3.4.4 
and 6.8.7 MPa (5  seconds pressurized/15  seconds 
nonpressurized, applied for 20  minute intervals 
every 4 hours for 5  weeks) was found to increase the 
glycosaminoglycan concentration in equine chondrocyte-
seeded polyglycolic acid meshes; 6.8.7 MPa also 
increased collagen production (51). Furthermore, Mizuno 
et al. found cyclic hydrostatic pressure (2.8. MPa, 
0.0.15  Hz) increased proteoglycan production over a 
15-day culture period in bovine chondrocyte-seeded 
porous collagen scaffolds (52).

4.2. The mechanotransduction of cells from 
mechanical stress

Cellular response to mechanical stress is an 
important modulator of chondrocyte function. Pressure 
applied to cartilage deforms the ECM and chondrocytes, 
and increases hydrostatic pressure, which expels fluid 
from the tissue. However, the degree of these changes 
depends on the rate of applied pressure. Cyclic loading 
can rapidly increase pressure, momentarily deform 
cells, and cause short peaks of intratissue fluid flow (no 
tissue fluid loss), all which stimulates biosynthesis. Static 
loading, which generally depresses biosynthesis, causes 
fluid exudation and provokes an increase in proteoglycan 
concentration and osmolarity, and a reduction in pH, 
gradually leading to tissue degeneration.

Researchers have elucidated the 
biomechanical pathways that stimulate and regulate 
chondrocyte metabolism and physiology. It has been 
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reported that chondrocytes do not respond directly to 
the mechanical signals, but to the biochemical signals 
produced by mechanical stimulation, a process known 
as mechanotransduction. In mechanotransduction, 
mechanical stresses activate the intracellular signaling 
pathways, such as mechanoreceptors (e.g. integrins) (53), 
ion channels (slow conductance Ca2+, sensitive K+ and 
stretch-activated ion channels)  (54), soluble mediators 
(basic fibroblast growth factor, IL-4) (55, 56), and 
intracellular protein kinases (mitogen-activated protein 
kinase (MAPK) family) (57, 58), and then modulate 
chondrocyte biochemical activities.

One of the central signal transduction pathways 
involves integrin receptors in the chondrocyte membrane, 
which act as a bridge between the cytoskeleton and 
ECM. The major integrin receptors, α1α1, α5α1, α10α1, 
and αVα5  (59, 60), bind to ECM components, transmit 
information to the chondrocyte cytoplasm and lead to 
activation of cytoskeleton and intracellular signaling 
proteins, such as focal adhesion kinase (61) and MAPK 
signaling molecules (62). Integrin α5α1, a primary 
chondrocyte receptor for fibronectin, is the most commonly 
implicated in mechanotransduction pathways. Cyclic 
pressurization has been shown to activate integrin α5α1, 
which hyperpolarizes chondrocyte membranes (63, 64), 
and stimulates GAG synthesis and proliferation through 
a TGF-α3-dependent pathway (65). The downstream 
activation of MAPK and MEK-Erk1 signaling pathway 
leads to a downregulation of Agc gene expression in 
bovine articular chondrocytes (66). Furthermore, the 
association of integrin complexes with IGF receptor I can 
facilitate the activation of MAPK signaling pathway (62). 
Evidence has shown that following exposure to fibronectin 
fragments, the activation of proline-rich tyrosine kinase 
2 contributes to the upregulation of collagenase III 
expression via protein Kinase C (67). In addition to 
these signaling responses, it is important to note that the 
abrogation of cell-ECM interactions (anoikis) mediated 
by integrins leads to chondrocyte apoptosis (68).

It is widely recognized that the transduction 
of mechanical stress can also be facilitated via stress-
activated ion channels located in plasma membrane. 
Among the numerous well-characterized ion channels, 
N- and L-type voltage-gated calcium channels (VGCCs) 
are the most relevant channels in chondrocytes (69, 70). 
Because cytoskeletal elements control the opening and 
closing of neuronal cell VGCCs, a similar regulatory 
paradigm might also exist in chondrocytes. As a 
result, the transfer of mechanical stress through the 
cytoskeleton could induce the opening of ion channels, 
the propagation of intracellular calcium waves, and 
the subsequent induction of phenotypic effects in 
cells  (71). Furthermore, calcium transients activate 
signals via both calmodulin kinase and calcineurin/NFAT 
pathways (72, 73). Although these pathways have known 
importance in the modulation of chondrogenesis and 

chondrocyte differentiation (74, 75), further investigations 
are needed to fully characterize how calcium signaling 
in chondrocytes contributes to the anabolic or catabolic 
effects caused by mechanical stress.

5. HARNESSING MECHANICAL STRESS 
FOR MESENCHYMAL STEM CELLS (MSCs) 
DIFFERENTIATION

Controlled mechanical stress is not only useful 
for proper production of engineered cartilage, but may 
provide an exciting new strategy in harnessing control 
of stem cell chondrogenesis. Stem cells are a driving 
force in functional tissue engineering due to their 
capacity for self-renewal and pluripotency. Self-renewal 
enables the extensive ex-vivo (and in vivo) expansion of 
progenitor cells in a target tissue, which is a key feature 
to generate sufficient cells to meet the potential demand 
of tissue replacement. Pluripotency, the ability of stem 
cells to differentiate into multiple cell types, allows the 
possibility of generating multiple tissues (i.e.  bone, 
cartilage, adipose, tendon, muscle, neural and other 
connective tissues) (76-81) from a single source cell, 
and promotes the reconstitution of complex multicellular 
interactions required for function of a single tissue. More 
attention has been focused on the potential of using 
human mesenchymal stem cells (MSCs) regenerative 
medicine for the treatments of musculoskeletal trauma 
and diseases (81, 82, 83).

However, harnessing the potential of MSCs is 
very challenging, as the time point and proper control of 
multi-lineage differentiation would affect the fate of cells, 
possibly leading to a pathological or a non-functional 
tissue. Biologists have appreciated the role of soluble 
factors (e.g.  growth factors and cytokines), explicitly 
used to control stem cell differentiation through their own 
specific pathways activated by adhesive and mechanical 
means.

In multiple species, mechanical stress also 
regulates bone mass and strength (84, 85). Among the 
theories of mechanical signal responses, strain-induced 
fluid shear stress has received greater experimental 
support (86, 87). During repetitive loading and unloading, 
fluid shear stress occurs in the interstitial spaces 
around bone cells in bone marrow cavities (88) and can 
regulate the differential functions of cells by stimulating 
multiple intracellular signal pathways (89). Accordingly, 
there is growing interest for using mechanical stress 
to regulate osteoprogenitor cell differentiation, since 
recent studies have shown that mechanical stimulation 
can be used to initiate the osteogenic differentiation 
of bone marrow MSCs on both 2D planar substrates 
and 3D scaffolds  (90, 91), greatly reducing the time 
required for cultured cell differentiation. In a 2D culture, 
rat MSCs exposed to shear stress showed an increase 
in gene expression and alkaline phosphatase (ALP) 
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activity of bone sialoprotein and osteopontin (92). And 
in a 3D scaffold, cell proliferation and osteogenic marker 
production, including ALP and calcium, were increased 
when MSCs were mechanically stimulated (93). However, 
it is still difficult to calculate the shear stress magnitudes 
applied to the 3D scaffold (94).

An important discovery showed that the 
differentiation of MSCs could be governed by substrate 
stiffness and the control of lineage switching is associated 
with cell distribution and intracellular tension. Engler et al. 
demonstrated that planting MSCs on polyacrylamide 
gels with different stiffness are sufficient to regulate the 
expression of neuronal, skeletal muscle, or osteogenic 
markers in the absence of exogenous soluble cues (95). 
Cell-generated tensional forces exist in equilibrium with 
the underlying substrates, but when weak counterbalance 
forces are present, like in a soft gel, the cellular contractility 
will undergo a compensatory decrease. Consequently, it 
is reasonable to attribute stiffness-dependent changes 
in stem cell differentiation to altered intracellular tension. 
Indeed, the addition of blebbistatin to block intracellular 
tension generation in MSCs obliterates the stiffness-
driven differentiation (95). Consistent with the hypothesis 
that cells upregulate intracellular tension when the matrix 
stiffens and provides higher resistance forces, MSCs 
progressively assemble actin stress fibers and focal 
adhesions (tension-dependent structures) in response to 
the increasing stiffness of substrates.

Several studies directly examined the 
association among mechanical forces, gene 
expression and cell differentiation, and provide a better 
understanding of how mechanical signals regulate stem 

cell differentiation and lineage switching, and it has been 
indicated that cell shape, actin cytoskeleton and the RhoA 
pathway play important roles in the mechanical control 
of MSC differentiation. In the case of embryonic MSCs, 
a morphological change from round to elongated is 
sufficient to drive smooth muscle myogenesis, akin to the 
effect of mechanical stretch (96). Using micro-patterned 
islands of ECM (fibronectin) to control cell spreading, 
McBeath et al. demonstrated that cell shape could 
control the lineage of MSCs (97). In this system, MSCs 
can differentiate into either adipocytes or osteoblasts in 
response to a bipotential differentiation medium, which 
can induce either lineage. However, MSCs confined to 
small ECM islands (1024 μm2) selectively underwent 
adipogenesis, whereas MSCs cells on large ECM 
islands (10000 μm2) tended toward osteogenesis (97). 
This osteogenic-adipogenic switch in well-spread MSCs 
versus poorly-spread MSCs requires the generation 
of tension through RhoA-dependent actomyosin 
contractility. RhoA stimulates tension by its effector, 
Rho kinase, which indirectly elevates the level of active 
phosphorylated myosin light chains (98). Inhibition of 
tension, either cytochalasin D (an actin depolymerization 
agent) or Y-27632 (a Rho kinase inhibitor), promoted 
adipogenesis and mimic the phenotype of poorly spread 
cells. Moreover, manipulation of the RhoA pathway could 
override the effects of soluble differentiation factors such 
that dominant-negative RhoA could induce adipogenesis 
even in the context of pure osteogenic medium. On 
the other hand, constitutively active RhoA can trigger 
osteogenesis in a pure adipogenic medium. In control 
of stem cell differentiation, these findings highlight RhoA 
activity as a potential convergence point for mechanical 
and soluble factor signaling. Importantly, McBeath et al. 

Figure  1. Mechanical loading influences chondrogenesis through multiple aspects. Articular cartilage possesses the characteristics of load-bearing 
environment with pressure, shear stress and tensile force. As the central component of articular cartilage, chondrocytes could perceive the mechanical 
signals through integrins, ion channels and cytoskeleton reshape pathway. And these researches have been applied in tissue engineering for 
chondrogenesis. In Addition, mechanical loading could regulate the differential potency of MSCs through cell shape, actin cytoskeleton, and the RhoA 
pathway, thus enhancing chondrogenic differentiation of mesenchymal stem cell to providing new chondrocyte cell sources.
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also demonstrated that the expression of constitutively-
active Rho kinase rescued osteogenic differentiation of 
poorly-spread MSCs, which require myosin II activity, 
indicating that both cell shape and RhoA regulate 
osteogenic-adipogenic switching during the development 
of cytoskeletal tension (97).

Despite the established link between MSC 
differentiation and mechanical stimuli, it is important to 
acknowledge that changes in applied forces and stresses 
were not extensively measured in these experiments. It is 
possible that the employed mechanical manipulations also 
perturb paracrine signaling and/or adhesive cues. Further 
investigation to clarify the precise mechanisms of signaling 
pathways activated by mechanical stress will contribute to 
the achievement of a ‘better’ engineered cartilage.

6. CONCLUSIONS

As summarized in Figure  1, the load-bearing 
environment of articular cartilage, which influences the 
differentiation and biomechanics of chondrocyte, has 
been a central focus on chondrogenesis. A more thorough 
understanding of the effects of mechanical stimuli and their 
downstream pathways could improve stem cell biology, 
chondro-induction, and redifferentiation methods. Future 
therapies, including tissue engineering, will be solidly 
based on biomechanics due to its multifaceted role in 
driving chondro-differentiation and cartilage regeneration. 
Despite exciting recent advances, further examination 
is in urgent need to fully understand the biomechanics 
mechanism and develop biomechanics-driven strategies.
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