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1. ABSTRACT

Cell stiffness or deformability is a fundamental 
property that is expected to play a major role in multiple 
cellular functions. It is well known that cell stiffness is 
dominated by the intracellular cytoskeleton that, together 
with the plasma membrane, forms a membrane-
cytoskeleton envelope. However, our understanding of how 
lipid composition of plasma membrane regulates physical 
properties of the underlying cytoskeleton is only starting to 
emerge. In this review, we first briefly describe the impact 
of cholesterol on the physical properties of lipid bilayers in 
model membranes and in living cells, with the dominant effect 
of increasing the order of membrane lipids and decreasing 
membrane fluidity. Then, we discuss accumulating evidence 
that removal of cholesterol, paradoxically, decreases the 
mobility of membrane proteins and increases cellular 
stiffness, with both effects being dependent on the integrity 
of the cytoskeleton. Finally, we discuss emerging evidence 
that oxidized modifications of low-density lipoproteins 
(oxLDL) have the same effects on endothelial biomechanical 
properties as cholesterol depletion, an effect that is mediated 
by the incorporation of oxysterols into the membrane.

2. INTRODUCTION

Cholesterol is one of the major lipid components 
of the plasma membrane in all mammalian cells, where 

Paradoxical impact of cholesterol on lipid packing and cell stiffness

Manuela A Ayee1, Irena Levitan1

1Division of Pulmonary Care, Department of Medicine, University of Illinois at Chicago

TABLE OF CONTENTS

1. Abstract
2. Introduction
3. Cholesterol-induced ordering of membrane phospholipids in artificial membranes
4. Impact of cholesterol on physical properties of plasma membrane lipid bilayers

4.1. Experimental tools for modulating cellular cholesterol
4.2. Cholesterol effects on the fluidity of plasma membranes
4.3. Cholesterol effects on lipid packing of the plasma membrane bilayer

5. Impact of cholesterol on membrane-cytoskeleton interactions
5.1. Impact of cholesterol on the lateral mobility of membrane proteins
5.2. Cholesterol loss increases the strength of membrane-cytoskeleton adhesion

6. A loss of cholesterol results in cell stiffening
6.1. Cell membrane deformability
6.2. Stiffness of the intracellular “deep” cytoskeleton
6.3. Force generation

7. Inverse effects of oxLDL and oxysterols on lipid packing and cell stiffness
7.1. OxLDL-induced fluidization and stiffening of endothelial membranes
7.2. 7-ketocholesterol-induced fluidization and stiffening of endothelial membranes

8. Concluding remarks and implications for cellular function
9. Acknowlegements
10. References

it constitutes up to 45 mol% with respect to other lipids. 
Remarkably, there is a strong heterogeneity in cholesterol 
distribution between the plasma and the intracellular 
membranes, with the majority of cholesterol, up to 90%, 
found in the plasma membrane (1, 2). Furthermore, 
cholesterol is also distributed heterogeneously within 
the plasma membrane, giving rise to a concept of 
cholesterol-rich membrane rafts/domains (3, 4). The 
impact of cholesterol on the physical properties of the 
membrane lipid bilayer is well studied, both in pure lipid 
environments, such as liposomes or lipid monolayers, and 
in cellular membranes. Briefly, an increase in membrane 
cholesterol has been shown to increase lipid packing 
and decrease fluidity and deformability of lipid bilayers. 
However, an increasing number of studies, including by 
our group and other investigators, demonstrate that an 
increase in the rigidity and lipid packing of the bilayer 
does not translate into an increase in the overall stiffness 
of the cellular envelope, a bi-component system where 
the sub-membrane cytoskeleton underlies the membrane 
lipid bilayer. In contrast, it appears that there is an inverse 
relationship between the lipid order of the membrane 
bilayer and the stiffness of the cellular envelope that is 
dominated by the cortical cytoskeleton. The goal of this 
review is to discuss the current knowledge about the 
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impact of membrane cholesterol on cellular biomechanics 
and the implications of these effects on cellular function.

3. CHOLESTEROL-INDUCED ORDERING 
OF MEMBRANE PHOSPHOLIPIDS IN 
ARTIFICIAL MEMBRANES

The cholesterol molecule consists of a planar 
ring structure built of four fused steroid rings with a 
hydroxyl group and a hydrophobic tail. The molecule is 
oriented with the steroid rings parallel to the hydrocarbon 
chains of the membrane phospholipids: the hydroxyl 
group interacts with the polar head groups of the 
phospholipids while the rigid lipophilic steroid ring system 
interacts with the hydrocarbon chains, restricting their 
motion within the bilayer (2, 5).

At low cholesterol concentrations (below 
15 mol%), the lateral order of artificial phospholipid 
membranes made up of saturated phospholipids such as 
DPPC or DMPC is initially disrupted, causing membrane 
fluidization at room temperature, an effect that is reversed 
as cholesterol concentration increases (e.g.  (6, 7)). 
Addition of cholesterol also abolishes the phase transition 
from the liquid to the gel phase of the model membrane (8). 
At the same time, however, above the phase transition 
temperature in membranes, the presence of cholesterol 
causes condensation of the phospholipids and a 
decrease in membrane fluidity. As discussed in detail 
below, the predominant effect of cholesterol in biological 
membranes is a decrease in membrane fluidity. The 
mechanism of the condensation effect is related to 
the energetic requirement of the membrane to shield the 
hydrophobic portions of cholesterol molecules from the 
external polar environment. For membrane phospholipids, 
their hydrophobic tails are shielded from the external 
polar environment by their large hydrophilic headgroups. 
Cholesterol, however, possesses a smaller hydrophilic 
headgroup than phospholipids; therefore, when present 
in a membrane, cholesterol is unable to shield the 
hydrophobic region as efficiently as phospholipids. To 
better shield the hydrophobic interior of the membrane 
in the presence of cholesterol, the phospholipid tails 

become more aligned as they pack closer together, and 
the area they occupy decreases (9). Thus, an increase 
in membrane cholesterol concentration has an ordering 
effect on the membrane phospholipid tails, which also 
manifests itself as a decrease in membrane fluidity due to 
hindering of the lateral motion of membrane phospholipids, 
as described in earlier studies (e.g. (10-12)).

In terms of membrane elasticity, cholesterol 
has been shown to increase the elastic compressibility 
modulus of lipid bilayers, making the membrane 
effectively more rigid and less deformable (13, 14). 
Moreover, the heterogeneous distribution of membrane 
cholesterol, influenced by its differential interactions with 
phospholipids with varied degrees of acyl tail saturation, 
results in a non-monotonous change in the membrane 
elasticity modulus as cholesterol concentrations are 
increased (15-17). The decrease in in-plane membrane 
elasticity with increasing cholesterol concentration has 
been found to also depend on the degree of phospholipid 
acyl chain saturation and headgroup identity. 
Phospholipid membranes with greater tail saturation 
have greater decreases in elasticity when exposed to 
higher cholesterol concentrations (18, 19). This effect 
results in the formation of a liquid ordered phase in 
which phospholipid acyl tails appear to be extended and 
tightly packed, leading to the formation of membrane 
ordered domains (e.g.  (20-22)). The ordering effect of 
cholesterol is also associated with increased thickness 
of the hydrophobic core of the membrane. For example, 
the thickness of saturated DPPC bilayers was shown to 
increase with increasing cholesterol concentration from 
57.0 Å in bilayers without cholesterol, to 59.6 Å and 
60.2 Å in bilayers containing 9% and 28% cholesterol 
respectively (23). This ordering effect is also attributed 
to an increase in trans configurations of the hydrocarbon 
chains in the case of unsaturated phospholipids. 
Accordingly, cholesterol-rich ordered membrane domains 
are expected to have a higher thickness than the rest 
of the membrane (Figure  1). Accumulating evidence 
suggests that cholesterol-rich membrane domains 
that are formed in cellular plasma membranes play an 
important role in the regulation of cellular stiffness.

Figure 1. Schematic of membrane thickening and phospholipid tail alignment caused by inserted cholesterol molecules. The phospholipid molecules 
(pink spheres with grey tails) form a bilayer. Cholesterol molecules are represented by red spheres for hydroxyl groups with yellow steroid rings and a 
black hydrophobic tail.
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4. IMPACT OF CHOLESTEROL ON PHYSICAL 
PROPERTIES OF PLASMA MEMBRANE 
LIPID BILAYERS

4.1. Experimental tools for modulating cellular 
cholesterol

A transition from studying effects of cholesterol 
on the properties of artificial membranes to cellular 
membranes presented an immediate challenge of 
modulating cell membrane cholesterol in a specific 
and reproducible way. Prior to the development of 
β-cyclodextrin (βCD)-based cholesterol extraction, the 
means to modify cellular cholesterol in a controlled 
way were limited. It was possible to incubate cells with 
liposomes containing either low or high cholesterol 
concentrations, which would respectively decrease or 
increase cellular cholesterol levels upon fusion to cell 
membranes. Alternatively, it was possible to serum starve 
the cells by maintaining them in media containing little to 
no serum. Clearly, both approaches introduce multiple 
non-specific effects. A  major advance in the field was 
the development of a method to specifically modulate 
membrane cholesterol in cellular membranes in a precise 
and reproducible way by exposing cells to β-cyclodextrins 
(βCDs) (24, 25), which led to an explosion of studies 
addressing the role of cholesterol in a variety of cellular 
functions.

Cyclodextrins, oligosaccharides consisting of 
α-(1-4)-linked D-glycopyranose units, have long been 
utilized as carriers of hydrophobic drugs due to their high 
solubility in water and the presence of a hydrophobic cavity 
within the molecule (26). The size of the cavity depends 
on the degree of the polymerization and provides relative 
specificity for different hydrophobic loads (26),  (27). 
Specifically, heptamers, or β-cyclodextrins, were shown 
to be the most efficient at extracting cholesterol, whereas 
hexamers, or α-cyclodextrins are more efficient at 
extracting phospholipids (28). In terms of extraction 
mechanism, Rothblatt and colleagues (29) proposed 
that, based on the kinetic and energetic analysis of 
cholesterol efflux, a cyclodextrin molecule diffuses 
into the immediate proximity of the plasma membrane 
bilayer and cholesterol molecules diffuse directly into 
the cyclodextrin hydrophobic cavity without having to 
dissolve into the aqueous phase of the cytosol.

It is important to note that, while numerous studies 
established that β-cyclodextrins can be used for precise 
and reproducible cholesterol extraction, enrichment 
or replenishment in multiple cell types and tissues, 
the specificity of cholesterol extraction for cholesterol-
rich vs. cholesterol-poor membrane domains remains 
controversial. Briefly, some specificity was suggested by 
studies showing that short exposures (≤ 2 min) or very 
low concentrations (≤ 1 mM) of MβCD result in selective 
extraction of cholesterol from cholesterol-rich membrane 
domains (30, 31), however, the preponderance of studies 

show that MβCD is capable of removing cholesterol from 
both types of membrane domains (27). A more detailed 
analysis of the impact of cholesterol depletion and 
enrichment on membrane fluidity and local lipid order of 
plasma membranes is presented below.

4.2. Cholesterol effects on the fluidity of 
plasma membranes

Membrane fluidity, an inverse of viscosity, 
can be estimated by measuring the motion of different 
moieties within the bilayer. The two most common 
methods to measure membrane fluidity are fluorescence 
anisotropy, based on the rotational diffusion of fluorescent 
lipid probes, and FRAP (Fluorescence Recovery After 
Photobleaching), an approach that measures the rate of 
lateral diffusion of a fluorescent moiety into a region that 
was previously photobleached.

Fluorescence anisotropy is based on the 
incorporation of small fluorescent lipophilic probes into 
the membrane bilayer that orient themselves with the 
hydrocarbon chains of the phospholipids. Membrane 
viscosity is estimated from the rotational diffusion 
coefficients of the probes, which is hindered by the 
neighboring lipids (32-34). The probes differ in their 
selectivity for plasma vs. intracellular membranes 
and also in their specific position within the bilayer. 
For example, DPH (1,6-diphenyl-1,3,5-hexatriene) 
is incorporated into the hydrophobic core of the 
bilayer and has poor selectivity between the plasma 
and intracellular membranes, whereas its derivative 
TMA-DPH (4-trimethyl-ammonio-1,6-diphenyl-1,3,5-
hexatriene) is incorporated in the outer leaflet close to the 
membrane surface and is more selective to the plasma 
membrane (32, 35). Universally, the effect of cholesterol 
removal is an increase in membrane fluidity, as measured 
by DPH-based fluorescence anisotropy. Specific 
examples include a significant decrease in fluorescence 
anisotropy corresponding to increased membrane fluidity 
in cholesterol depleted HEK293 cells (36, 37), membrane 
vesicles isolated from a basophilic leukemia cell line (38), 
human glioblastoma cells (39), primary cerebellar granule 
cells (40) and sperm (41).

Effects of cholesterol depletion on the lateral 
mobility of lipid probes or lipid components of biological 
membranes are mostly consistent with increased 
membrane fluidity reported by fluorescence anisotropy. 
Pucadyil and Chattopadhyay (42) reported that cholesterol 
depletion of hippocampal membranes resulted in a 
significant increase in lateral diffusion of two fluorescent 
lipids: DiIC18, which partitions preferentially into ordered 
domains, and FAST DiI, which partitions into disordered 
membranes. Interestingly, the effect of cholesterol 
depletion on lipid diffusion was higher for ordered than 
for disordered phases. Cholesterol depletion was also 
reported to increase the lateral mobility of a fluorescent 
analogue of sphingomyelin (43). A recent study showed, 
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however, that cholesterol depletion may also decrease 
the mobility of a lipid probe in primary hair cells isolated 
from guinea pigs, an effect that was specific to the basal 
membranes, while no effect was observed on the apical 
membranes (44). The source of this local heterogeneity 
is not clear. In any case, an increase in membrane fluidity 
is expected to be associated with increased lipid packing/
ordering of the membrane.

4.3. Cholesterol effects on lipid packing of the 
plasma membrane bilayer

Lipid packing or ordering of biological 
membranes can be estimated by Laurdan two-photon 
microscopy, a dye that is sensitive to the polarity of the 
local environment and undergoes a red shift as the phase 
boundary changes from gel to fluid (45, 46). Changes in 

membrane order are estimated by calculating the general 
polarization (GP) ratio, a normalized ratio of fluorescence 
intensity of gel phase vs. fluid phase. Typically, plasma 
membranes are shown to be highly heterogeneous in their 
lipid order with GP values varying in a continuous manner 
and without a sharp, clear distinction between “ordered” 
and “disordered” domains. Nevertheless, GP histograms 
reflect the relative abundance of the membrane domains 
with more fluid or more ordered properties, providing a 
“map” of lipid order of individual cells. Figure  2 shows 
a typical example of a “domain map”, as detected by 
Laurdan two-photon microscopy.

Gaus et al. (45) were first to test the effects of 
cholesterol depletion and enrichment on the lipid order of 
membrane domains using Laurdan imaging. Their data 

Figure 2. Impact of cholesterol depletion on lipid packing of membrane domains in endothelial cells. A: Typical GP images of control and cholesterol-
depleted cells. Bar is 5.6 µm. B: The zoomed-in representative regions of the GP images shown above. Scale bar is 1µm. All images are shown in 
pseudo color with yellow and red corresponding to the higher GP values, presumably ordered domains, and green and blue corresponding to the lower 
GP values, presumably disordered domains. C: GP histograms fitted by a two-Gaussian distribution. Reproduced from Shentu et al., 2010, American J 
of Physiology Cell Physiology 299: C218-229.
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show that cholesterol depletion of macrophages results 
in a significant decrease in lipid order of both ordered and 
fluid domains, and a relatively small, but significant, shift 
in the total area of the cell membrane covered by ordered 
vs. fluid domains (about a 10-20% shift from ordered to 
fluid). Cholesterol enrichment, however, did not increase 
the order of either of the domains, but increased the area 
covered by the ordered domains (also by about 20%). 
A decrease in lipid order following cholesterol depletion 
was also observed in plasma membranes of multiple 
other cell types, including kidney cells (47), hippocampal 
membranes (48), and aortic endothelial cells (49), as 
well as in cell lines CHO (50) and HEK (37). Interestingly, 
MβCD-induced cholesterol depletion was observed 
not only to decrease lipid order, but also to decrease 
membrane heterogeneity (49).

In summary, it is well established that removal 
of cellular cholesterol increases membrane fluidity, as 
measured by the diffusion of lipid probes, and decreases 
the lipid order/packing of the membrane lipid bilayer 
of plasma membranes. This effect is based on the 
physical interactions between cholesterol molecules and 
phospholipids, and is fully consistent with the impact of 
cholesterol on fluidity and lipid packing of non-biological 
membranes.

An increase in membrane fluidity should be 
expected to promote the ability of membrane proteins 
to move within the membrane and form regulatory 
protein-protein complexes, which clearly should have 
major functional consequences. However, accumulating 
evidence demonstrates that cholesterol depletion actually 
inhibits the lateral motilities of membrane proteins in 
several systems, an effect that depends on the integrity 
of the sub-membrane cytoskeleton.

5. IMPACT OF CHOLESTEROL ON 
MEMBRANE-CYTOSKELETON 
INTERACTIONS

5.1. Impact of cholesterol on the lateral 
mobility of membrane proteins

The first surprising result came from the work 
of Edidin and colleagues, who used FRAP to determine 
the effect of cholesterol depletion on the lateral diffusion 
of a class of HLA (Human Leukocyte Antigen) molecules 
in fibroblasts and lymphoblasts (51). In contrast to an 
increase in membrane fluidity reported by fluorescence 
anisotropy of membrane probes, Kwik et al. showed that 
cholesterol depletion significantly decreased the mobility 
of the HLA molecules. A similar result was also observed 
for epidermal growth factor receptors in the same cells. 
A  decrease in the lateral mobility of the membrane 
proteins in cholesterol-depleted cells was abrogated by 
depolymerizing F-actin, indicating that this effect depends 
on the stability of the cytoskeleton (51). A similar effect 
was observed for voltage-gated K+ channels Kv1.4., with 

cholesterol depletion resulting in a significant decrease 
in the lateral mobility of the channels (52). At the same 
time, the mobilities of two other voltage-gated K+ 
channels, Kv2.1. and Kv1.3., were either unaffected or 
slightly increased, leading to the conclusion that these 
channels partition into separate membrane domains. The 
exact mechanisms of the differential effects of cholesterol 
on Kv channels, however, remain unclear. A  decrease 
in mobility following cholesterol depletion was also 
reported for several other proteins, including Serotonin1A 
receptors (53) and Nicotinic acetylcholine receptor (54). 
The major effects were a decrease in the mobile fraction 
and of the diffusion coefficients. Interestingly, Baier et al. 
also showed that depolymerization of F-actin resulted 
in partial recovery of receptor mobility in cholesterol-
depleted cells (54). Taken together, these observations 
lead to two conclusions: lateral mobility of membrane 
proteins may be inversely related to the fluidity of lipid 
components of the membrane, and the mobility is 
critically dependent on the integrity of the cytoskeleton. 
These observations also imply that, surprisingly, the 
integrity/stability of the sub-membrane cytoskeleton and/
or membrane-cytoskeleton adhesion is enhanced by 
cholesterol depletion. Direct evidence for this effect is 
discussed in the next section.

5.2. Cholesterol loss increases the strength of 
membrane-cytoskeleton adhesion

Earlier studies investigated the role of cholesterol-
rich membrane domains in membrane-cytoskeleton 
interactions with accumulating evidence suggesting 
that these domains serve as focal points for these 
interactions. More specifically, several major regulators 
of the cytoskeleton function, such as phosphatidylinositol 
4,5 bisphosphate (PIP2) and Rho-GTPases were found 
to partition into the protein complexes found in raft 
domains (55). Cholesterol depletion, on the other hand, 
was shown to disrupt the association of PIP2 with the raft 
domains (56), decrease the level of PIP2 on the plasma 
membrane (51), and prevent membrane association and 
activation of Rac1 (57). These studies were performed in 
several cell types including fibroblasts and lymphoblasts, 
as well as in immortalized cell lines. Furthermore, multiple 
cytoskeleton proteins were identified in cholesterol-rich 
detergent-resistant membrane fractions in neutrophils 
using proteomic analysis (58). Based on these studies, 
the expectation was that cholesterol depletion resulting 
in the disruption of cholesterol-rich membrane domains 
should result in weakening of membrane-cytoskeleton 
interactions and dissociation of the sub-membrane 
cytoskeleton from the plasma membrane. Thus, studies 
of the effect of cholesterol depletion on the lateral mobility 
of membrane proteins and studies of the association of 
cytoskeleton proteins with cholesterol-rich domains 
created opposite expectations regarding the effect of 
membrane cholesterol on the strength of membrane-
cytoskeletal adhesion. It was critical, therefore, to 
determine directly how changes in the level of membrane 
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cholesterol regulate the adhesion between the plasma 
membrane and the sub-membrane cytoskeleton.

Sun et al. (59) investigated the impact of cholesterol on 
the adhesion strength between the cytoskeleton and 
the membrane by pulling membrane tethers from the 
surface of aortic endothelial cells using Atomic Force 
Microscopy (AFM). This approach, described in detail 
by (60), measures the tether force (F), recorded by the 
deformation of the AFM cantilever, as the cantilever 
is pulled away from the cells at different speeds. The 
dependence of the tether force and the pulling speed 
is described by F F veff= +

0
2πη  (61), where F0, the 

threshold force, reflects the amount of force needed 
to initiate a tether formation and is a function of the 
membrane-cytoskeleton interaction, ηeff  is the effective 
membrane surface viscosity, and v is the speed at 
which the cantilever is pulled away from the cell. Using 
this approach, we found that cholesterol depletion 
significantly increased the threshold force that is 
required to pull the tether, which is directly related to the 
membrane-cytoskeleton interaction (59). An increase F0 
in was abrogated by depolymerization of F-actin, further 
suggesting that this effect should be attributed to the 
stabilization and strengthening of the sub-membrane 
cytoskeleton. To isolate the contribution of actin-
cytoskeleton in determining the F0 of generating the 
tether, we defined the membrane-cytoskeleton adhesion, 
Fad as the difference in F0 before and after latrunculin 
treatment, i.e.  Fad = F0 - F0

lata Cholesterol depletion results 
in almost a 2-fold increase in Fad, whereas cholesterol 
enrichment significantly decreases the threshold tether 
force F0 so that it becomes almost equivalent toc F0

lata. 

These observations led to the conclusion that cholesterol 
depletion increases membrane-cytoskeleton adhesion, 
whereas cholesterol enrichment has the opposite effect. 
Furthermore, cholesterol depletion also increases the 
variance of tether force, suggesting that cholesterol 
depletion makes tethers much more heterogeneous, 
presumably due to the enhanced membrane-cytoskeleton 
adhesion. In contrast, cholesterol enrichment reduces the 
membrane-cytoskeleton adhesion and makes the bilayer 
easier to detach from and flow on the cytoskeleton.

In terms of the mechanism, our more recent 
study suggests that cholesterol depletion enhances 
membrane-cytoskeletal interactions by causing 
dispersion and redistribution of PIP2 (62). Similarly to the 
previous study, we used aortic endothelial cells to show 
that while PIP2 appeared in discrete patches in control 
endothelial cells, cholesterol depletion resulted in the loss 
of discrete PIP2 domains and almost uniform distribution 
across the cell membrane. Most importantly, while 
addition of exogenous PIP2 had no effect on the tether 
force in control cells, it significantly increased the tether 
force in cholesterol-depleted cells indicating stronger 
membrane-cytoskeleton adhesion. We hypothesized 
that cholesterol depletion may strengthen membrane-
cytoskeleton interactions by increasing the number 

of focal points enriched with the PIP2 linker. We could 
not completely exclude the possibility, however, that 
cholesterol depletion makes it easier for the exogenous 
PIP2 to be incorporated into the plasma membrane, 
thus more studies are needed to evaluate this point. 
Interestingly, changes in PIP2 distribution were also 
shown to be critical for the effect of cholesterol depletion 
on constraining the lateral mobility of membrane proteins 
reported earlier (51), but in that case, cholesterol depletion 
resulted in the loss of PIP2 from the plasma membrane. 
The authors suggested that the loss of PIP2 results in 
re-organization and stabilization of the sub-membrane 
cytoskeleton. Clearly, more studies are needed to provide 
better understanding of these mechanisms.

6. A LOSS OF CHOLESTEROL RESULTS 
IN CELL STIFFENING

6.1. Cell membrane deformability
As described above, the first indication that 

cholesterol removal may result in the stabilization of 
the cytoskeleton came from a study by Kwik et al. (51) 
showing that cholesterol depletion of human fibroblasts 
constrained the mobility of a class of transmembrane 
proteins, an effect that was fully dependent on the 
integrity of F-actin. Furthermore, Kwik et al. proposed 
that cholesterol depletion resulted in stabilization of 
the sub-membrane cytoskeleton. Since the overall 
stiffness of the membrane-cytoskeleton complex is well 
recognized to be dominated by the rigidity of the sub-
membrane cortical cytoskeleton (63), these observations 
implied that a loss of membrane cholesterol may have 
significant implications for the biomechanical properties 
of the membrane-cytoskeleton complex.

Byfield et al. (64) provided the first direct 
evidence that cholesterol depletion results in significant 
stiffening and loss of deformability of vascular endothelial 
cells by measuring progressive membrane deformation 
in response to negative pressure applied by a glass 
micropipette (Figure  3). Exactly the same approach 
was used earlier to determine the effect of cholesterol 
on membrane stiffness of liposomes, showing that an 
increase in membrane cholesterol results in bilayer 
stiffening (13). However, in contrast to its effect on the 
bilayer stiffness, removal of membrane cholesterol 
either by a cholesterol-depleting agent, methyl-β-
cyclodextrin (MβCD), or by serum starvation resulted in 
the slower rate of membrane deformation and smaller 
maximal deformation in response to the same level of 
negative pressure, indicating an increase in endothelial 
stiffness (64). Cholesterol depletion-induced endothelial 
stiffening was accompanied with a significant change in 
endothelial morphology and spreading (65). Enriching 
the cells with cholesterol had no effect. Importantly, a 
typical membrane area that is aspirated into the pipette in 
these experiments is rather large (the tips of the pipettes 
are ~5  µm in diameter) and the membrane is clearly 
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undergoing deformation together with at least some of 
the sub-membrane cytoskeleton. The stiffening effect 
induced by cholesterol depletion is fully abrogated by 
the depolymerization of F-actin. The latter observation is 
consistent with the notion that integrity of F-actin plays 
the dominant role in determining cellular biomechanical 
properties. Most of these studies were performed using 
bovine aortic endothelial cells as a cellular model. 
Importantly, an increase in cell stiffness upon cholesterol 
depletion was also shown in Chinese Hamster Ovary 
cells (CHO K1) demonstrating that this effect is not 
unique to endothelial cells (66). Clearly, more studies are 
needed to determine the relationship between membrane 
cholesterol and cellular stiffness in other vascular tissues, 
particularly in vascular smooth muscle cells.

6.2. Stiffness of the intracellular “deep” 
cytoskeleton

Another rather unexpected observation came 
from the analysis of correlated motion of fluorescent 
beads that were phagocytosed by endothelial cells (67). 
The motion of internalized particles is indicative of the 
material properties of a cellular milieu, with greater motion 
indicating a softer material (68). Furthermore, movement 
of individual particles deforms the cytoskeletal network 
around them, resulting in displacement of other particles 
in their vicinity (69). Thus, analysis of the correlated 
motion of particles within a cell allows estimation of the 
stiffness of the intracellular cytoskeleton (70, 71). Using 
this approach, we showed that cholesterol depletion 
results in a significant (~50%) decrease in the correlated 

motion of particles within endothelial cells, indicating an 
increase in the intracellular stiffness. It is also important 
to note that a decrease in the correlated motion of the 
particles may also be indicative of a decrease in motor 
activity. In either case, these observations indicate that 
cholesterol depletion regulates the material properties of 
the intracellular cytoskeleton.

6.3. Force generation
An increase in cellular stiffness in cholesterol 

depleted endothelial cells correlates with an increase 
in endothelial force generation. First, it was established 
that decreasing the level of cellular cholesterol facilitates 
the ability of aortic endothelial cells to induce gel 
contraction  (72), which is indicative of an increase in 
force generation on the cell-substrate interface. Indeed, 
these observations are consistent with earlier studies that 
demonstrated that increased cell stiffness correlates with 
the magnitude of forces that cells exert on substrates (73). 
To gain further insights into the effect of cholesterol loss 
on endothelial force generation, we analyzed the local 
forces generated by endothelial cells using Traction Force 
Microscopy (TFM), as described previously (74). In this 
study, we showed that consistent with the gel contraction 
assays, TFM analysis revealed that cholesterol depletion 
results in an almost 2-fold increase in force exerted by 
the cells on their substrates (75). Similar to the impact 
of cholesterol on endothelial stiffness, while cholesterol 
depletion increased endothelial force generation, 
cholesterol enrichment had no effect. Force generation 
effects of cholesterol depletion, however, can be rescued 

Figure 3. Cholesterol depletion increases stiffness of vascular endothelial cells. A: Typical images of membrane deformation in response to negative 
pressure in cells depleted or enriched with cholesterol as compared to a control cell. Membrane is visualized with a fluorescent dye Di18; bar is 10 µm. 
B: Maximal membrane deformation normalized to a pipette diameter as a function of applied pressure. Reproduced from Byfield et al., 2004, Biophys J. 
2004 Dec;87(6):3850-61.
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by replenishing cellular cholesterol. Thus, it appears that 
for both endothelial stiffness and force generation, there 
is a critical cholesterol level that is required to maintain 
the normal parameters, so that addition of cholesterol 
over this level has no further effect.

7. INVERSE EFFECTS OF OXLDL AND 
OXYSTEROLS ON LIPID PACKING AND 
CELL STIFFNESS

With an increased realization that the loss of 
membrane cholesterol has opposite effects on the lipid 
order of the membrane vs. on membrane-cytoskeleton 
interactions and cellular stiffness, the question arises of 
how this effect is related to physiological and pathological 
conditions in dyslipidemia. The main concern is usually 
an increase in cholesterol load rather than cholesterol 
deficiency. Our studies, however, provide multiple lines of 
evidence that exposing endothelial cells to oxidized low-
density lipoproteins (oxLDL) results in the same effects 
on endothelial biomechanics as cholesterol depletion. 
Specifically, these effects include disruption of lipid 
packing (49), increase in cell stiffness (49, 72), increase 
in force generation (72, 76), and enhanced sensitivity 
to shear stress (77). Furthermore, we also showed that 
exposing cells to 7-ketocholesterol, one of the major 
components of oxLDL, also disrupts lipid order and 
increases endothelial stiffening (78). All of these studies 
focused on aortic endothelial cells (bovine and human) 
because of the high prevalence of atherosclerosis in 
these arteries. It would be very interesting and important 
to compare the biomechanical properties of endothelial 
cells across different vascular beds. A  more detailed 
discussion of the current studies is provided below.

7.1. OxLDL-induced fluidization and stiffening 
of endothelial membranes

Oxidative damage of low-density lipoproteins 
(LDL) is well known to be a major risk factor for the 
development of cardiovascular disease. The levels of 
oxLDL increase in hypercholesterolemia in both humans 
and animal models, and it is found in atherosclerotic 
lesions (79-81). It is important to note, however, that the 
term oxidized LDL is used to describe a wide variety of LDL 
modifications ranging from minimally or mildly-oxidized 
to strongly-oxidized, which may differ significantly in their 
composition and biological effects. This variability can be 
attributed to the fact that LDL oxidation in vivo is mediated 
by a variety of free radicals including superoxide, hydroxyl 
radicals and nitric oxide produced by enzymatic action of 
several enzymes, such as NADPH oxidase (NOX), NO 
synthase and lipoxygenase (82). The most frequently 
used oxidation route in vitro is exposure to free transition 
metals, particularly copper, although this pathway is not 
significant in the physiological oxidation of LDL in vivo. 
The rationale to use copper-oxidized LDL as a molecular 
model for oxidative modifications of LDL in vivo is that 
it is recognized by the cellular scavenger receptors and 

results in significant endothelial dysfunction. One of the 
major postulates in the field regarding oxLDL has been 
that oxLDL is detrimental to endothelial function because 
by virtue of being recognized by the scavenger receptors, 
it should be more efficient in loading cells with cholesterol. 
This notion was challenged by the studies of Smart 
and colleagues, who showed that rather than enriching 
endothelial cells with cholesterol, oxLDL depleted 
cholesterol from caveolae (83). Following this study, we 
tested the impact of oxLDL on the deformability of aortic 
endothelial cells and found that, similarly to cholesterol 
depletion, exposure to oxLDL resulted in a significant 
increase in endothelial stiffness (72). The impact of 
oxLDL on endothelial stiffening correlated positively with 
the degree of LDL oxidation (78). These studies were 
conducted using copper-oxidized LDL. More recently, 
we have also determined that exposing endothelial 
cells to enzymatically oxidized LDL also results in 
endothelial stiffening (manuscript in preparation). 
Furthermore, the effect of oxLDL on endothelial stiffness 
was verified in endothelial cells freshly-isolated from 
hypercholesterolemic pigs demonstrating that it is highly 
physiologically relevant (72).

OxLDL-induced endothelial stiffening was 
accompanied with a decrease in lipid order/fluidization 
of endothelial membranes, as determined by Laurdan 
imaging described above (49). Notably, both oxLDL-
induced fluidization of the membrane domains and the 
stiffening of the cellular envelope could be reversed by 
increasing cholesterol content of the membrane. Thus, 
both of these effects are clearly not mediated by an 
increase in membrane cholesterol. However, since we 
also did not detect any significant decrease in cholesterol 
content, efflux or internalization in oxLDL-treated cells, 
we proposed an alternative hypothesis that oxLDL-
induced fluidization of the membrane and endothelial 
stiffening are mediated by the membrane insertion of 
oxysterols.

7.2. 7-ketocholesterol-induced fluidization and 
stiffening of endothelial membranes

OxLDL contains an array of oxidative lipids 
that are bioactive under pathological conditions. 
Our studies showed that oxLDL-induced endothelial 
stiffening can be accounted for by the oxysterol fraction 
of the lipoprotein, with the most prominent effects 
caused by 7-ketocholesterol. We also found increased 
incorporation of 7-ketocholesterol in arterial tissues 
of dyslipidemic mice (78). Figure  4 shows a shift in 
the distribution of endothelial elastic moduli to higher 
values in cells exposed to 7-ketocholesterol, indicating 
an increase in cell stiffness. At the same time, the 
lipid order parameters of endothelial membranes shift 
to a more fluid, less ordered phase, as indicated by a 
relative decrease in highly-ordered (yellow) domains 
and an increase in less ordered (blue-green) domains. 
In addition, 27-hydroxycholesterol, which was also 
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found in atherosclerotic lesions, had a similar effect. 
The stiffening effects induced by both 7-ketocholesterol 
and 27-hydroxycholesterol were fully reversed by 
enriching the cells with cholesterol  (78). In terms of 
the lipid order effect, similarly to oxLDL, exposure to 
7-ketocholesterol also resulted in a significant shift of 
endothelial membranes to a more fluid/less ordered 

state. The latter is consistent with earlier studies showing 
that 7-ketocholesterol disrupts lipid order of model 
membranes (84). It is important to note that an inverse 
relationship between fluidization of the membrane and 
endothelial stiffening was also observed for another 
sterol, coprastanol (49), indicating this effect is not 
unique to the oxysterol components of oxLDL.

Figure 4. 7-ketocholesterol has inverse effects on lipid order and endothelial stiffness. A: Typical GC chromatographs of oxysterols in lipid extracts 
isolated from control cells; cells exposed to 10 g/ml 7-ketocholesterol. B: Histograms of elastic modulus measured in control (Ctrl) and 7-ketocholesterol-
treated cells. C: Average elastic modulus for control (Ctrl) and 7-ketocholesterol-treated cells. (mean ± SEM, n=80 cells for each experimental condition). 
D: Typical GP images of control cells (Ctrl), 7-ketocholesterol-treated cells. Scale bar is 11.2 µm.

Figure 5. Schematic of membrane fluidization and stabilization of sub-membrane cytoskeleton following cholesterol depletion and oxysterol insertion. 
Coloring follows that of Figure 1, with the addition of oxysterols containing extra polar groups represented by green spheres. Sub-membrane cytoskeleton 
filaments are represented by violet strands.
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8. CONCLUDING REMARKS AND 
IMPLICATIONS FOR CELLULAR FUNCTION

In conclusion, multiple lines of evidence 
demonstrate that removal of membrane cholesterol 
or incorporation of specific oxysterols into the plasma 
membrane result in fluidization of the membrane lipid 
bilayer, and at the same time, lead to the strengthening 
of membrane-cytoskeleton interactions and increase 
in cell stiffness. Furthermore, membrane incorporation 
of oxysterols appears to be responsible for endothelial 
stiffening when exposed to oxLDL. The mechanisms, 
however, that couple fluidization of the membrane to 
increases in cell stiffness are still poorly understood. 
One mechanism that contributes to strengthening of 
membrane-cytoskeleton adhesion and stabilizing of the 
sub-membrane cytoskeleton is a loss or re-distribution of 
the regulatory phospholipid, PIP2 (51, 62). A schematic 
summary is shown in Figure  5. Other possible 
mechanisms may include activation of Rho-GTPases 
or other signaling molecules that regulate the stability of 
the cytoskeleton. Further studies are needed to unravel 
these mechanisms.

In terms of functional significance, an increase 
in cell stiffness is likely to affect a plethora of cellular 
functions. More specifically, an increase in endothelial 
stiffness was shown to impair generation of nitric oxide 
in response to shear stress forces generated by blood 
flow (85), but also to facilitate flow-induced realignment 
of endothelial cells, a hallmark of their sensitivity to 
flow (77) and enhance transmigration of neutrophils 
through the endothelial layer (76). A series of studies 
also implicate endothelial stiffness as an important 
factor in angiogenesis (49, 73, 86, 87). Furthermore, 
an increase in smooth muscle stiffness has been 
proposed to underlie the stiffening of blood vessels 
in hypertension and aging (88, 89). Thus, changes in 
cellular cholesterol/oxysterol compositions may have 
profound effects on all of these properties. Functional 
significance should also be further assessed by 
exploring the impact of different modifications of oxLDL 
and particularly glycation of LDL that occurs in diabetes 
promoting further oxidation of LDL and formation of 
other oxidized lipids. The relationship between the lipid 
composition of the membrane and cellular stiffness 
can be an important factor in multiple pathological 
conditions.
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