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1. ABSTRACT

Cancer heterogeneity represents a major 
hurdle in the development of effective theranostic 
strategies, as it prevents to devise unique and 
maximally efficient diagnostic, prognostic and 
therapeutic procedures even for patients affected by 
the same tumor type. Computational techniques can 
nowadays leverage the huge and ever increasing 
amount of (epi)genomic data to tackle this problem, 
therefore providing new and valuable instruments for 
decision support to biologists and pathologists, in the 
broad sphere of precision medicine. In this context, 
we here introduce a novel cancer subtype classifier 
from gene expression data and we apply it to two 
different Breast Cancer datasets, from TCGA and 
GEO repositories. The classifier is based on Support 
Vector Machines and relies on the information about 
the relevant pathways involved in breast cancer 
development to reduce the huge variable space. 
Among the main results, we show that the classifier 

accuracy is preserved at excellent values even when 
the variable space is reduced by a 20-fold, hence 
providing a precious tool for cancer patient profiling 
even in case of limited experimental resources. 

2. INTRODUCTION

Cancer is a complex multistep disease, 
characterized by high levels of heterogeneity at several 
scales, which, so far, have prevented a thorough 
understanding of the molecular interplay ruling its 
emergence and development. Not only different types 
of cancer display very different (epi)genomic mutational 
profiles, but also different patients with the same cancer 
(sub)type usually display few common alterations (i.e., 
inter-tumor heterogeneity) and, furthermore, single 
tumors are often characterized by the coexistence 
of various cancer clones with different evolutionary 
histories (i.e., intra-tumor heterogeneity) (1).



performance of inference and classification. To this 
end, some attempts have been recently proposed 
by combining different features, such as, e.g., gene 
expression profiles, copy number variations and 
epigenetic profiles (18). The key idea is to concentrate 
on those (hopefully few) genes that are indeed relevant 
in characterizing the molecular progression of the 
disease, by referring to the complex interplay that rules 
the various molecular activities, often summarized 
under the concept of (molecular) pathways, which 
could also be used to combine previously proposed 
microRNA signatures (23) and eventually might lead to 
new actionable targets for clinical applications. 

The use of explicit knowledge about pathways 
in feature reduction and disease classification is 
also fundamental to contrast the idiosyncrasies of 
single-gene classifier, especially with respect to inter- 
and intra-tumor heterogeneity and biological and 
experimental noise (24). Moreover, the interpretation 
of high-throughput genomic data indeed needs the 
identification of signaling and metabolic pathways 
of specific phenotypes. Hence, pathway-based 
classificatory have shown to be more reproducible 
and with similar or better performances with respect to 
classifiers based on independent genes (25-27).

In this context, we here propose a novel 
classification framework based on Support Vector 
Machines (SVMs) and with a feature selection strategy 
based on the concept of pathway activity (28, 29)1, 
and we apply it to the most recent classification of BC 
subtypes (31). 

In particular, we identified and analyzed a list 
of enriched pathways and, accordingly, of differentially 
expressed genes (DEGs) in four different subtypes, by 
using a recent Breast Cancer (BC) dataset curated by 
The Cancer Genome Atlas (TCGA) (32) (see below for 
details), and we used this information to perform the 
feature selection in the classifier implementation. The 
classifier was then trained and tested on a different 
gene expression BC dataset, from Gene Expression 
Omnibus (GEO) database (33), with the goal of 
efficiently classify the samples in the four BC subtypes. 
We specifically investigated the variation of accuracy 
and other standard performance measures with 
respect to distinct parameter settings. Among the most 
important results, we show that a 20-fold reduction of 
the variable space does not affect the performance of 
the classifier in a significant way. 

To summarize, we here introduce a new 
valuable tool for the classification of BC subtypes, 
which is efficient even when limited experimental 
resources do not allow collecting information on the 

1 Notice that the complex interaction among pathways ruling cancer 
development is sometimes referred to as pathway cloud (30). 

Cancer heterogeneity represents a key 
problem from the theranostic perspective, as it is not 
possible to devise a unique and maximally efficient 
strategy to tackle the disease of different cancer 
patients (2). Moreover, in cancer tissues where genetic 
heterogeneity exists, it is possible that the different 
subpopulations present will have different sensitivity to 
therapy and show differential responses to treatment. 
This process could in principle lead to the development 
of a clonal selection of a group of tumor cells which are 
resistant to therapeutic treatment, increasing the risk 
of progression or spreading of the tumor (3). 

Accordingly, one of the major challenges 
of current cancer biology is the development of 
personalized diagnostic and therapeutic strategies, 
within the broad field of precision medicine (4). 

In the last decades, the ever-increasing 
availability of (big) data regarding the genomic (and 
epigenetic) profiles of cancer patients has provided a 
new source of essential information, which however 
needs efficient theoretical frameworks, instruments 
and computational tools in order to be exploited. 

On one hand, several algorithmic approaches 
attempt to exploit the massive amount of Next 
Generation Sequencing (NGS) data available in public 
projects such as e.g. The Cancer Genome Atlas 
(TCGA) (5), in order to reconstruct cancer progression 
models that can deliver new experimental hypotheses 
on the evolutionary trajectories of the various tumor 
types, which in turn might help in defining new 
theranostic strategies (see, e.g., (6-9)). 

On the other hand, gene expression 
experiments, such as those based on DNA microarrays, 
which detect the simultaneous expression of thousand 
genes in different experimental conditions, have been 
widely used to link the expression profiles to cancer 
phenotypes (10,11), and can now be exploited to face 
the problem from a complementary perspective. Machine 
learning techniques can, in fact, make use of microarray 
data to perform classification tasks, allowing the detection 
of key biomarkers for diagnosis (12), prognosis (13, 14) 
and response to treatment of various diseases (15). 

Nonetheless, despite several successful 
applications, the classification problem on microarray 
data still suffers of the “many variable – few samples” 
problems, as the number of variables (i.e., genes) is 
usually much larger than the number of observations 
(i.e., tumor samples). For instance, in Breast Cancer 
(BC) different gene signatures have been identified, 
especially focused on grade classification (e.g.,  
(16-22)), yet with poor reproducibility and overlap. 

In this regard, feature selection techniques 
are essential in order to achieve a more reliable 
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signature, if available); and HER2-positive BC (ER-
positive, HER2-positive, any Ki67, any PgR)

3.	 HER2 overexpression subtype, which includes 
those BC that shows HER2-positive staining and 
ER and PgR negative staining

4.	 Basal-like subtype, which includes those BC 
negative for ER, PgR and HER2. In this case 
there is a 80% overlap between ‘triple negative’ 
and ‘basal-like’ subtype, but triple negative BC 
also includes some special histological types (i.e., 
medullary, adenoid cystic carcinoma with low risks 
of distant recurrence)

This last classification was considered in the 
application of our approach, to describe differentially 
expressed genes (DEG) in each of the four intrinsic BC 
subtypes vs. normal samples (NS).

4. METHODS

4.1. Data sources

In our study we used two distinct cancer 
datasets in the different phases of the classifier 
implementation, in order to avoid any possible cohort-
specific bias. 

The pathway enrichment phase was 
performed on a specific BC dataset retrieved from The 
Cancer Genome Atlas (TCGA) public repository: TCGA-
BRCA2. In particular, we used the expression level of 
mRNAs extracted from Illumina HiSeq RNASeqV2 
platform with respect to 233 BC luminal A samples, 103 
BC luminal B samples, 74 BC Basal samples, 43 BC 
HER2 samples, and 113 Normal Samples (NS). 

In the training and test of the classifier 
we used a second BC dataset taken from Gene 
Expression Omnibus (GEO): GSE582123, including 
121 BC Luminal A, 69 BC Luminal B, 37 BC Basal and 
32 BC HER2 samples. 

4.2. Multiclass classification of BC subtypes

The goal of a classifier is to assign a 
(qualitative) category to a sample (e.g. a tumor 
sample) based on the value of a certain set of variables 
(e.g., gene expression levels) and prior information. 
Usually, supervised classifiers are trained on samples 
with established categories (e.g., tumor subtypes 
classification), and the resulting model can be later 
applied to predict the category of a new sample, thus 
we here split the reference dataset in training and test 
sets (see below for details). 

2 website: https://gdc-portal.nci.nih.gov/projects/TCGA-BRCA.
3website: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= 
GSE58212.

whole gene pool, and which provides significant 
indications on the key biological features that should be 
considered in the classification task (e.g., the relevant 
genes to employ). Accordingly, the results might allow 
identifying groups of genes, pathways and biomarkers 
to opportunely modulate in the development of 
personalized therapies. 

In Section 2 a brief biological overview on BC 
is presented. In Section 3 the data used in the study 
are described, as well as the computational methods 
used in the definition of the classification framework. 
In Section 4 the results of the performance evaluation 
of the classifier are presented, whereas in Section 
5 we briefly discuss on the possible application and 
repercussions of the method, with particular regard to 
the theranostic sphere. 

3. BIOLOGICAL BACKGROUND

In the last ten years, several distinct 
studies have suggested that Breast Cancer (BC) is a 
deeply heterogeneous disease, which conventional 
histopathology is not capable of describing. Some 
attempts of classification have been made by molecular 
profile analyses, which have lastly classified BC in four 
major subtypes.

The gene expression profile proposed in (34) 
demonstrated that BC could be molecularly classified 
in Luminal A, Luminal B, HER2-like, Basal-like and 
Normal-like, based on 496 genes. Each subtype 
was shown to correlate with clinical outcome (10). 
This intrinsic subtype classification has been proven 
stable across several platforms and patient cohorts 
(35). In a microarray analysis a minimal set of 50 
genes (PAM50) was able to describe molecularly the 
intrinsic subtypes (36). Some attempts have been 
made to combine the intrinsic subtype classification 
with immunohistochemical markers, such as estrogen 
receptor (ER), progesterone receptor (PgR) and HER2 
(37, 38), but also including proliferation marker Ki67, 
basal cell markers CK5/6 and EGFR (39-41).

The recently proposed classification of 
primary breast cancer subtypes according to the 2015 
St. Gallen Consensus Conference and recommended 
by the ESMO Clinical Practice Guidelines (30) 
suggests that the BC should be divided in four intrinsic 
subtypes, on the basis of routine histology and 
immunohistochemistry data: 

1.	 Luminal A subtype, that includes BC that are ER-
positive, HER2-negative, Ki67 low, PgR high, low-
risk molecular signature, if available

2.	 Luminal B subtype, which includes two groups: 
HER2-negative BC (ER-positive, HER2-negative 
and either Ki67 high or PgR low, high-risk molecular 
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1.	 Enrichment of relevant pathway for feature 
selection

2.	 SVM-based OvO (one vs. one) multiclass 
classification 

4.2.1. Enrichment of relevant pathway for feature 
selection

Differentially expressed genes (DEGs) 
between each subtype class of BC samples and the 
class of N of the TCGA-BRCA dataset were identified 
by statistical analysis using the function TCGAanalyze 
DEA from the package TCGAbiolinks Bioconductor. 
The following parameters were used: quantile-adjusted 
conditional maximum likelihood, abs(log fold change) 
> 1, and FDR < 0.0.1 (8). The obtained p-values were 
adjusted by using the Benjamin-Hochberg procedure 
for multiple testing correction (42).

Given 1077 pathways derived from the 
REACTOME (43), BIOCARTA (44) and KEGG (45) 
databases, a pathway enrichment analysis was 
applied. We used these three databases since they 
are currently the most commonly used pathway 
databases. The enrichment was evaluated using the 
Fisher’s Exact Test between differentially expressed 
genes and the selected pathways. We considered a 
pathway to be enriched if p-value was <0.0.1.

We finally obtain lists of differentially 
expressed genes (DEGs) for each considered subtype, 
and for each gene in the list we have a fold-change 
value with respect to the baseline value. 

4.2.2. SVM-based OvO classifier 

Support vector machines (SVMs) (46, 47) 
are widely used in binary classification tasks. SVMs 
transform nonlinearly separable problems into linearly 
separable ones by projecting the data into a higher 
dimensional feature space, there searching for the 
hyperplane that separates two classes of data with the 
largest possible margin. 

Given a training set T x y x yi i i i= Î{( , ( , )� �
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As we aim at classifying tumor samples in 
more than two distinct classes, i.e., distinct tumor 
subtypes we here speak of multiclass classifier (not to 
be confused with multi-label classifiers, in which each 
instance can belong to more than one class). Even 
if there exist algorithms that are naturally developed 
to deal with multiclass classification tasks, we here 
make use of an extension of a largely used binary 
classifier, purposely extended to multiple classes (see 
below), because of ascertained advantages from the 
computational perspective. 

In general, the performance of a classifier 
(trained on the training set) is determined by measuring 
the misclassified samples in the test set (we here 
do not consider the so-called training errors, i.e. the 
number of misclassified samples in the training set). 
More in detail, in the following we will analyze the 
performance in terms of: 

Accuracy:      Precision: ,

Recall:

tp tn
tp tn fp fn

tp
tp fp

+
+ + + +

,

  tp
tp fp+

,

where true/false positives/negatives (tp, fp, 
tn, fn) are computed by looking at each class distinctly, 
i.e., by analyzing whether each sample of the test set 
belonging to a specific class is correctly classified 
within that class, or to another one. In this way it is 
possible to compute values accuracy, precision and 
recall specific for each class. In general, the accuracy 
value indicates the capability of the method in correctly 
classifying a random sample, precision indicates the 
ratio of samples that are assigned to a certain class 
and that actually belong to it, whereas recall the ratio 
of samples belonging to a class that are correctly 
classified. For all the measures, values closer to 1 
indicate a better performance. 

As specified in the introduction, feature 
selection is fundamental in reducing the space of 
variable, mostly considering that the number of 
samples is usually much lower than the number of 
genes, in cancer classification tasks. In general, feature 
selection is aimed at selecting the most informative 
variables that can discriminate among groups, i.e., 
cancer subtypes in our case.

Feature selection methods reduce the 
dimensionality of the original feature space to a lower 
dimensional space, by selecting a subset of variables. 
In our case feature selection is performed via 
enrichment of the relevant pathways that characterize 
the distinct subtypes, in order to reduce the number of 
variables (i.e., the differentially expressed genes) to be 
used by the classifier. 

Hence, the classifier implementation is based 
on a 2-step procedure: 
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that the average value for the whole dataset is 0 and 
the standard deviation is 1, ni,j=(pi,j-|G|)/ σ(G), i=1,2,…, 
P, j=1,2,…M. 

In particular, for each gene the median 
value of the expression level of each probe mapped 
to that gene is considered, gz,j = median(n1,j, n2,j,…, 
nPz,j), where Pz is the number of probes mapped to the 
gene z in sample j. Thus, the pre-processed dataset 
is defined as J={gz,j | z=1,2,…,T, j=1,2,…M}, where T 
is total number of the unique genes (one gene can be 
mapped to more than one probe). 

As known, learning the parameters of a 
classifier and testing it on the same dataset is not 
sufficient to ensure reproducible prediction outcomes. 
To this end it is common practice to divide the original 
dataset in two distinct portions, named training and 
test set. 

In our case, we adopt a 10-fold cross 
validation and we repeat the classification training and 
test 20 times to obtain a measure of the robustness 
of the method. Given k=4 different classes (i.e., the 
four BC subtypes: Luminal A, Luminal B, Her 2, Basal), 
each run of cross-validation consists in training k(k-
1)/2=6 distinct binary models on the training test and 
evaluating the predictions on the test set. More in 
detail, the steps are the followings: 

1.	 The original dataset J is split in w=10 groups, 
meaning that the samples are randomly divided into 
10 different groups of the same size

2.	 w-1=9 randomly chosen groups are merged into the 
training data set

3.	 the remaining group is the test set.

The whole training/test procedure is repeated 
20 times, leading to the instantiation of 20 different 
classifiers, which will be used to evaluate the accuracy 
and the robustness of the overall methodology (see 
Section 4)4.

4.2.4. Features selection

In order to reduce the huge variable space 
and to obtain a reduced number of key gene signatures 
able to discriminate the different cancer subtypes, 
we used different strategies, especially based on 
the information on pathway activity. In particular, 
different subsets of DEGs derived during the pathway 
enrichment phase are selected as variables for each 

4As different classifiers might result in different sample-class 
associations we here do not show the classification results for each 
single classifier, yet we provide a performance evaluation of the 
method based on average values of accuracy, precision and recall.

where 


w  is a m-dimensional vector, b is 
a scalar and zi the slack variables. C is a penalty 
parameter to adjust the trade-off between the margin 
maximization and the classification error minimization. 
SVM maps data 
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xi  to a higher-dimensional space via 
the function f(.). The solution of the primal optimization 
problem is usually done by solving its dual problem of 
a Lagrangian formulation (see, e.g., (48)):
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dot-product for the data in the high-dimensional feature 
space. The decision function is finally defined as: 
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vector x  is one of the Support Vectors when 0 < ai ≤ C. 

Binary SVMs were extended to account for 
multi-class classification tasks with several techniques. 
In particular, we here used the one vs. one (OvO) 
method for the multiclass classification via SVM. A 
distinct classifier is trained for each pair of classes, 
resulting in k(k-1)/2 independent classifiers. 

In the prediction/validation step each sample 
is tested with each classifier and the classification label 
that results as the most frequent is chosen (i.e., majority 
rule). In case a tie among different labels occurs, the 
label that is returned by the binary classifiers with the 
best scores combined (computed via the distance 
of data points from the separating hyperplane) is 
chosen. The method is criticized to solve the problem 
symmetrically and for the overlap in training set due 
to the pairwise comparison. Yet, it is computationally 
cheap and the accuracy is proven to be very high with 
respect to cancer subtypes classification. 

4.2.3. Dataset preprocessing

The original GEO: GSE58212 BC microarray 
dataset, G from now on, is processed as follows prior 
to the classifier training. 

Given G = {pi,j | i=1,2,…,P, j=1,2,…M}, each 
element pi,j contains the expression level of the ith 
probe in the jth sample, where P is the total number 
of probes and M the number of samples (for the exact 
number of samples in our case please refer to Data 
Sources subsection). The gene expression levels are 
then normalized via standard Z-score procedure, so 
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Another criterion to reduce the variable 
space could be derived from the difference observed 
in the (average) expression of a certain gene in the 
wild-type case (NS) versus the cancer case, which 
is evaluated via a fold-change assessment in the 
pathway enrichment phase. Accordingly, it is possible 
to select as relevant variables only those genes that 
(on average) exceed a certain fold-change threshold 
in terms of expression level in the distinct cases. In 
this case, the rational is that the classification benefits 
most from those genes that are more differentially 
expressed in the various cases. 

In particular, we performed a parameter scan 
analysis, by assessing the performance of the classifier 
with different fold-change thresholds: θ={0,2,3,4,5,6,7} 
which accordingly lead to different cardinalities of the 
variable sets. 

The combination of the union/complement 
choice and of different fold-change results in distinct 
modeling choice affecting the classifier performance, 
which will be evaluated in the following section. In 
Figure 1 (right) one can see the cardinality of the gene 
sets selected after feature selection, in case of either 
union or complement set, and of the distinct values of θ. 

specific subtype, in the training and test phases of the 
classifier, according to the following criteria. 

1.	 Union vs. Complement set of DEGs

	 Given that any two-classes classification task 
involves the two distinct sets of DEGs concerning 
the two classes, two selection criteria are 
possible: 
1.1.	Complement of the DEG sets, i.e., selecting 

the genes that belong to either one DEG set 
or the other, but not the genes belonging to 
the intersection set. In this case the rationale 
is that the largest discriminatory capability 
is hidden in those genes that are indeed 
differentially expressed in one subtype and 
not in the other and vice versa. 

1.2.	Union of the DEG sets, i.e., selecting all the 
genes that belong to one DEG set and to the 
other, i.e., the union of the sets. In this case 
the justification is that some useful information 
to be used in the classification task could 
be retrieved also from those genes that are 
differentially expressed in both classes. 

2.	 Fold-change threshold

Figure 1. (A) Cardinality of i) the whole sample set, ii) the training set and the iii) test set with respect to the four distinct subtypes, i.e., Luminal A, Luminal 
B, Her 2 and Basal, as taken from the Gene Expression Omnibus (GEO): GSE58212 original dataset, used in the classification phase. (B) Number of 
genes (i.e., variables) selected for classifier training and test after features selection, with respect to: i) union or complement set of DEGs, and ii) fold-
change threshold in the expression level between the cancer subtype case and the normal case (see Feature selection subsection for details). 
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5. RESULTS

5.1. Relevant pathway enrichment 

On the basis of the original TCGA dataset, in 
the enrichment phase we found: 89 pathways enriched 
with 3199 DEGs for Luminal A vs. NS, 97 pathways 

Finally, the SVM binary classifiers are 
implemented via the Matlab functions svmtrain and 
svmclassify. In our case we use a linear kernel function, 
as it displays the best performance with respect to the 
other tested nonlinear kernel functions (results not 
shown here). In Figure 2 one can see a summarization 
of the whole procedure.

Figure 2. Schematized representation of the classifier implementation and structure. Two distinct BC datasets are used, namely: i) TCGA-BRCA and ii) 
GEO: GSE58212. The former dataset is used in the pathway enrichment phase and leads to the detection of different enriched pathways and differentially 
expressed genes with respect to the four distinct BC subtypes. The DEGs are then used in the subsequent feature selection phase, in which either the 
DEG union or complement set can be employed, in addition to the filtering of DEGs on the base of the expression level fold-change. The second dataset 
is split in training and test sets, according to 20 distinct 10-fold cross-validations, which allow to test the classifier robustness. The training sets are used 
to train 6 distinct SVM binary classifiers (i.e., all the possible couples of the four subtypes), on the bases of the features selected in the enrichment 
phase. Finally, a OvO strategy is used in the prediction phase, hence allowing to the test the classifier performance on the test set in terms of accuracy, 
precision and recall.
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In BC basal we identified 19 specific pathways 
enriched of DEGs, among them REACTOME amino 
acid synthesis and interconversion transamination 
and REACTOME metabolism of amino acids and 
derivatives. High protein production in cancer cells 
increases the overall need for amino acids. Deregulated 
amino acid metabolism also has a function in immune 
tolerance in cancer (53).

In BC HER2 we identified 16 specific 
pathways enriched of DEGs, among them REACTOME 
p2y receptors and REACTOME axon guidance. P2Y 
receptors (e.g., P2Y1, P2Y2) have strong direct roles 
on the tumour by modulating cell development. In 
vivo data confirm in vitro evidence that lowering the 
intratumour adenosine concentration and targeting 
the P2X7 receptor have a strong anti-tumor outcome 
(54). Axon guidance pathway includes four families of 
secreted or membrane bound factors (i.e., netrin 1, 
semaphorine, ephrins, and Slit, all with their receptors), 
which have recently studied as central agents in 
tumour progression. Far from being confined to the 
developing brain, Axon guidance pathway seems to 
play an important function in tumour cell migration, 
tumour cell survival and tumour angiogenesis (55).

5.2. Classification performance evaluation 

As specified above, different multiclass 
classifiers are instantiated with distinct feature selection 
strategies and different parameter settings, in order 
to empirically identify an optimal tradeoff between 
the desired accuracy and the number of variables to 
analyze. As in our case we deal with gene expression 
levels or, similarly, with gene sequencing data, it might 
be desirable to reduce the number of gene to analyze, 
in terms of experimental costs and times, yet without 
compromising the reliability of the results. 

As described above, we here compare 
different gene sets, namely: i) DEG union set, ii) DEG 
complement set, and for each case we reduce the size 
of the variable set by analyzing seven different values of 
the DEG fold-change threshold, i.e., θ = 0,2,3,4,5,6,7.

enriched with 4074 DEGs for Luminal B vs. NS, 98 
pathways enriched with 4181 DEGs for basal vs. NS 
and 109 pathways enriched with 4134 DEGs for HER2 
vs. NS.

Figure 3 A and B show Venn Diagrams for 
DEGs and pathways enriched of DEGs in the distinct 
BC subtypes, respectively.

In particular, we found 1787 DEGs in common 
among subtypes. Specific genes for each subtype are 
166 DEGS for luminal A, 296 for luminal B, 924 for 
basal and 447 for HER2. Furthermore, we found 43 
pathways in common among subtypes. We detected 
pathways specific for each subtype in this proportion: 
17 for luminal A, 5 for luminal B, 19 for basal and 16 
for HER2. In Table 1 one can find the list of specific 
pathways enriched for each subtype.

More in detail, in BC luminal A we identified 
17 specific pathways enriched of DEGs, among 
them BIOCARTA intrinsic pathway and REACTOME 
ethanol oxidation. Intrinsic Prothrombin Activation 
Pathway performs an essential role in coagulation, a 
crucial step for the organization of metastasis also in 
experimental models of cancer (49). The pathway of 
ethanol oxidation contains several genes belonging to 
the family of ALDH genes and that, despite the known 
role in ethanol detoxification, are also considered 
biomarkers of cancer stem cells (50).

In BC luminal B we identified 5 specific pathways 
enriched of DEGs, among them BIOCARTA cell cycle 
pathway and REACTOME cell junction organization. Cell 
junctions are structures for cell-cell adhesion machinery 
related to the differentiation and normal growth of the 
tissue (51). The development of cancer represents 
a modification of normal tissue homeostasis and an 
alteration in cell-cell interaction. In addition, cancer 
metastasis spreads through the circulatory system 
caused by cell adhesion (51). Loss of control of cell cycle 
pathway is considered a hallmark of many cancer and 
deregulated genes involved in cell cycle regulation are 
implicated in cancer progression (52). 

Figure 3. Venn diagrams for: (A) differentially expressed genes (DEGs), (B) pathways enriched of DEGs in the four breast cancer subtypes. 
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In Figure 4 and 5, one can see the variation 
of the average values of accuracy, precision and recall, 
computed on 20 different classifiers, implemented 
with random training and test sets via a 10-fold cross-
validation. This procedure is made to assess the 
robustness of the method with respect to the selection 
of the sample sets. 

One can firstly notice that no statistically 
significant differences are observed between the 
performance of the union and the complement sets, 
with respect to all the indicators, and this first important 
result suggests that most of the relevant information 
to discriminate BC subtypes is contained only in the 

As one can notice in Figure 1, the difference 
in the size of the variable sets with respect to the 
feature selection choice are remarkable, as the whole 
datasets include more than 22.0.00 genes, whereas, 
for instance, by choosing the complement DEG set 
with θ = 0 the number of genes is already reduced to 
around 4200 genes (5-fold difference), while with the 
union DEG set with θ = 4 we deal with around 700 
genes (30-fold difference) and in our limit case, i.e., 
the complement set with θ = 7, only 104 genes are 
considered as relevant variables (around 210-fold 
difference). This aspect must be considered in the 
choice of the optimal tradeoff between accuracy and 
number of variables to analyze.

 Table 1. Unique pathways enriched of differentially expressed genes for each breast cancer subtype: 17
pathways for luminal A, 5 for luminal B, 19 for basal and 16 for HER2

LUMINAL A LUMINAL B BASAL HER2

REACTOME degradation of the 
extracellular matrix

KEGG arrhythmogenic 
right ventricular 
cardiomyopathy arvc

REACTOME mrna splicing REACTOME activation of the mrna 
upon binding of the cap binding 
complex and eifs and subsequent 
binding to 43s

BIOCARTA intrinsic pathway REACTOME crmps in 
sema3a signaling

REACTOME activation of the pre 
replicative complex

REACTOME unfolded protein 
response

REACTOME abc family proteins mediated 
transport

BIOCARTA cellcycle 
pathway

KEGG spliceosome REACTOME developmental biology

REACTOME ethanol oxidation KEGG ribosome KEGG apoptosis KEGG ether lipid metabolism

BIOCARTA ami pathway REACTOME cell junction 
organization

REACTOME activation of atr in 
response to replication stress

REACTOME axon guidance

REACTOME metabolism of carbohydrates KEGG dna replication REACTOME nucleotide like 
purinergic receptors

REACTOME glycerophospholipid 
biosynthesis

REACTOME interferon alpha beta 
signaling

REACTOME cgmp effects

REACTOME platelet activation signaling 
and aggregation

BIOCARTA ranms pathway REACTOME fgfr ligand binding and 
activation

KEGG chemokine signaling pathway KEGG type i diabetes mellitus REACTOME phospholipase c 
mediated cascade

BIOCARTA eryth pathway BIOCARTA g2 pathway REACTOME glycolysis

BIOCARTA longevity pathway KEGG bladder cancer KEGG histidine metabolism

REACTOME triglyceride biosynthesis REACTOME s phase KEGG natural killer cell mediated 
cytotoxicity

REACTOME transmembrane transport of 
small molecules

REACTOME g1 s transition REACTOME asparagine n linked 
glycosylation

BIOCARTA cftr pathway REACTOME amino acid 
synthesis and interconversion 
transamination

REACTOME p2y receptors

REACTOME o linked glycosylation of 
mucins

REACTOME metabolism of amino 
acids and derivatives

REACTOME keratan sulfate keratin 
metabolism

REACTOME transport of glucose and 
other sugars bile salts and organic acids 
metal ions and amine compounds

KEGG arginine and proline 
metabolism

KEGG melanoma

REACTOME factors involved in 
megakaryocyte development and platelet 
production

KEGG glycolysis gluconeogenesis

BIOCARTA mcm pathway

REACTOME extension of 
telomeres
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of DEG complement set and θ = 2 (accuracy 0.9.), 
and a slightly worse accuracy for θ = 3 (accuracy 
0.8.7). This is an extremely important result as the 
variable space in these two cases is dramatically 
reduced: in fact, in the former case (i.e., complement 
set and θ = 2) 1858 DEGs are selected, indicating a 
12-fold change with respect to the whole gene set, 
whereas in the latter case (i.e., complement set and 
θ = 3), only 1098 DEGs are used, denoting a 20-fold 
change. This also suggests that some of the filtered-
out genes might even act as confounding factors in 
the classification task. Furthermore, by combining the 

DEGs specific to each subtype, being the intersection 
DEGs substantially irrelevant. This allows a first 
important reduction of the feature space, given that, 
on average, the cardinality of the union set exceeds 
that of the complement set in a range between the 5% 
and the 15% (according to the different fold-change 
threshold). 

In terms of overall (average) accuracy, the 
classifier presents a very good performance, around 
0.8.5-0.9., for values of θ up to 4, with the best 
overall performance observed for the combination 

Figure 4. Variation of the average accuracy of the classifier computed on 20 distinct training and test runs, via a 10-fold cross validation of the GEO 
dataset. In the Figure, the feature selection involving the union/complement DEG set and the different fold-change threshold values are shown. 

Figure 5. Variation of the average precision and recall of the classifier for each specific BC subtype, computed on 20 distinct training and test runs, via 
a 10-fold cross validation of the GEO dataset. In the Figure, the feature selection involving the union/complement DEG set and the different fold-change 
threshold values are shown.
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with that of (65), in which they use random forests and 
methylation data in addition to gene expression data, 
as they provide a performance evaluation in terms of 
classification errors on the training set and of leave-
one-out bootstrap errors. 

We finally remark that, even if further 
developments to improve the accuracy of our method 
are ongoing, we here deliver a usable tool that is 
specifically directed toward the development of 
personalized treatments.

6. DISCUSSION

Even though the quest for the identification 
of key biomarkers in cancer research is far from being 
concluded, the combination of biological knowledge 
and computational techniques can lead to remarkable 
results, especially by providing theoretical and practical 
support to experimentalists and pathologists in the 
definition of novel and effective diagnostic, prognostic 
and therapeutic strategies. 

In particular, the integrated approach 
combining the information on genes and pathways at 
different levels has been recently used in other works 
of our group, for instance in (7). In this specific case 
we focused on the use of the pathway activity notion 
to develop an effective classification tool with respect 
to cancer subtype. 

More in detail, we here introduced a new 
SVM-based classifier of breast cancer subtypes based 
on a supervised variable selection related to the 
differential expression levels of key genes, as detected 
by a pathway enrichment phase. 

The results are significant as the classifier 
displays an overall accuracy slightly lower than 0.9. 
when the number of variable is reduced by a 20-fold 
with respect to the original gene set. In other words, 
this new instrument allows to efficiently classifying 
cancer patients into distinct subtypes with an excellent 
reliability even if limited experimental resources allow 
to access to information on a limited number of genes 
only, thus providing an accessible and widely-usable 
tool to the theranostic community. Furthermore, the list 
of genes selected by the tool could provide important 
insights for downstream analyses of previously 
reported microRNA signatures (23) and eventually 
indications for the development of targeted therapies, 
which could be based on the concept of pathway 
activity. 

To conclude, the current efforts will be 
followed by the implementation of a widely accessible 
online application via a dedicated web portal, which is 
currently in developmental phase, and that will allow 

information on the enriched pathways and that on the 
selected DEGs, one could tentatively isolate a list of 
possible biomarkers to modulate in the design of new 
prognostic and therapeutic strategies. 

For larger values of θ the average accuracy 
worsens, yet is maintained to acceptable values as 
compared to a dramatic reduction of the variable 
space. 

By looking at the values of precision and 
recall specific to each subtype, one can see that all the 
subtypes present a similar and very good performance, 
up to certain values of θ (smaller than 5), with the Basal 
subtypes displaying better and more stable precision 
values and the Her 2 a slightly worse recall. In general, 
the precision values are (on average) slightly larger 
than the corresponding recall values, indicating a 
high reliability of the classifier in assigning a certain 
sample to its correct class, yet allowing for some false 
positives. 

5.2.1 Comparison with other techniques

A large number of computational approaches 
aim at classifying distinct diseases from genomic data, 
relying on different theoretical frameworks and distinct 
kinds of source data. For instance, several algorithms 
make use of SVMs, e.g., (56-58), some others rely on 
the information on pathways, e.g., (27-29,59-61) or on 
distinct approaches, e.g., (62). 

However, our methodological framework 
cannot be directly compared with most of the 
aforementioned techniques, as it aims at categorizing 
(breast) cancer subtypes, which is an intrinsically 
harder problem because of the similarity of the source 
mutational profiles, yet displaying a comparable 
accuracy with the best classifiers, sometimes in spite 
of a larger variable space. 

Three recent methods, i.e., (63-65), instead, 
focus on a similar problem. In this regard, the 
performance of our method is definitely comparable 
to that shown in (63) in which, however, the authors 
make use also of the additional information on Copy 
number variations and microRNAs-regulated mRNAs 
to reduce the number of features (i.e., total accuracy 
slightly lower than 90%, sensitivity values ranging 
between 0.5.2 and 0.9.8 according to the different 
subtypes, and specificity values between 0.8.5 and 
0.9.6, see Figure 6 in (63)). With respect to (64) we 
obtain a considerably better overall accuracy, yet they 
focus on the classification of metastatic/non metastatic 
breast tumors, which is a notably different problem 
(i.e., accuracy values significantly lower than 70% 
with respect to the two considered datasets and all the 
tested methods, see Figure 4 in (64)). Finally, we could 
not directly compare the accuracy of our technique 
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