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1. ABSTRACT

Many of the patients undergoing chemotherapy 
or radiotherapy for cancer are at increased risk of 
developing cardiovascular diseases. Recent evidence 
suggests that cardiac dysfunction and subsequent heart 
failure are mainly due to vascular toxicity rather than 
only to due to myocyte toxicity. However, not all of the 
vascular toxicity of cancer therapies can be explained 
by epicardial coronary artery disease. In fact, in the last 
decades, it has been found that myocardial ischemia 
may occur as a consequence of structural or functional 
dysfunction of the complex network of vessels, which 
cannot be seen by a coronary angiography: the 
coronary microcirculation. Nowadays many diagnostic 
and therapeutic options are available both in coronary 
microvascular dysfunction and cardio-oncology. Aim of 

this review is to suggest future theranostic implications 
of the relationship between cardiotoxicity in oncology 
and coronary microvascular dysfunction, showing 
common pathophysiologic mechanisms, proposing 
new diagnostic approaches and therapeutic options for 
cardioprotection.

2. INTRODUCTION

In recent years, cardiotoxicity of cancer 
treatments is a topic of growing interest. However, 
many aspects of both radiation-induced and cancer 
drug-induced cardiovascular diseases remain not fully 
elucidated. A careful review of the literature suggests 
that the main pathophysiological mechanisms 
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implicated in cardiotoxicity are due to vascular 
toxicity of cancer treatments. Either in the presence 
or in the absence of epicardial coronary artery 
disease, coronary microcirculation plays a key role in 
determining of myocardial ischemia. Aim of this review 
is to suggest potential theranostic implications of the 
relationship between cardiotoxicity in oncology and 
coronary microvascular dysfunction (CMD).

3. THE VASCULAR BRANCH OF  
CARDIOTOXICITY IN ONCOLOGY

As defined by the National Cancer Institute, 
cardiotoxicity is a general term indicating “toxicity 
affecting the heart” (1). In fact, regardless of 
whether the anticancer therapy is physical (ionizing 
radiation), chemical, hormonal or biological (the 
so called “targeted therapy”), it may have negative 
effects on the cardiovascular system (2). Given that 
targeted signalling cascades that promote cancer 
cell proliferation conversely protect vascular cells 
and cardiomyocytes (3), cancer therapies may 
be considered as a double-edged sword. More 
specifically, as expressed in a recent paper on cancer 
treatments and cardiovascular toxicity published by 
the European Society of Cardiology (4), about 50% 
of the cardiovascular toxicity in oncologic therapy 
is characterized by either functional or structural 
vascular damage leading to the worsening or the 
developing of coronary artery disease (CAD), 
peripheral vascular disease, thromboembolic disease, 
arterial hypertension and pulmonary hypertension. 
This observation suggests that a significant amount 
of cardiotoxicity from either chemotherapy (CT) or 
radiotherapy (RT) primarily involves vessels rather 
than cardiomyocytes. In fact, myocardial ischemia 
has been described as a very common side effect 
of several cancer therapies (4). For these reasons, 
patients with pre-existing cardiovascular diseases or 
with high cardiovascular risk should be considered 
at higher risk of developing vascular damage due 
to anti-cancer treatments. The most known risk 
factors associated with the development of vascular 
toxicity in patients underwent cancer therapies are 
arterial hypertension, diabetes mellitus, smoking, 
previous left ventricle dysfunction, heart failure 
(HF), previous CAD, increasing age, female gender 
and postmenopausal status (5). Moreover, genetic 
polymorphisms may predispose to cardiotoxicity (6), 
suggesting that genetic features might play a role in 
modulating the risk of cardiovascular toxicity after 
cancer treatment. Finally, therapy-related risk factors 
may include treatment type, drug class, drug dose, 
duration of treatment and use of combined therapy 
(7). However, there are gaps in evidence about the 
factors related to the development of CAD in patients 
treated with anti-cancer therapy. In this context, CMD 
precedes the development of coronary macrovascular 
disease, and it could offer a promising field of 

research in cardiotoxicity related to cancer treatment. 
Surprisingly, a great number of pathophysiological 
correlations may be found between these apparently 
unrelated topics. Moreover, CMD treatment may 
share similar therapeutic targets with the current 
best-evidence cardioprotective strategies.

4. CORONARY MICROVASCULAR  
DYSFUNCTION

Among patients undergoing coronary 
angiography because of angina, up to 40% are found 
to have normal-appearing epicardial coronary arteries 
(8). In fact, epicardial arteries, often referred to as the 
conductance vessels, represent the “visible” segment of 
the coronary circulation and give rise to the pre-arterioles 
and arterioles that constitute the microcirculation, 
the “invisible” segments of coronary circulation. In 
contrast with epicardial coronary arteries, the coronary 
microcirculation cannot be directly imaged in vivo neither 
with coronary angiography nor by intracoronary imaging 
techniques. Indeed, small coronary arteries are below 
the spatial resolution of coronary angiography (about 
0.5. mm). Visual assessment of small coronary arteries 
might be possible by endomyocardial biopsy (11), but 
this invasive approach is not justified in the majority 
patients with CMD and does not allow assessment 
of functional alterations. Several methods have been 
proposed to investigate the functional state of coronary 
microcirculation (12), even though their application in 
the clinical setting is not always simple. In the past 20 
years, a large number of studies using both invasive and 
non-invasive techniques for the assessment of coronary 
physiology, have produced a large wealth of data 
leading to a better understanding of CMD. Specifically, 
studies using positron emission tomography (PET) have 
permitted to establish the normal range of absolute 
myocardial blood flow (MBF, mL/min/g) and of coronary 
flow reserve (CFR) - which represents the ratio of MBF 
during near maximal coronary vasodilatation to baseline 
MBF (9). Patients with CMD show a reduced CFR that 
is usually identified by values lower than 2.0. , which are 
unlikely to be detectable in apparently healthy subjects 
(10). In patients with normal coronary angiogram, 
CMD can represent an additional mechanism of 
subendocardial ischaemia manifesting typical chest 
pain and ST-segment depression during exercise, a 
condition commonly known as microvascular angina 
(MVA) (9). Even in the absence of significant epicardial 
CAD, CMD can cause myocardial ischemia, which has 
been shown to bear an independent prognostic value 
(8). In 2007, Camici and Crea (8) classified CMD into 
four main types on the basis of the clinical setting in 
which it occurs: CMD in the absence of myocardial 
diseases and obstructive CAD (type A), CMD in 
myocardial diseases (type B), CMD in obstructive 
CAD (type C) and iatrogenic CMD (type D). Similarly, 
in vascular toxicity of cancer treatments, CMD could 
present in different settings.
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5. CMD AND VASCULAR CARDIOTOXICITY: 
SHARED PATHOPHYSIOLOGICAL  
MECHANISMS

The mechanisms by which cancer therapies 
cause myocardial ischemia are diverse and include 
accelerated atherosclerosis, thrombosis, vasospasm, 
and coronary microvascular impairment. We will 
show that many of them are shared with CMD, thus 
representing suitable targets for cardioprotection in 
cancer patients (figure 1).

5.1. Endothelial dysfunction

Endothelial cells have the key function of 
participating in the maintenance of patent and functional 
capillaries. Endothelial dysfunction is characterized by 
a shift down in the actions of the endothelium toward 
reduced vasodilation and prothrombic properties, as 
well as exacerbated pro-inflammatory state. Moreover, 
endothelial dysfunction has been associated with the 
majority of cardiovascular and peripheral vascular 
diseases (13).

5.1.1. Nitrix oxide (NO) production

Production and release of nitric oxide (NO) 
are the most important mechanisms of endothelium-
mediated vasodilation, and also the first to be lost 
in case of endothelial dysfunction (14). Among 
chemotherapeutics, vascular endothelial growth 
factor (VEGF) inhibitors like bevacizumab, sunitinib 
and sorafenibare known to starve cancer by inhibiting 
neo-angiogenesis (4). Notably, this class of drug 
is related with reduced NO production, resulting in 
vasoconstriction (15). In CMD, endothelium-mediated 
vasodilation has been found to be impaired, mainly due 
to either reduced activity of NO synthase, the enzyme 
that catalyzes NO synthesis from the aminoacid 
L-arginine, or increased serum levels of asymmetric 
dimethylarginine (ADMA), a major endogenous 
inhibitor of NO synthesis (16).

5.1.2. Reactive oxygen species (ROS)

Oxidative stress and subsequent release 
of reactive oxygen species (ROS) seems to play a 

Figure 1. Shared mechanisms between vascular toxicity of cancer therapies and coronary microvascular dysfunction.
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key role in endothelial dysfunction pathophysiology 
(17). Accordingly, mechanisms dependent on ROS 
were among the first to be linked to endothelial 
toxicity of cancer therapies (18). This is the case of 
anthracycline- and cisplatin-induced endothelial 
toxicity (19). Also 5-fluorouracil (5-FU) was found 
to induce ROS-induced endothelial damage (20). 
Similarly, vinca alkaloids (21), anti-Her2 target therapy 
(22) and almost every chemotherapeutic compound 
display significant detrimental effects on endothelial 
function due to oxidative stress (23). A parallelism 
with CMD may exist, since excessive generation of 
ROS is a common feature in several conditions that 
have been associated with a pathological impairment 
of endothelium-dependent coronary microvascular 
dilatation, as was demonstrated in diabetes, obesity, 
smoking, and other cardiovascular risk factors (24). 
Accordingly, administration of antioxidant substances, 
which prevent superoxide anion formation, including 
glutathione and antioxidant vitamins, improves 
or normalizes endothelium-dependent coronary 
microvascular dilatation both in experimental and in 
clinical conditions (25,26).

5.1.3. Endothelin-1 and angiotensin II

Mechanisms leading to endothelial 
dysfunction by bevacizumab and the others 
VEGF inhibitors are mainly related to increased 
endothelin-1 (ET-1) and angiotensin II release and 
production (27). In CMD, it has been demonstrated 
an imbalance between locally-released vasodilating 
agents and vasoconstrictors, thereby increasing the 
vasoconstrictor susceptibility of the endothelium. 
ET-1, in particular, is the most powerful 
vasoconstrictor substance produced in the body (28) 
and its production or release is often increased in the 
presence of CMD (29). In animal models, the intra-
coronary injection of ET-1 or angiotensin II resulted 
in myocardial ischemia due to vasoconstriction 
(29). Similar results can be observed in human by 
intracoronary injection of high doses of acetylcholine 
(30), which may cause chest pain and objective 
evidence of myocardial ischemia, in the absence of 
epicardial coronary arteries disease.

5.2. Atherosclerosis

Atherosclerosis is a chronic disease of 
the arterial wall, leading to the development of 
atheromatous plaques in the inner lining of the 
arteries (17). From a pathophysiological viewpoint, 
atherosclerosis is no more considered merely as a 
storage disease, but as an inflammatory disease (31). 
In cardio-oncology, the main risk factor for accelerated 
atherosclerosis is RT (32), which may lead to severe 
CAD, complicated by plaque rupture and thrombosis 
(33). Radiation-related CAD is usually a late 
complication, especially in survivors of breast cancer 

or Hodgkin lymphoma (34), and it may not be detected 
until at least 10 years after thoracic RT exposure. CT 
also may lead to accelerated atherosclerosis and its 
dangerous consequences, as described for instance 
in cisplatin-treated survivors of testicular cancer 
(35). A significant contribution to atherosclerosis 
development in both cancer treatment toxicity and 
macro/microvascular CAD seems to be related to 
the activation of tissue renin angiotensin aldosterone 
systems (RAAS). In fact, RAAS exacerbation promotes 
significant pro inflammatory background by activating 
the transcription factor NF-kB, stimulating the 
expression of cell adhesion molecules and the release 
of pro-inflammatory cytokines like IL-1, IL-6 and TNF-
alpha (17). Moreover, angiotensin converting enzyme 
(ACE) expression is increased by the activation of 
macrophages by oxidized LDL (36) while angiotensin 
II directly stimulate the activation of growth factors and 
the release of matrix metallo-proteinases (37), thereby 
making atherosclerotic plaque more prone to rupture 
and thrombosis (38).

5.3. Thrombosis

Vessel thrombosis is a critical event associated 
with myocardial infarction, stroke, and venous 
thromboembolic disorders, accounting for considerable 
morbidity and mortality. Moreover, venous thrombosis 
is the second leading cause of death in patients with 
cancer (39). Cancer therapy itself can induce blood 
clotting, thrombosis and thromboembolic events (34). 
This is particularly true for cisplatin, which may lead 
to arterial thrombosis with subsequent myocardial and 
cerebrovascular ischemia (40). The pathophysiology 
is multifactorial, including pro-coagulant and direct 
endothelial toxic effects, resulting in platelets 
aggregation and thromboxane formation (34). Among 
the immune and targeted therapeutics, those inhibiting 
the VEGF signalling pathway have an increased risk 
for coronary thrombosis, as shown in patients treated 
for breast cancer (41) or metastatic diseases (42). In 
the field of CMD, intravascular plugging of coronary 
microcirculation has been extensively described, and 
can be caused by atherosclerotic debris, microemboli 
and neutrophil-platelet aggregates (29). The main 
evidence comes from type 4 CMD, typically occurring 
during percutaneous coronary interventions and 
related to intracoronary manipulation of friable plaques 
(43). In these cases, microvascular plugging often 
causes ‘‘infarctlets’’, as indicated by a modest raise of 
markers of myocardial necrosis, and has a negative 
prognostic impact (44). Microvascular occlusion (MVO) 
has been described also in the setting of transmural 
myocardial infarction, resulting from a complex 
interplay of ischemia-reperfusion damage, endothelial 
dysfunction, platelet activation and vasoconstriction 
(45): all these mechanisms are largely shared with 
those from vascular toxicity resulting from cancer 
therapy described above.
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5.4. Coronary spasm

Epicardial coronary spasm is defined as a 
condition in which a relatively large coronary artery 
running on the surface of the heart transiently exhibits 
abnormal contraction, leading to a transient complete 
or incomplete occlusion of the this artery (46). 
Abnormal vasoreactivity may be triggered by multiple 
stimuli acting on different cellular pathways involving 
both endothelium and underlying vascular smooth 
muscle cells (VSMCs). VSMCs in particular, are the 
main regulators of vascular tone and vessel patency 
(17), having protein-kinase C (PKC), the intracellular 
enzyme Rho-kinase 5 and ATP-dependent K+ 
channels as key mediators (46). After CT or RT as well 
as any kind of intimal injury, VSMCs change from the 
quiescent “contractile” phenotype state to the active 
“synthetic” state, that can migrate and proliferate from 
media to the intima (19). Among anti-cancer drugs 
in particular, the proteasome inhibitor bortezomib, 
approved for the treatment of multiple myeloma 
and non-Hodgkin’s lymphoma, interferes with the 
degradation of cell cycle proteins in VSMCs, causing 
apoptosis and leading to coronary vasospasm (47). 
Conversely, Fluoropyrimidines, like 5-FU, have both 
direct toxicity on vascular endothelium and an indirect 
vasospastic effect via PKC activation in VSMCs (19). 
Similar effects have been described also for the 
modern “targeted therapy”, since sorafenib too has 
been reported to induce epicardial vasospasm (48). 
Finally, coronary artery spasm may be triggered by 
RT in some cases (32), even though the predominant 
clinical manifestation of radiation-related heart disease 
today is atherosclerotic CAD (49). Similarly, an 
impaired VSMCs response to vasodilator stimuli have 
been described in the presence of CMD (50). Notably, 
endothelium-independent abnormalities in coronary 
microvascular dilatation may involve impaired opening 
of ATP-dependent K+ channels (51) and abnormal 
Rho-kinase 5 activity (52).

5.5. Hormonal effects

A confounding aspect of identifying the 
mechanisms of cardiotoxicity is that not all patients 
receiving these agents develop cardiotoxicity. The lack 
of uniform effect in males and females, for example, 
suggests possible hormonal interactions that modulate 
the cardiotoxic effect of some drugs. It is the case, 
for instance, of the tyrosine-kinase inhibitor sunitinib, 
which has shown more toxicities in multiple organ 
systems in females compared to men (53); this seems 
to be related to inhibition of the positive effects from 
estradiol in endothelial cells (54).

Estrogen deficiency has been demonstrated 
also in primary CMD and may, at least in part, explain 
the high prevalence of this disease in females often 
in the pre- and post-menopausal state, as accurately 

described in a recent editorial (55). In fact, estrogen 
deficiency is associated with vasomotor abnormalities, 
including an impairment of endothelial function (56). 
Accordingly, estrogen administration has been 
demonstrated to improve endothelial function (57).

5.6. Autonomic dysfunction

Autonomic innervation plays a key role 
in regulating heart rate, myocardial function and 
MBF (58). Its impairment is associated with the 
development and the progression of cardiovascular 
diseases in cancer patients (59). Indeed, anti-cancer 
CT directly affects the function of the autonomic 
system. In this context, a reduced heart rate 
variability has been reported in patients treated with 
vincristine (60), doxorubicin (61) and paclitaxel (62). 
Moreover, aberrant blood pressure variability and 
maladaptive orthostatic responses are frequently 
observed in patients taking paclitaxel, taxanes, vinca 
alkaloids and cisplatin (58). Finally, damage to the 
cardiac nervous system by CT or thoracic RT may 
lead to sympathetic-vagal imbalance leading to sinus 
tachycardia that, reducing diastolic time and enhancing 
cardiac oxygen consumption, progressively induces 
myocardial ischemia (4). However, a significant quote 
of silent ischemia has been reported in cancer treated 
patients, since sensitivity fibers may be damaged in 
turn (63).

Moreover, it is well known that coronary 
microcirculation is under control of the autonomic 
nervous system (29). In particular, microvascular 
vasodilation is regulated by beta-2 adrenoceptor 
in small arterioles (64), while vasoconstriction is 
mediated by both alpha1- and alpha2-adrenoceptors 
(65). It has been demonstrated that either impaired 
beta-2 vasodilatation or augmented alpha-adrenergic 
constriction during exercise may be powerful enough 
to induce myocardial ischemia and MVA (66). Finally, 
parasympathetic activity has shown to cause coronary 
vasodilatation through a NO mediated mechanism (67).

6. CARDIOTOXICITY AND CMD:  
THERANOSTIC IMPLICATIONS

Theranostics combine the therapeutic 
(“thera”) and diagnostic (“nostic”) potentials of a 
certain compound (68). Prior to therapy, the compound 
is used in a diagnostic test to determine whether the 
drug will (potentially) exert a therapeutic effect, making 
it a powerful tool for personalizing disease treatment. 
Clinical applications of theranostics in oncology range 
from tissue-specific biomarkers to the most modern 
nanoparticles technologies. As extensively shown 
above, given that cardiotoxicity of cancer treatments 
and CMD shares several pathophysiological 
mechanisms, future research in theranostics should 
be addressed regarding the utility to diagnose and 
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treat CMD in patients receiving cancer therapies, 
especially because many effective drugs used to treat 
CMD already represent the current best-evidence 
cardioprotective strategies. Recently, dysregulation 
of microRNAs (miRNAs) involved in microvascular 
remodelling has been found in several cardiovascular 
diseases (69). In parallel, strong evidence has been 
found that some miRNAs can act as oncogenes or tumor 
suppressor genes, dysregulating neoangiogenesis 
and being involved in the initiation and progression of 
several human cancers (70).

6.1. Common diagnostic workup

The most common biomarkers employed 
in cardiotoxicity monitoring are troponin I and 
natriuretic peptides because of their higher cardiac 
specificity. However, they are not a reliable indicator 
of vascular toxicity of cancer therapy (7, 71). On the 
other hand, CMD can be non-invasively assessed 
through measurements of MBF and/or CFR in 
response to appropriate vasodilating stimuli (e.g. 
adenosine, dipyridamole) (29). Among non-invasive 
methods for the assessment of CMD, transthoracic 
stress-echocardiography allows the measurement 
of CFR through the quantification of diastolic flow 
velocity in the left anterior descendent artery at 
baseline and during maximal vasodilator stimulation 
(72). This non-invasive technique seems to be a 
promising diagnostic approach due to its widespread 
availability and safety, especially since 2-dimensional 
echocardiography is routinely used for monitoring 
patients with cancer. Moreover recent techniques, 
including 3d-echocardiogram, strain and speckle 
tracking, may allow the earlier detection of more subtle 
changes in myocardial function (71). In particular, the 
value of echocardiographic myocardial deformation 
parameters such as peak systolic global longitudinal 
strain for the early detection of myocardial changes and 
prediction of cardiotoxicity in patients receiving cancer 
therapy is well described in a recent review (73). In 
addition, diastolic dysfunction can be considered 
an early biomarker, since often it precedes systolic 
dysfunction in patients receiving chemotherapy (71). 
This is of particular interest since, according to a novel 
pathophysiologic paradigm, preserved ejection fraction 
HF and CMD are two facets of the same coin (74). 
Among radionuclide techniques, PET offers unrivalled 
sensitivity and specificity for the non-invasive study 
of coronary microcirculation in humans (75). Reliable 
assessment of CFR and MBF have been obtained 
by two tracers in particular, oxygen-15 labeled water 
(76) and nitrogen-13 labeled ammonia (77). However, 
because of its expensive and time-consuming 
features, imaging with PET can only be performed 
in highly specialized centres (29). Moreover, cardiac 
magnetic resonance (CMR) affords the opportunity 
for non-invasive tissue characterization including 
myocardial oedema, inflammation, and fibrosis, 

playing an important role in identification of both early 
and late cardiotoxicity in patients with cancer (78). 
At the same time, CMR perfusion sequences have 
shown to allow the accurate investigation of CMD 
(79). Finally, a complete assessment of CMD may also 
include, at least in some patients, the assessment of 
coronary microvascular response to constrictor stimuli 
(acetylcholine) (30). These tests, however, need to be 
carried out during invasive procedures, identifying a 
significant coronary vasoconstriction during coronary 
angiography in the absence of established coronary 
artery disease (29). A proposed algorithm that can 
be considered in the assessment of cardiac toxicity 
of cancer therapies including the identification of 
myocardial ischemia is summarized in figure 2.

6.2. Rationale for cardioprotection

Prevention from cardiotoxicity may be 
primary, extended to all patients already treated with 
potentially cardiotoxic therapies, or secondary in 
selected high-risk patients showing pre-clinical signs 
of cardiotoxicity (71). A tailored prevention strategy 
based on the cardiac risk stratification according 
to patient-related and therapy-related risk factors 
bears further investigation. Given the wide sharing of 
pathophysiological mechanisms between cardiotoxicity 
and CMD, several common therapeutic approaches 
have shown positive effects in both clinical conditions. 
While waiting for the advent of modern molecular 
theranostics, there is a rational of using best-evidence 
therapies for CMD to treat cardiotoxicity in oncology.

6.2.1. Beta-blockers

Beta-blockers have shown several beneficial 
effects in patients with CMD and stable MVA, by 
reducing myocardial oxygen consumption and 
improving coronary perfusion (29). Consistently, 
an improvement of ischemic and angina threshold 
was reported in some studies (80, 81). On the 
other hand, there is growing evidence suggesting a 
cardioprotective role of beta-blockers in prevention 
of CT-induced cardiotoxicity. Carvedilol in particular, 
which has also antioxidant properties and the ability to 
chelate iron, was reported as able to prevent cardiac 
histopathological damage caused by doxorubicin 
(82). However, there is no definite evidence for a 
class-effect benefit of these compounds in terms of 
cardioprotection. In fact, metoprolol showed a neutral 
effect (83), while nonselective beta-blockers such as 
propranolol resulted dangerous because of potential 
enhanced cardiotoxicity (84).

6.2.2. RAAS-inhibitors

ACE-inhibitors have been proposed as 
therapeutic agents in MVA due to their lowering effects 
on serum and tissue angiotensin II levels (85). In 
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particular, enalapril has been found to improve CMD 
through the increase of NO availability and reduction of 
oxidative stress in MVA patients (86). In cardiotoxicity, 
animal studies suggest that enalapril and other ACE-
inhibitors may be cardioprotective in anthracycline 
toxicity by preserving mitochondrial function and down 
regulating ROS generation (87, 88). In particular, 
thanks to its ROS scavenger role, the ACE-inhibitor 
zofenopril exerts protective properties through off-
target mechanisms in endothelial cells, as increased 
acidic sulphide group availability (89). Similar benefits 
seem to apply to angiotensin receptor blockers in 
reducing the formation of ROS, thus attenuating the 
development of myocardial dysfunction in cancer 
patients treated by CT (90).

6.2.3. Statins

Statins might have beneficial effects on 
CMD by improving endothelial function through 
several effects such as antioxidant, anti-inflammatory 
and cholesterol-lowering effects. They were able to 
improve exercise stress test performance in MVA 
patients (91) and to significantly reduce oxidative 

stress and endothelial function after 6 months of 
treatment (92). In cardiotoxicity, studies suggest the 
benefit of statins in reducing anthracycline-mediated 
cardiomyocyte death (93) and subsequent HF (94). 
However, to date no prospective trials have addressed 
the role of statins in the prevention of cancer therapy-
related cardiotoxicity.

6.2.4. Antioxidants

Benefits from antioxidant therapy have 
been clearly observed only in type A CMD, in which 
short-term administration of the antioxidant vitamin 
C restored coronary microcirculatory responsiveness 
and normalized CFR in smokers without significant 
CAD nor structural heart disease (95). However, 
clinical use of antioxidants to protect the heart during 
chemotherapy is controversial due to the potentially 
reduced cytotoxic efficacy toward cancer cells (19). 
Nevertheless, recent evidences suggest the protective 
role of mitochondrial aldehyde dehydrogenase-2 
(ALDH-2) in endothelial cells exposed to stress insult 
(96). Thus, since dysfunction of this molecule has 
been associated with both ischemic heart disease 

Figure 2. Flow diagram summarizing hypothetical algorithm in the assessment of cardiac toxicity of cancer therapies including the identification of 
myocardial ischemia. LV, left ventricular; CMR, cardiac magnetic resonance; SPECT, single-photonemission computed tomography; PET, positron 
emission tomography.
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(97) and doxorubicin-mediated cardiotoxicity (98), 
ALDH-2 targeting seems to be a promising therapeutic 
challenge to modulate mitochondrial functions and 
possibly neo-angiogenesis (96).

6.2.5. Other drugs

Non-dihydropyridine calcium antagonists, 
nitrates, adenosine, nicorandil and alpha-antagonists 
constitute other therapeutic options for MVA (29). 
However, their possible role in cardioprotection has 
still to be elucidated. Finally, it would be of particular 
interest to investigate the cardioprotective role of 
ranolazine and ivabradin, which have shown their 
positive effects on CMD by improving diastolic 
dysfunction and prolonging diastolic MBF time, 
respectively. Ranolazine and ivabradin have been 
tested as cardioprotective agents in both animal 
models and small series of patients with CT-related 
reduced ejection fraction HF (29).Given the recently 
described parallelism between CMD and diastolic 
dysfunction (74), studies are required to prove their 
efficacy in patients with CT/RT-related preserved 
ejection fraction HF.

7. CONCLUSIONS: KNOWLEDGE GAPS AND 
FUTURE DIRECTIONS

The specialty of cardio-oncology has gained 
significant momentum, with increasing awareness 
and interest in advancing this field. Although many 
important progress has been reached in this field, 
not all the cardiac toxicity of cancer treatment can 
be prevented or justified only assessing myocardial 
function and structure. After the evaluation of 
cardiotoxicity risk, current guidelines recommend to 
assess cardiotoxicity mainly using laboratory markers, 
electrocardiogram and echocardiogram. However, the 
study of cardiotoxicity revealed that the majority of 
early myocardial damage from CT/RT primary involve 
vascular toxicity rather that direct myocyte toxicity. For 
this reason, we propose myocardial ischemia as new 
theranostic target in the field of cardiooncology. In this 
view, in patients undergoing anti-cancer treatment, 
especially in the presence of high risk of ischemic 
heart disease, the evaluation of myocardial ischemia, 
using PET/SPET or stress-echocardiography, allow 
to non-invasively identify patients with CMD treatable 
with well-known anti-ischemic drugs (figure 2). 
Moreover, shared molecular pathways between CMD 
and cardiotoxicity, such as oxidative stress response, 
VSMCs tone, inflammation and thrombosis, represent 
the basis for the development of future research on 
new strategies for tailored cardioprotection.
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