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1. ABSTRACT

Malignant brain tumors and brain 
metastases are highly aggressive diseases that 
are often resistant to treatment. Consequently, 
the current prognosis of patients with brain tumors 
and metastases is dismal. Activated microglia and 
macrophages are often observed in close proximity 
to or within the malignant tumor masses, suggesting 
that microglia/macrophages play an important role 
in brain tumor progression. Microglia, being resident 
macrophages of the central nervous system, form 
a major component of the brain immune system. 
They exhibit anti-tumor functions by phagocytosis 
and the release of cytotoxic factors. However, 
these microglia/macrophages can be polarized into 

becoming tumor-supportive and immunosuppressive 
cells by certain tumor-derived soluble factors, thereby 
promoting tumor maintenance and progression. The 
activated microglia/macrophages also participate 
in the process of tumor angiogenesis, metastasis, 
dormancy, and relapse. In this review, we discuss 
the recent literature on the dual roles of microglia/
macrophages in brain tumor progression. We have 
also reviewed the effect of several well-known 
microglia/macrophages-derived molecules and 
signals on brain tumor progression and further 
discussed the potential therapeutic strategies for 
targeting the pro-tumor and metastatic functions of 
microglia/macrophages.
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2. INTRODUCTION

Malignant brain tumors and brain metastasis 
are often considered fatal in adults because of extremely 
poor prognosis and frequent tumor recurrence. 
Glioblastoma is the most common primary brain tumor 
in adults. In addition to glioblastoma, brain metastasis 
from other primary tumors including those from the 
lung, skin, and breast cancers also represent significant 
number of the central nervous system (CNS) tumors 
(1). It has been reported that 15–30 % of the patients 
with metastatic breast and lung cancers develop 
brain metastases (2). Even with treatments involving 
surgical intervention, irradiation, and chemotherapy, 
only a fraction of these patients with malignant brain 
tumor/metastasis survives longer than 2 years after 
diagnosis (1, 2). Recently, several drugs have shown 
to target neoplastic cells, which directly modulate 
the progression of brain tumor (3–5). Brain tumors 
develop a complex tumor microenvironment, which 
contributes to the development of drug resistance. In 
addition to tumor cells, non-neoplastic cells such as 
astrocytes, microglial cells, macrophages, endothelial 
cells, and lymphocytes are present in brain tumor 
microenvironment. Communications between the 
cancer cells and the non-neoplastic cells play critical 
roles in tumorigenesis and tumor invasion. Among the 
non-neoplastic cells, microglial cells and macrophages 
account for 30–50% of the total brain tumor mass (6, 7), 
suggesting that microglia/macrophages play a pivotal 
role in the tumorigenesis and metastasis. Most in vitro 
and in vivo studies have demonstrated that activated 
microglia/macrophages indeed accelerate growth and 
invasion of brain tumors (6, 8, 9). Although the depletion 
of microglia/macrophages does not significantly reduce 
the already existing tumors at the primary site in animal 
models (10, 11), a lack of microglia/macrophages 
has been observed to significantly affect metastatic 
spread of tumors (12–14), suggesting that these two 
types of cells play an essential role in the brain tumor 
invasion and metastasis. Therefore, understanding 
the mechanism of microglia/macrophage activation 
in the tumor microenvironment is essential for the 
development of novel anti-brain tumor therapies. In this 
review, we discuss the role and functions of microglia/
macrophages in the maintenance and progression of 
malignant brain tumor.

3. ORIGINS OF MICROGLIA AND  
MACROPHAGES IN BRAIN TUMOR

Microglia, the resident macrophage of the 
CNS, is involved in immune surveillance and host 
defense against infectious agents and neoplastic 
tumors in the CNS. Under physiological conditions, 
microglia are in a resting state characterized by 
ramified morphology (15). After they have been 
exposed to infectious and traumatic stimuli, microglia 
rapidly change their morphology to a “amoeboid” 

activated phenotype, alter gene expression and 
produce reactive oxygen species, and nitric oxide, 
pro-inflammatory cytokines and chemokines, which 
contribute to the clearance of pathogenic infections. 
However, prolonged and chronic microglial activation 
may result in pathological forms of inflammation 
that contribute to neurodegenerative and neoplastic 
diseases (16). Although activated microglia is believed 
to secrete cytotoxic factors that suppress or destroy 
pathogens and cancer cells, they are also capable of 
producing growth factors that promote cell survival, 
growth and enhance neuron function (17, 18).

Microglia was first characterized and 
reported in neural tumors by Rio-Hortegain in 1921 
(6). However, later immunohistological studies have 
consistently revealed abundant infiltration of microglia/
macrophages within the glioma and brain tumor 
tissues (19, 20). Moreover, the degree of activation of 
microglia/macrophages positively correlates with the 
grade of brain tumor (20), suggesting that the activated 
microglia/macrophages are associated with neoplastic 
progression.

Microglial cells and macrophages in the 
brain are derived from two different sources: 1) The 
parenchymal resident microglia and 2) Monocytes/
macrophages that enter the brain from bone-marrow. 
Previous studies supposed that both the types of cells, 
microglial cells and macrophages, were myeloid-
derived, based on the similarity in their surface 
markers and physiological functions. However, more 
recently, studies have demonstrated that microglia 
and macrophages are two distinct myeloid populations 
with different developmental origins (21–23). Animal 
studies showed that microglial cells originate from 
erythromyeloid progenitors that begin on embryonic 
day 7.5. (E7.5.)–E8.0. in the blood islands of the yolk 
sac. Until E9.5., erythromyeloid progenitors migrate 
to the developing CNS and mature into microglia 
(21–23). These early microglial cells reside in the 
brain throughout life and are thought to sustain the 
local microglial population. In contrast, macrophages 
originate from the hematopoietic stem cells that start 
in the aorta–gonad–mesonephros region at E10.5., 
and then in the fetal liver at E12.5. After the postnatal 
stage, macrophages are produced from monocytes 
in the bone marrow (fig1) (21–23). Recent studies 
demonstrate that microglial cells and macrophage 
have distinct and specific surface antigens too (24, 25). 
Studies on CX3CR1 (+/GFP)/CCR2 (+/RFP) knock-
in fluorescent protein reporter mice demonstrated 
that microglial cells are CX3CR1+/CCR2−, while 
the macrophages are CX3CR1−/CCR2+ (24, 25), 
strongly supporting the notion that microglial cells and 
macrophages are from different populations.

In brain tumor and brain metastasis, microglial 
cells and macrophages are recruited either within or 
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in close proximity to the tumor masses. These tumor-
associated microglia/macrophages can be detected 
by several biomarkers, including CD11b/c, CD163, 
CD200, CD204, CD68, F4/80, and the lectin binding 
protein Iba-1 (22, 23). Because there are no definitive 
markers to distinguish between these two cells, many 
investigators use the more general term “microglia/
macrophages” instead of microglia or macrophage 
alone to describe them in the brain tumors. However, 
microglia and macrophages can be distinguished by 
the differential expression levels of certain cell-surface 
markers (26). Microglial cells are defined as CD45low 
and macrophages as CD45high expressing cells (16, 
26, 27). Based on this observation, several studies 
investigated distinct populations of microglial cells 
and macrophages in the glioma tissue. Badie et al. 
performed flow cytometric analysis and characterized 
the distribution of microglial cells and macrophages in 
experimental gliomas and found that microglial cells 
(CD11b/chigh, CD45low), mainly present at the site of 
tumor or tumor periphery, accounted for 13–34% of the 
tumor mass (27). By contrast, macrophages (CD11b/
chigh, CD45high) were less prominent within the tumors 
or the tumor periphery and accounted for just 4.2.–
12% of the tumor mass (27). These results suggest 
that microglial cells play a key role in mediating the 
tumor-related inflammatory response.

Although the reactive microglia/macrophage 
are frequently found both in primary brain tumor and 
metastatic brain tumor (28), the ratio of microglia/
macrophage in these tumors is different. Previous 
studies showed that microglia/macrophages account 
for 4–70% of all cells in brain metastases, while 
8–78% of cells in gliomas (29, 30). Microglia are the 
main responders to primary brain tumors, inhibition of 
microglial activation has been shown to significantly 
reduce glioma proliferation (6). Microglia-derived 
enzymes, cytokines, growth factors have been shown 
to directly lead to tumor proliferation and invasion, 
immunosuppression and angiogenesis in primary 
brain tumor (6). In contrast to these cancer-promoting 
effects, microglia has also been reported to elicit 
cytotoxicity toward lung cancer brain metastases 
in the early phase by the production of NO (31). 
Moreover, activated microglial cells are observed at 
different phase of primary and metastatic brain tumor. 
Microglial activation often occurs in the middle-phase 
of the primary tumor, whereas reaction of microglia/
macrophages to metastatic brain tumor cells is 
usually immediate (28). The activated microglial cells 
have been found to be accumulated around single 
metastatic cancer cells that just started to extravasate 
into the brain from the blood stream on day 7 after 
intra-carotid artery injection of breast cancer cells (28), 

Figure 1. Different origin and lineage of microglial cells and macrophages in the brain. Microglial cells derive from erythromyeloid progenitors (EMPs) 
which locate in the yolk sac (embryonic day 7.5.-8.0.). In contrast, brain macrophages derive from hematopoietic stem cells (HSCs), which begin at 
embryonic day 10.5. in the aorta–gonad–mesonephros (AGM) region and at embryonic day 12.5. in the fetal liver. After postnatal stage, HSCs generate 
monocytes from myeloid precursors (MPs) and macrophage and/or dendritic cell progenitors (MDPs) in the bone marrow. The mature monocytes infiltrate 
into different oranges and differentiate to macrophage. In brain tumor microenvironment, tumor-released soluble factors recruit microglial cells and 
macrophages into the tumor site, which promotes tumor growth and metastasis.
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suggesting that microglia participate metastatic cancer 
cell brain colonization in the very early steps.

4. CLASSICAL (M1) OR ALTERNATIVE (M2) 
MICROGLIA/MACROPHAGES IN BRAIN 
TUMOR

Microglia/macrophages can be differentiated 
into classical (M1) or alternative (M2) phenotype by 
microenvironment stimuli (32). M1 cells are activated 
by type I cytokines such as interferon-γ (IFN-γ), tumor 
necrosis factor-α (TNF-α), lipopolysaccharide (LPS), 
and lipoproteins (33, 34). M1 microglia function as anti-
tumor immune cells by producing pro-inflammatory 
cytokines and reactive oxygen species (ROS), and 
by expressing signal transducer and activator of 
transcription 1 (STAT1). The upregulation of STAT1 
induces the inflammatory cytokines such as IL-1β, 
TNF-α, iNOS, IFN-γ, and IL-12 that alter the function of 
DNA, RNA, and proteins or induce lipid peroxidation, 
which leads to tumor growth inhibition (16, 35, 36)._
ENREF_2 The activated M1 microglia have antigen-
presenting capabilities (37, 38) and are able to present 
antigen to Th1 cell to induce T-cell mediated cytolytic 
activity (38), causing tumor cell death. In benign or 
regressing tumors, the majority of microglia is found to 
be M1-like, which increases pro-inflammatory activity 
to promote tumor lysis and tumor killing (39–41). 
These M1 microglia reduce the sphereforming ability 
of cancer stem cells and suppress glioma growth (42), 
resulting in tumor inhibition. Several surface markers 
such as major histocompatibility complex (MHC) II, 
CD11c, CD74, and iNOS have been used to identify 
M1 microglia/macrophages (25). These M1 subtype 
cells also express interleukin (IL)-12high, IL-23high, and 
IL-10low(35).

In contrast, M2 cells are activated by type II 
cytokines such as IL-4, IL-10, IL-13, and transforming 
growth factor-β (TGF-β) (43, 44). Chemokine stimuli 
including chemokine (C-C motif) ligands (e.g., CCL2, 
CCL17, and CCL22) and macrophage-derived 
chemokines can also promote M2 polarization (43). 
These M2 cells have a pro-tumor immune response 
by producing immunosuppressive factors (e.g., IL-10 
and TGF-β) and exhibit a high level of intracellular 
STAT3 (16). STAT3 activation has also been 
associated with promoting immunosuppression (45). 
Activated STAT3 decreases the expression of surface 
molecules in microglia that are necessary for antigen 
presentation, such as MHC-II, CD80, and CD86, 
and also increases the expression of various M2-
specific immunomodulatory mediators including IL-10, 
vascular endothelial growth factor (VEGF), and various 
matrix metalloproteinases (MMPs) (46, 47), promoting 
growth and invasion of the tumor. Moreover, STAT3 
targets pro-proliferation genes (48) that may contribute 
to microglia proliferation in brain tumor. Several 
surface markers such as CD163, CD204 (16, 34, 49), 

and arginas-1 (33) are present in M2 cells. These M2 
cells promote the function of Th2 cells and frequently 
express IL-10, which is a strong anti-inflammatory 
mediator (9, 50). M2 microglia-derived IL-10 helps 
to create an immunosuppressive microenvironment 
to promote tumor survival (6, 8, 9). A recent study 
showed that co-culture of M2 macrophages with 
glioma cells significantly increased tumor proliferation 
when compared with co-culture with an M1 subtype, 
and this effect was suppressed by blocking the 
expression of STAT3 (51). These results suggest that 
the polarization of microglia/macrophage profoundly 
affects tumor growth in the brain (fig2).

Accumulating evidence suggests that 
microglia/macrophages in the brain tumor are skewed 
to the M2 phenotype and that the cytokines IL-4, IL-
6, IL-10, and TGF-β (44, 52, 53), secreted from the 
tumor,_ENREF_8 induce M2 microglia/macrophage 
activation. Accordingly, high numbers of CD163+ and 
CD204+ microglia/macrophages are detected in glioma 
patients, (52) and their levels positively correlate with 
poor clinical prognosis of human glioma (51). By 
contrast, a higher ratio of CD74+ M1 cells is positively 
associated with better survival of human glioblastoma 
patients (54). Activated M2 microglial cells have been 
shown to promote colonization of breast cancer cells 
in the brain (13). In contrast, activated M1 microglial 
cells induced apoptosis of metastatic lung cancer cells 
in vitro (55). Both M1 and M2 microglia are detected 
within brain tumor mass. Even M1 microglia is able to 
suppress tumor growth and cause tumor cell death, the 
immunological functions of M1 microglia in the brain 
tumor including cytotoxicity, phagocytosis, and antigen 
presentation are impaired (56). Thus, metastatic tumor 
cells can escape the immune attack of M1 microglia and 
then colonize in the brain. The balance of upregulating 
M2 pro-tumor response and attenuated M1 anti-tumor 
immune response determines the promotion of tumor 
growth and invasion.”

5. CROSS-TALK BETWEEN MICROGLIA/
MACROPHAGES AND TUMOR CELLS BY 
MULTIPLE FACTORS THAT STIMULATE 
BRAIN TUMOR PROGRESSION

Reactive gliosis including microgliosis is 
a hallmark of neurodegernation, neuron injury and 
brain tumors (6, 57). In neuron, reactive microglial is 
known to lead local neuronal DNA damage and neuron 
death through secretion of proinflammatory mediators 
or ROS. By contrast, chronic reactive microgliosis 
increases production of cytokines and chemokines that 
accelerate growth and invasion of tumors. Reactive 
microgliosis creates favorable and more permissive 
brain microenvironment for promoting tumor growth/
invasion. On the other hand, tumor-derived factors 
not only promote their own growth but also induce 
another wave of microglial activation, resulting in an 
autocrine self-propelling inflammatory response in the 
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brain. Here, we discuss several important molecules 
from microglia/macrophages and tumor cells that are 
involved in modulating reactive microgliosis in the 
progression of brain tumors (fig3 and tab1).

5.1. Cytokines/chemokines

Cytokines/chemokines and their receptors are 
thought to be important for trafficking immune cells in the 
peripheral nervous system (58). Although the identity 
of tumor-derived cytokines/chemokines that modulate 
the recruitment of microglia remains unclear, several 
common chemokines and receptors have been found 
to be up-regulated in brain tumors, including monocyte 
chemoattractant protein-1 (MCP-1), Granulocyte/
macrophage-colony stimulating factor (GM-CSF), 
CX3CL1, and CCL (59). MCP-1/CCL2 is believed to be 
a major contributor in microglia/macrophage recruitment 
to gliomas and breast cancer brain metastases in vivo 
and in vitro (7, 59–64). MCP-1 is also responsible for 
increasing microglial proliferation in glioma (60). Brain 
tumor cell-derived MCP-1 binds to its specific receptor, 
CCR2, on the microglia, facilitating the recruitment of 
microglia into the tumor site (65). Expression of MCP-1 
positively correlates with the higher grade of malignant 
glioma (66), suggesting that MCP-1 in the glioma not 

only induces the recruitment of microglial cells into 
glioma but also increases tumor growth. MCP-1 is also 
implicated in breast cancer progression. A high level of 
MCP-1 in breast cancer cells was shown to promote 
migration and infiltration of macrophage into the 
brain through CCR2. Blocking CCL2 with neutralizing 
antibodies decreased macrophage infiltration and tumor 
growth in a mouse model of breast cancer (64, 67). 
GM-CSF has a similar effect as MCP-1 in enhancing 
microglial proliferation (68). In addition to GM-CSF, 
brain tumor tissues express high levels of the receptor 
of granulocyte-colony stimulating factor (G-CSF). 
Unlike GM-CSF, G-CSF does not promote microglial 
proliferation (68); however, it was shown to promote 
brain tumor proliferation by autocrine mechanisms (69). 
Glioma and breast tumor brain metastases exhibit a high 
level of mRNA and protein expressions of CX3CL1 (70, 
71). By contrast, CX3CR1 expression was shown to be 
absent in tumor cells, but it was found to be expressed 
in microglia themselves that lacked expression of 
CX3CL1 (71). CX3CL1 functions as a chemoattractant 
for macrophages and microglial cells (72–74). Treating 
microglia with exogenous CX3CL1 increased the ability 
for migration and adhesion of microglia to glioma cell 
in vitro, whereas blocking of CX3CR1 by CX3CR1 
antibodies reduced CX3CL1-induced adhesion ability 

Figure 2. Differential roles of activated microglia/macrophages in the brain tumor. Microglia/macrophages have both pro- and anti-tumor potentials. In 
response to granulocyte-macrophage colony stimulating factor (GM-CSF), lipopolysaccharide (LPS), tumor necrosis factor-α (TNF-α), and interferon-γ 
(INF-γ) stimuli, microglia/macrophage can be polarized to M1 phenotype. M1 cells exhibit anti-tumor immunity by producing cytotoxic factors and 
presenting tumor antigen to T helper type 1 (Th1) cells. STAT1 activation in M1 cells induces pro-inflammatory cytokines production and increases T-cell-
mediated cytolytic activity, leading to tumor cell damage. In response to interleukin-4 (IL-4), chemokine (C-C motif) ligands (CCLs) and macrophage 
colony-stimulating factor (M-CSF), microglia/macrophages polarize into M2 phenotype. M2 cells express STAT3 that induces anti-inflammatory factors. 
M2 cells also modulate Th2 cells, which promotes tumor progression. In addition, M2 cells can promote tissue repair and angiogenesis, resulting in tumor 
progression.
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of microglia when compared to a control group (71). 
The expression of CX3CR1 is associated with tumor 
metastasis to the brain (75). Indeed, CX3CR1 was 
overexpressed in the brain metastasis of breast cancer 
patients (75), suggesting that CX3CR1 is associated with 
tumor metastasis to the brain. Increasing expression of 
CX3CR1 in the tumor mass is due to tumor-recruited 
microglia/macrophages because abundant microglia 
and macrophages are recruited within brain tumor mass 
(6, 7, 13, 76). Tumor-derived CX3CL1 attracts microglia/
macrophage infiltration. These microglia/macrophages 
release cytokines and chemokines that promote the 
migratory ability of tumor cells to the brain. In view of 
the above facts, it is understood that these chemokines 
significantly increase the ability of microglia to promote 
the growth and invasion of brain tumor/metastasis, 
and therefore, these factors could serve as therapeutic 
targets.

The results of RNase protection assays 
showed that the expression of 53 genes encoding 
cytokines or cytokine receptors were altered in 
human glioma cell lines and brain tissue (77). In situ 
hybridization analyses showed that both—microglial 
cells and astrocytes—contribute to anti-inflammatory 
IL-10 gene expression in glioblastoma tissue (8). 
Furthermore, primary cells from human glioma 

specimens showed that microglia/macrophages are 
the major sources of IL-10 expression in gliomas (9), 
suggesting that IL-10 secreted by microglia create 
an immunosuppressive microenvironment for growth 
of glioma. In addition, IL-6 secreted by glioma and 
microglia was shown to stimulate the production 
of MMP-2 that induces glioma-cell migration and 
invasiveness (78–81). Although tumor-derived soluble 
factors mainly induce polymerization of M2-like 
microglia/macrophages, some factors also induce a 
partial shift of microglia/macrophages toward the M1 
phenotype in the brain tumor. Interestingly, several 
previous studies have shown that M1 specific markers 
or associated pathways are not only detected but also 
positively correlated with glioma growth, and that IL1-β 
and TNF-α directly promote glioma growth (25). In other 
studies, IL1-β and TNF-α were shown to stimulate brain 
microvessel endothelial cells, leading to increasing 
permeability of the blood-brain barrier (82–84) and 
immune cell infiltration from the peripheral system. 
However, several studies showed that M1 cytokines 
(e.g., IFN-γ, TNF-α, IL-1β, IL-2, and IL-12) and their 
receptors were virtually absent in glioma, brain 
metastatic cell lines, and in human tissues whereas 
M2 immunosuppressive cytokine (i.e. IL-6, TGF-β) 
were greatly predominant in these cells (77, 85–87).
Therefore, in brain tumor, the balance of upregulating 

Figure 3. Reactive microgliosis promotes brain tumor progression. Microglial cells become hyper-activated through two mechanisms in brain tumor 
microenvironment. First, microglial cells become active, produce cytokines, growth factors and matrix-metalloproteases (MMPs) in response to initial 
tumor cell stimuli. Microglia-secreted factors then promote tumor growth and invasion. Second, tumor cells release growth, chemoattractant, and 
chemokine factors that recruit and induce another wave of microglial activation, resulting in a perpetuating cycle of microglia activation in the brain tumor. 
IL-6: Interleukin IL-6, IL-10: Interleukin 10, TGF-β: Transforming growth factor, PGE2: Prostaglandin E2, GM-CSF: granulocyte-macrophage colony 
stimulating factor, MCP-1: Monocyte chemoattractant protein-1, ATP: Adenosine triphosphate, miRNAs: microRNAs.
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M2 pro-tumor response and attenuated M1 anti-tumor 
immune response determine the promotion of tumor 
growth and invasion.

5.2. Prostaglandin and transforming  
growth factor-β

Prostaglandin E2 and TGF-β are important 
immunosuppressants in brain tumor. Previous studies 
have shown that prostaglandin E2 inhibits the innate 
and adaptive immune responses of immune cells 
via the activation of adenosine monophosphate (88, 
89). Both, glioma and microglial cells, are known to 
produce prostaglandin. Microglial cells are the major 
source of cyclooxygenase-2, which is the key enzyme 
responsible for arachidonic acid conversion to active 
prostaglandins (90, 91). Microglial activation increases 
the expression of cyclooxygenase-2, which may 
contribute to the increase in prostaglandin production 
in the brain tumor. Tumor-released TGF-β has been 
shown to recruit microglia/macrophage to glioma (90). 
Furthermore, microglia-derived TGF-β stimulates 
the migration of glioma cell (92) and increases the 
proliferlation of CD133+ glioma cells (glioma stem-like 

cells) (90), whereas the blocking of TGF-β abolishes 
the effects of microglia on glioma invasiveness (90, 
91). Moreover, several reports have shown that 
TGF-β1 is required for the maintenance of self-renewal 
property of glioma stem-like cells (93, 94), suggesting 
that TGF-β secreted from microglia/macrophage plays 
a role in the maintenance of cancer stem-like cells 
associated with growth, migration, and invasion of 
brain tumors.

5.3. Growth factors

Glial cell-derived neurotrophic factor (GDNF) 
secreted by tumor cells was identified as a strong 
chemoattractant for microglia. The downregulation of 
GDNF by siRNA in mouse glioma cells was shown 
to diminish the attraction of microglia, whereas 
the overexpression of GDNF promoted microglia-
attraction of glioma cells (95). In addition to GDNF, 
other growth factors (e.g., hepatocyte growth factor/
scatter factor (HGF/SF)) from tumor cells are able to 
chemotactically attract microglial cells in vitro (96). The 
glioma-released HGF/SF targets the transmembrane 
tyrosine kinase receptor, c-Met, on microglia, thereby 

Table 1. Tumor- and microglia-derived factors affect brain tumor progression and microglial polarization

Tumor-derived 
factor

Microglia-derived 
factor

Receptor Outcome Ref.

MCP-1 - CCR2 in microglia Recruitment of microglia 7, 59–67

GM-CSF - GM-CSFR in icroglia Microglial proliferation 68

G-CSF - GM-CSFR in icroglia Promoting brain tumor proliferation 68, 69

CX3CL1 - CX3CR1 in microglia Recruitment of microglia 70–75

IL-10 IL-10 (Major) Il-10R in both Immunosuppression, M2 activation, Promoting cancer 
stem cell growth

8, 9

IL-6 IL-6 IL-6R in both Tumor migration, M2 activation 78–81

IL1-β, TNF-α IL1-β, TNF-α IL-1R,TGFR in both Tumor growth, increasing BBB permeability 25, 82–84

Prostaglandin Prostaglandin PGER in both Immunosuppression 88, 89, 91

- TGF-β TGFR in tumor Stem cell proliferation, immunosuppression 90–94 

TGF-β - TGFR in microglia Recruitment of microglia 90

GDNF - GDNFR in microglia Recruitment of microglia 95

HGF/SF - c-Met in microglia Microglia migration 96

- HGF/SF c-Met in tumor Angiogenesis 96–99

MMPs MMPs Tumor migration, invasion, infiltration of microglia, 
degradation of extracellular matrix, angiogenesis

100–105

- MT1-MMP Pro-MMP2 cleavage

ATP - P2X7R in microglia M2 activation, enhancing motility of microglial cells 106–116

microRNAs - Promotion or inhibition of tumor 117–129

- miR-124 Microglia quiescence 127

Soluble factors - TLRs in microglia Degradation of extracellular matrix, 131

S100B - RAGE in microglia M2 activation, angiogenesis 132, 133

Wnt signaling Wnt signaling WntR in Both Brain metastasis, cytokines production 13,134–136

- VEGF VEGFR+ in endothelial cells Building functional vascular tubes 140–142
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increasing the migratory ability of microglia in a co-
culture model with glioma cells (96). This effect can 
be readily abolished with HGF antibody treatment (96), 
suggesting that the tumor-derived growth factors play 
a role in microglia chemotaxis. Interestingly, activation 
of HGF/SF and c-Met have been shown to promote 
angiogenesis by stimulating endothelial cell migration 
and proliferation (96, 97). Microglial cells also produce 
HGF/SF and express c-Met (96, 98, 99), which may 
contribute to angiogenesis in the brain tumor. These 
results provide a new insight into the role of growth 
factors not only in promoting tumor growth but also 
in enhancing tumor invasion and angiogenesis by 
modulating the activation of microglia.

5.4. Matrix metalloproteinases

MMPs are known to degrade extracellular 
matrix, which promotes tumor migration and invasion. 
The expression analysis of MMPs in the glioma model 
revealed that MMP-1, 2, 3, 8, 9, 13, and 14 genes are 
upregulated in the tumor and microglial cells. Among 
them, MMP2 is also one of the major proteases 
found in mouse and human gliomas (100, 101). 
Both, microglial and tumor cells produced MMP2. 
Secreted MMP2 is in a pro-form that needs to be 
cleaved to an active form by membrane type 1-matrix 
metalloproteinase 1 (MT1-MMP) to facilitate glioma 
cell motility. In the normal brain, MT1-MMP expression 
in microglia is relatively low and is detectable only in 
the white matter (102). However, the expression of 
MT1-MMP is elevated in the event of occurrence of 
brain tumors (103). Consistent with these results, 80% 
of brain metastasis from lung adenocarcinoma and 
50% of that from breast cancer were positive in MT1-
MMP immunostaining (104). Markovic and colleagues 
found that MT1-MMP was especially expressed in 
microglia that was in close contact with glioma cells, 
whereas glioma cells expressed MT1-MMP in brain 
tumor only at a lower level (103). Knockdown of MT1-
MMP in microglia by shRNA effectively reduced the 
growth of glioma in vivo, suggesting that MT1-MMP 
expression in microglial cells plays an essential role in 
glioma progression. Furthermore, upregulating MMP-
2 and MMP-9 induced degeneration and retraction of 
astrocytic end-feet (105), which increases the blood-
brain barrier permeability, resulting in the infiltration of 
macrophages, T cells, and cancer cells into the brain 
parenchyma (19, 20). Thus, microglia can serve as 
activators for the degradation of extracellular matrix 
for primary brain tumor invasion and brain metastasis. 
Moreover, upregulating MMPs on microglia contributes 
to peripheral cancer and immune cell infiltration.

5.5. Cell-cell communication through  
extracellular vesicles

Tumor and microglia/macrophages are 
able to release extracellular microvesicles known 

as exosomes into the microenvironment and 
circulation. The released exosomes may serve as 
carriers for cell-cell communication, which affects 
brain tumor progression/metastasis and controls 
microglia activation in an autocrine and paracrine 
fashion. Exosomes are ~40 to 100 nm in size and 
can encapsulate various molecules, including 
metabolites, proteins, and nucleic acids (106, 107). 
For example, the exosomal adenosine triphosphate 
(ATP), abundantly released from tumor cells, has been 
shown to bind to the purinergic receptor P2X7 (P2X7R) 
on the surface of microglia/macrophages, resulting in 
microglia/macrophage activation and the production 
of macrophage inflammatory protein-1 (MIP-1α) and 
MCP-1 (108). Treatments with P2X7R antagonists or 
oxidized ATP reduced the expression of MIP-1α and 
MCP-1 in microglia/macrophages, while it suppressed 
brain tumor progression (108). Exosomal ATP was also 
found to induce microglia ramification (109), enhance 
the motility of microglial cells (110, 111), and promote 
M2 phenotype (112), but at the same time inhibit M1 
phenotype activation (113). In addition to tumor cells, 
microglial cells produce and release ATP (114) which 
may directly induce microglial activation through an 
autocrine mechanism. The microglial cell-derived 
exosomal ATP stimulates the production of MCP-1 in 
tumor cells (115), which in turn promotes microglia cell 
infiltration into the tumor mass. ATP is a well-known 
mitotic factor for glioma cells that promotes tumor 
growth. Although high levels of ATP (5 mM) induce cell 
death in normal cells, glioma cells present resistance to 
death, induced by ATP stimulation (116). These results 
suggest that tumor cell- and microglial cell-derived 
exosomal ATP induces cell death of the normal tissue 
surrounding the tumors, which may potentially set the 
stage for tumor cells for rapid growth and invasion.

RNA molecules in exosomes include mRNAs, 
microRNAs (miRNAs), and long non-coding RNAs. 
MicroRNAs function as novel classes of oncogenes or 
tumor suppressors and are frequently located at the 
chromosomal fragile sites in cancer genomes (117, 
118). For example, the exosomal miR-223 plays an 
oncogenic role by promoting the invasive potential of 
breast cancer cells (119). In contrast, other exosomal 
miRNAs including miR15b, miR124, miR-137, miR-
146b, and miR-451 inhibit brain tumor invasion and 
regulate the tumor cell-cycle progression (120–
124). Among these, miR-124 is the brain-enriched 
miRNA that modulates neuronal development, tumor 
progression, and microglial activation (125–127). 
Compared with that in the normal brain tissues, the 
expression of miR-124 is significantly down-regulated 
in brain tumor tissues and cell lines (122, 123, 128). 
Hongping et al. showed that the overexpression of 
miR-124 reduced tumor sphere formation, inhibited 
stemness, and suppressed tumor cell invasion (122). 
Interestingly, high expression of miR-124 is detected in 
resting microglia of the normal CNS, whereas it appears 
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to be downregulated in activated microglial cells (127). 
Transfection of miR-124 in microglia/macrophage and 
animals directly inhibited the immunogen–induced 
microglia/macrophage activation and suppressed 
cytokine production (127). Furthermore, knockdown 
of miR-124 in microglia/macrophages resulted in 
microglia/macrophage activation in vitro and in vivo 
(127), suggesting that miR-124 could be a key regulator 
of microglia quiescence. In addition to tumor-derived 
miRNAs, astrocyte-secreted miRNAs also affected 
microglia activation. Loss of PTEN, an important tumor 
suppressor, in the tumor cells significantly increased 
IBA1+ expression on microglia, promoted tumor 
growth and elevated the risk of breast cancer brain 
metastasis through miR-19a secretion from astrocytes 
(129). These results suggest that miRNAs in the brain 
microenvironment mediate microglial activation and 
tumor progression.

Proteins in exosomes have also been 
shown to play critical roles in controlling microglia/
macrophage activation. For example, heat shock 

proteins (HSPs) such as HSP90, HSP70, and 
HSP32, induce the production of IL-6 and TNF-α, and 
increases the rate of phagocytosis in microglial cells 
(130). Taken together, exosomal miRNAs and proteins 
in brain tumor are important not only for promoting 
tumor progression/metastasis but also for modulating 
microglia/macrophage activation.

6. SIGNALING PATHWAYS OF MICROGLIA/ 
MACROPHAGES FOR BRAIN TUMOR 
GROWTH AND INVASION

Reciprocal communications between 
microglia and tumor cells activate multiple key signaling 
pathways as summarized in fig4. Several important 
pathways that play pivotal roles in brain tumor growth 
and invasion are discussed below.

6.1. Toll-like receptor 2 signal

The soluble factors released from a glioma 
can be recognized by various Toll-like receptors (TLRs), 

Figure 4. Cross-talk between tumor cells and resident cells in the brain. Various secreted soluble factors from tumor cell stimulate microglia and 
astrocyte activation. The tumor-derived soluble factors bind toll-like receptors (TLRs) on microglia that induces p-38 MAPK activation, resulting in 
up-regulation of matrix-metalloproteases (MMPs) and membrane type 1-matrix metalloproteinase (MT1-MMP). Microglia-released MMPs then cause 
extracellular matrix (ECM) digestion that promotes tumor invasion and macrophages/T cells infiltration. In addition, secreted transforming growth factor 
(TGF-β) from microglial cells triggers the release of pro-MMP2 from tumor cells which is cleaved into active form MMP2 by microglia-released MT1-
MMP. Microglia-secreted vascular endothelial growth factor (VEGF) enhances angiogenesis. S100 calcium-binding protein B (S100B) induces receptor 
for advanced glycation end products (RAGE) activation on microglial cells that induces production of anti-inflammatory cytokines, leading to immune 
suppression. The metastatic tumor cell induces production of cytokines and chemokines in activated microglia via activation of Wnt signal. Upregulating 
Wnt signaling in microglia promotes tumor colonization and metastasis. Tumor cells induce astrocyte activation by production of interleukin-1β (IL-1β). 
Activated astrocytes release TGF-β, Jagged and other factors, which promotes tumor growth and mediates cancer stem cells self-renewal. Neuron-
released neurotransmitter gamma-aminobutyric acid (GABA) promotes tumor progression. The interaction of tumor and resident cells induces multiple 
pathway activation that creates favorable microenvironment for tumor growth. BBB: blood–brain barrier, EGFR: epidermal growth factor receptor, HER: 
human epidermal growth factor receptor, IL: interleukin, JAG: jagged, MMP: matrix metalloproteinase, TGF: transforming growth factor, VEGF: vascular 
endothelial growth factor.
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in particular TLR 2, on microglia/macrophage. Treating 
the primary microglial cells with a TLR 2 agonist was 
shown to up-regulate the downstream molecules, 
MyD88 and p38 MAPK, that promoted the productions 
of MT1-MMP and MMP-9, leading to glioma cell 
invasion due to the degradation of extracellular matrix 
(103). In addition, blocking TLR 2 on microglial cells 
or deletion of microglial MT1-MMP reduced MT1-MMP 
expression on microglia and impaired the growth of 
glioma (103), suggesting that the activation of the TLR 
2 signal on microglia enhances brain tumor invasion. 
A more recent study has identified glioma-produced 
versican as an endogenous TLR 2 ligand that can 
trigger p38 MAPK signaling activation followed by 
increasing MT1-MMP production in microglial cells 
(131). Interestingly, microglia-released TGF-β was 
shown to induce the production of pro-MMP2 in 
glioma cells, which was subsequently cleaved into 
active MMP2 by microglia-secreted MT1-MMP. This 
positive circuit between microglial cells and tumor cells 
promotes brain tumor growth and invasion.

6.2. S100B-RAGE-STAT3 signal

M2 microglia polarization is important 
for maintaining local immunosuppression. Thus, 
upon attracting microglia, tumors establish an 
immunosuppressive microenvironment to promote 
their growth. Several lines of evidence indicate that the 
activation of S100B-RAGE-STAT3 signaling stimulates 
polarization of M2. Tumor-secreted S100 calcium binding 
protein B (S100B) activates receptor for advanced 
glycation end products (RAGE) on microglia, which 
induces STAT3 activation, resulting in the suppression 
of microglial M1 function, in turn reflected by the 
inhibition of TNF-α and IL-1β production (132). Zhang 
et al. showed that blocking RAGE expression inhibited 
glioma-induced STAT3 activation and suppressed 
the production of M2-type cytokines such as IL-10 in 
microglial cells (132). Importantly, activated RAGE 
signal in microglia/macrophage not only maintains M2-
like phenotype but also affects angiogenesis. Indeed, 
genetic depletion of RAGE in glioma cells and mice was 
shown to abrogate angiogenesis by downregulating 
the expression of VEGF (133). Reconstitution of RAGE 
knockout mice with wild-type microglia or macrophages 
normalized glioma vascularity, suggesting that RAGE 
signaling in microglia/macrophages was sufficient to 
promote angiogenesis in glioma (133).

6.2. Wnt signal

Tobias et al. demonstrated that activated 
microglia cells significantly promote colonization 
of breast tumor tissues in cancer metastasis (13). 
Moreover, the presence of microglia also enhanced the 
invasion rate of human and murine breast cancer cells 
in the brain, when compared to a control group (13). 
They have also shown that the direction of microglia 

movement can serve as a guiding rail for malignant 
cells to move toward the neighboring tissue of tumor 
plaques (13). Interestingly, inhibiting microglia function 
by a Wnt inhibitor significantly diminished total invasion 
of the tumor cells (13). Wnt signal is essential for 
communication between the microglia/macrophages 
and brain-metastasis tumor cells (134–136). Microglial 
activation-promoting brain metastasis often depends 
on activation of Wnt signaling (13, 136, 137), and 
treatment of microglial cells with a Wnt antagonist 
completely abolishes microglia-induced tumor invasion 
(13, 136). On the other hand, treating microglia/
macrophages with Wnt increases the production of 
IL-6, IL-12, TNF-α, and MMP via the activation of AP-
1/c-Jun (136, 138). Consistent with this ex vivo study, 
the Wnt signaling is elevated in breast cancer patients 
with brain metastasis (139). Therefore, activation of 
Wnt signaling in microglia promotes brain metastasis 
in part by upregulating microglial cytokine production.

6.3. Angiogenic factor

For the metastatic spread of cancer cells, 
the growth of the vascular network is important in 
order to supply nutrients and oxygen to tumor cells 
to promote their growth and invasion. The effect of 
microglia/macrophages on angiogenesis has been well 
documented. Microglia/macrophages are found to be 
located at vascular branching points and release VEGF 
that stimulates and guides the VEGFR+ endothelial 
cells to build functional vascular tubes. Deletion of 
macrophages by a genetic approach significantly 
decreases the migration ability of endothelial cells and 
reduces branching in the vascular plexus (140). Microglia-
derived MMPs have been shown to induce production of 
angiogenic factors and stimulate angiogenesis in glioma 
(141). Moreover, microglia-derived MMPs degrade the 
extracellular matrix, which allows endothelial cells to 
invade into tumor tissues during angiogenesis in glioma 
(141, 142). Therefore, activated microglial cells play a 
pivotal role in constructing abundant vascular networks 
that promote tumor growth.

6.4. Signaling in other brain residential cells

In addition to microglia, tumor cells 
communicate with other residential brain cells 
that contribute to tumor growth. Beside microglia, 
astrocytes are the most abundant glial cells in the 
brain. Cancer cells stimulate the production of pro-
inflammatory cytokines in astrocytes, which also 
promotes tumor growth and metastasis. We have 
recently shown that tumor-produced prostaglandin 
could activate astrocytes to release CCL7, which in 
turn promoted self-renewal of the tumor-initiating cells 
(143). Furthermore, we showed that breast tumor 
cells in the brain express high levels of IL-1β which 
activates astrocytes to upregulate Jagged-1 which in 
turn interacts with the Notch signal in cancer stem cells 
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(CSCs) and promotes self-renewal of CSCs (144). 
Similarly, the tumor-promoting effect of Notch and the 
jagged-2 pathway has also been explored in other brain-
metastasis models (145). The effect of the neuron-
secreted neurotransmitter gamma-amino butyric acid 
(GABA) on brain tumor has also been explored. High 
levels of GABA and its receptor are detected in both, 
primary brain tumor and brain metastatic tissue (146). 
GABA is converted to a succinate form by GABA 
transaminase, resulting in the subsequent production 
of NADH to satisfy the energy and growth requirements 
of neuron cells (147). GABA enhances proliferation of 
brain-metastatic cells, whereas GABA transaminase 
inhibitor abolishes the proliferative effect of GABA on 
breast tumor (146). Together, these findings suggest 
that, in addition to microglia, neurons and astrocytes 
communicate with tumor cells to create appropriate 
tumor microenvironment that would promote brain 
tumor growth and metastasis (fig4).

7. INTERACTION BETWEEN MICROGLIA 
CELLS AND CANCER STEM CELLS  
IN THE BRAIN

It is becoming increasingly clear that CSCs 
can drive tumor growth, invasion, and immune evasion. 
Brain tumors, especially glioblastomas, are believed to 
arise from glioblastoma stem cells (GSCs). High-density 
microglia/macrophages are detected in and around 
the GSC niche, suggesting that the inflammatory cells 
and inflammatory mediators may be indispensable 
components for GSCs growth. GSCs-secreted chemo-
attractant factors recruit microglial cells into the tumor 
mass, while the recruited microglial cells release soluble 
factors that create a favorable microenvironment to help 
the growth and enhance the invasiveness of GSCs (28). 
Liang Yi et al. found that the GSCs had a stronger ability 
to recruit microglia/macrophages than other glioma cells 
(148). Compared to the non-GSC glioma cells, GSCs 
expressed 2- to 3-fold higher level of CCL2, CCL5, and 
CCL7, 7-fold higher level of VEGF, and nearly 50-fold 
higher level of neurotensin. Among these, VEGF can 
induce proliferation of microglia (149) and inhibit myeloid 
progenitor maturation to develop tumor-associated 
macrophages, which promotes malignant progression 
(150). Neurotensin increases the migratory ability of 
microglia (151). Furthermore, GSCs were found to affect 
the polarization of microglia/macrophage. Treatment 
of resting microglia/macrophages with conditioned 
medium from GSCs promoted polarization of microglia/
macrophages to an M2 phenotype and inhibited the 
capability of phagocytosis (42, 131). Recently, GSC-
secreted periostin was found to function as a new potent 
chemo-attractant to recruit macrophages through the 
activation of integrin αvβ3 signal (25). Importantly, 
inhibiting the αvβ3 signal by blocking peptides impairs 
macrophage recruitment and suppresses GSC invasion 
(25). Furthermore, periostin-integrin αvβ3 signal has 
been found to maintain the microglia/macrophages 

phenotype at M2 subtype, which contributes to GSC 
growth in brain tumors (25).

Activated microglia/macrophage also affects 
the growth of GSCs. Microglia/macrophage-secreted 
IL-10 was shown to promote the growth of GSC 
(131). In addition, activated microglia/macrophages 
produce high levels of TGF-β1, which induces MMP-
9 production and increases GSC invasiveness, 
whereas knockdown of the TGF receptor reduces the 
invasiveness of GSCs in vivo (90). Moreover, IL-6 has 
also been identified as a growth factor for glioma stem 
cells (152), which suggests that microglia-derived IL-6 
may promote GSCs growth.

A recent study showed that naïve microglial 
cells curb GSC invasion. Isolated microglial cells 
from non-glioma patients released MCP-1 and IL-8 
that reduced the sphere-forming ability of GSCs 
and inhibited brain tumor growth, whereas isolated 
microglial cells from glioma patients were unable to do 
so (42). Supplementing GSCs with naïve microglial-
conditioned medium caused cell cycle arrest and 
reduced proliferation of GSCs (42). Moreover, growth- 
and differentiation-related genes were significantly 
down-regulated in GSCs when they were treated 
with naïve microglial-conditioned medium (42). These 
results suggest that the crosstalk between GSCs and 
microglia/macrophages promotes GSC growth and 
invasion.

8. INHIBITING MICROGLIA ACTIVATION  
AS THERAPEUTIC STRATEGY FOR  
BRAIN TUMOR

As described above, brain tumor growth is 
dependent on various signal stimulations from the 
microenvironment and on the various secreted factors 
from microglia/macrophages that promote brain tumor 
growth, invasion, and colonization. Thus, inhibition 
of the microglia/macrophages-derived signals is 
considered a potential anti-neoplastic-targeted 
therapy to block the growth of brain tumor. Here, we 
discuss several approaches that target and modulate 
the functions and activation of microglia/macrophage.

8.1. Immunotherapies

Several immunotherapies are under 
development for the treatment of patients with brain 
tumor. A recent study showed that immunotherapy 
using activated natural killer (NK) cells in combination 
with the antibody mAb9.2.2.7. diminished tumor 
growth by inhibiting tumor proliferation and 
promoting apoptosis (153). Moreover, this approach 
effectively increased the expression of ED1+ and 
MHC class II+ on microglia, which increased the 
function of microglia for tumor antigen presentation 
and cytotoxicity (153). A recombinant immunotoxin 



Microglia/macrophages inhibit brain cancer and metastatic disease

1816 © 1996-2017

supplement was noted to block the folate receptor 
β on microglia/macrophages, causing depletion of 
microglia/macrophages and reduce glioma growth in 
nude mice (154). Likewise, ablation of CD11b+ cells 
in ganciclovir-treated CD11b-HSVTK mice decreased 
the brain tumor size and improved animal survival 
(155). Up-regulating M1 microglia/macrophage 
function can be an immunotherapeutic approach to 
enhance anti-tumor immunity in the brain. Indeed, IL-
12, LPS, and INF-γ effectively increased microglial 
cytotoxicity and phagocytic activity that eliminated 
cancer cell growth in vivo (156–158). Likewise, 
stimulation of M1 microglia/macrophage by the TLR3 
agonist poly (I: C) increased tumor cell death and 
inhibited growth and invasion of the tumor (159). 
In addition, inhibiting the CSF-1 receptor has been 
shown to reduce M2 macrophage polarization and 
inhibit tumor growth (160). These findings indicate 
that immunotherapies or the elevation of microglial 
cytotoxicity function may be an amenable therapeutic 
strategy to treat brain tumors.

8.2. Antibiotic interference

Antibiotic drugs can also be used as anti-
glioma therapies by modulating microglia/macrophage 
function. Minocycline hydrochloride, a small, highly 
lipophilic antibiotic, has been shown to suppress 
tumor invasion by inhibiting the expression of MT1-
MMP and p38 MAP kinase in microglial cells (161, 
162). Furthermore, treating mice with cyclosporine 
significantly down-regulated the levels of IL-10 and 
GM-CSF, which in turn inhibited infiltration of microglia/
macrophages and decreased glioma growth (34). 
Moreover, amphotericin B has been shown to enhance 
microglia/macrophage activation, which leads to the 
arrest of brain tumor-initiating cell cycle and inhibition 
of cell differentiation (42).

8.3. Drug delivery by microglia/macrophages

Taking advantage of microglial phagocytic 
properties, recent studies used nanoparticles to 
modulate the function of microglial cells in the tumor 
(163, 164). Cyclodextrin-based polymer nanoparticle 
(CDP-NP) is taken up by microglial cells with no 
toxicity. The CDP-NP-labeled microglial cells are found 
to surround the tumor, suggesting that these labeled 
microglia/macrophages could potentially be used as 
nanoparticle drug carriers into malignant brain tumors 
(163).

8.4. Radiation and antiangiogenic therapy

The radiation therapy (RT) is the front-
line treatment for brain tumors and metastasis; 
however, it eventually fails owing to the recurrence 
of the tumor. Whole brain irradiation is accompanied 
with the production of hypoxia-inducible factor-1 

and stromal cell–derived factor-1 (SDF-1), which 
enhances recruitment of macrophage and increases 
angiogenesis at the tumor-invasion front (165, 166). 
However, using a combination of RT with a small 
molecule inhibitor of SDF-1, AMD3100, abrogated 
tumor regrowth in nude mice by preventing RT-induced 
macrophage recruitment (166).

Antiangiogenic therapy is able to delay brain 
tumor progression, but the benefit of this approach is 
still limited. This is because antiangiogenic therapy 
induces recruitment of microglia/macrophages in 
the tumor bulk and infiltrative regions. (167, 168). 
Moreover, a clinical study showed that a higher 
population of microglia/macrophages correlated 
with poor survival after anti-VEGF therapy in glioma 
(167). This suggests that microglia/macrophages may 
participate in escaping from RT and antiangiogenic 
therapy, which results in tumor recurrence. Thus, 
microglia/macrophages may be potential biomarkers 
for predicting resistance to RT or as a treatment target 
for recurrent brain tumor.

9. CONCLUSIONS AND PROSPECTIVES

Tumor-secreted soluble factors induce 
microglial activation and recruit microglial cells into the 
tumor site in the brain, while these secreted factors 
also modulate the immune function of microglia. 
Activated microglial cells release multiple pro-tumor 
factors, which in turn promote tumor growth and 
invasion. It is now evident that the paracrine loops 
between cancer and microglial cells profoundly affect 
microglial pro- and anti-tumor functions, resulting in 
brain tumor promotion or inhibition. However, there are 
still many unsolved questions. For example, the crucial 
factors and mechanisms that mediate the interaction of 
microglia/macrophages with cancer cells in the brain 
tumor/metastasis remain largely unknown. Likewise, 
the interaction of microglia/macrophages and other 
microenvironmental cells in the brain (e.g., astrocyte) 
might contribute to tumor growth, but the detailed 
mechanisms involved in their communications remain 
unclear. Although microglial cells and macrophages 
are recruited into the tumor mass and promote tumor 
growth, whether they execute distinctively different 
functions in brain tumor progression is still unknown. 
In addition, brain metastasis is a multistep process; we 
do not know how metastatic cells escape the immune 
attack of microglia/macrophages to colonize the brain 
microenvironment. These unanswered questions need 
further investigation, and understanding the role of 
microglia/macrophages in brain tumor could contribute 
to the development of new therapy for brain tumor. 
The functional impairment of microglia/macrophages 
occurs in the early stages of brain tumor/metastasis; 
therefore, early intervention by microglia/macrophage 
activation may also provide a potential therapeutic 
direction in brain tumor/metastasis.
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