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MicroRNAs in control of gene regulatory programs in diabetic vasculopathy
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1. ABSTRACT

Diabetes is generally associated with
vasculopathy, which contains both microvascular and
macrovascular complications, associated with high
morbidity and mortality. Currently, despite interventional
therapy, the overall prognosis for patients with diabetic
vasculopathy remains unsatisfactory. Angiogenesis and
vascular injury and repair are associated with a variety
of cells. However, the molecular mechanisms of the cells
that are involved in pathogenesis of diabetic vasculopathy
remain largely unknown. As novel molecules, microRNAs
(miRs) take part in regulating protein-coding gene
expression at the post-transcriptional level, and contribute
to the pathogenesis of various types of chronic metabolism
disease, especially diabetic vasculopathy. This allows
miRs to have a direct function in regulation of various
cellular events. Additionally, circulating miRs have been
proposed as biomarkers for a wide range of cardiovascular
diseases. This review elucidates miR-mediated regulatory
mechanisms in diabetic vasculopathy. Furthermore, we
discuss the current understanding of miRs in diabetic
vasculopathy. Finally, we summarize the development of
novel diagnostic and therapeutic strategies for diabetic
vasculopathy related to miRs.

2. INTRODUCTION

Diabetes has become a major public health
problem worldwide. According to the China National
Diabetes and Metabolic Disorders Study Group report, the
prevalence of diabetes has been increasing alarmingly
throughout China, and the age-standardized prevalence of
total diabetes and pre-diabetes is estimated to rise t0 9.7%
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and 15.5%, respectively (1). Diabetes has many short-
term and long-term complications. With the improvement
of medical treatment, short-term complications are coming
under effective control, but long-term complications are
stil a major problem. Among chronic complications,
vasculopathy remains the major cause of morbidity
and mortality in patients with diabetes (2). These
complications can be divided into micro- and macro-
complications. The major microvascular complications
are nephropathy, retinopathy, and neuropathy, whereas
the macrovascular complications manifest themselves
as accelerated atherosclerosis, resulting in premature
ischemic heart disease, increased risk of cerebrovascular
disease, and severe peripheral vascular disease (3).
Although various therapies have emerged during past
decades, the clinical prognosis of diabetic vasculopathy
remains far from ideal (4). Early impairment of glucose
metabolism remains below the threshold for diagnosis
of type 2 diabetes mellitus (T2DM); a state known as
impaired glucose tolerance (5). Atherosclerotic lesion
formation is initiated by endothelial cell damage leading to
endothelial dysfunction (6). It is well known that diabetes
and cardiovascular disease have a close relationship.
Recent studies have suggested that metabolic
syndrome is related to the incidence of peripheral arterial
disease (7). In vitro studies have shown that high glucose
levels can damage endothelial cell function, inhibit
proliferation and migration, and promote apoptosis (8).
Emerging evidence suggests that circulating stem or
progenitor cells play an important role in endothelial cell
regeneration (9). Hill et al. suggested that the number of
circulating progenitor cells is reduced sharply in patients
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Figure 1. Physiological features of miRs and their mechanisms of action. DGCR8 = dsRBD domain binding partner protein; dsRBP=a double strand RNA
binding protein; RISC = RNA-induced silencing complex; TRBP = HIV-1 TAR RNA binding protein.

with diabetes or other chronic metabolic diseases (10). In
addition, the function of endothelial progenitor cells (EPC)
is impaired (11, 12). The currently accepted theory is that
endothelial progenitor cells are damaged in patients with
diabetes, and their ability to home to damaged areas is
limited, leading to an abnormal repair process (13, 14).
High glucose and advanced glycation end products
(AGEs) can also damage other important cells, such
as mesenchymal stem cells, which contribute to tissue
regeneration, differentiation and immunomodulation (15).
Diabetes mellitus is a prothrombotic condition, with
persistent endothelial cell dysfunction with suppression
of nitric oxide and prostacyclin synthesis, combined with
platelet resistance, leading to loss of control over platelet
activation (16). MicroRNAs (miRs) belong to the family of
non-coding RNAs, which are ~22 nucleotides (nt) in size
and regulate gene expression at the post-transcriptional
level, and numerous studies have established a wide range
of critical roles for miRs (17, 18). It is now well established
that miRs are important for vascular development,
physiology and disease (19). Many studies have found
that miRs may be the key regulators of endothelial
progenitor cell proliferation and migration (12, 20, 21).

For example, our previous studies have found specific
miRs downregulating EPCs in the cardiovascular system
in patients with diabetes, which impairs their functional
properties. Many other studies have shown that EPC
functions are temporally and spatially regulated by miRs
in many aspects (20, 22, 23). In this review, we highlight
miR-dependent regulation of diabetic vasculopathy,
exploring new mechanisms that could be used for miR-
based therapeutic approaches for diabetic vasculopathy.

3. PHYSIOLOGICAL FEATURES OF MIRS
AND THEIR MECHANISMS OF ACTION

The physiological features of miRs and their
mechanisms of action are shown in Figure 1. miRs are
first transcribed by RNA polymerase Il as primary miRs
(pri-miRs) in the nucleus through a complicated and
multistep process. The pri-miRs are then processed further
in the nucleus by Drosha into a 60~70 nt precursor miR (pre-
miR), acting with its dsRBD partner, called DGCRS8 (24-26).
The nuclear export protein, exportin-5, carries the pre-miRs
to the cytoplasm bound to Ran GTP, which can transport
RNAs and proteins through the nuclear pores (27, 28). The
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resulting pre-miRs have a hairpin structure. Dicer and its
dsRBD partner protein cleave the pre-miRs to generate
a duplex containing two strands in the cytoplasm (29).
The duplex is recruited into an RNA-protein complex
called RNA-induced silencing complex (RISC), which is
dependent on Dicer, other RNA-binding domain proteins,
and members of the Argonaute protein family (30, 31). And
finally switching to mature forms--a single RNA filament
of a 20-22nt. The mRNA targeting pathway by miRs
involves recognition and binding between the miRs and
mRNA (32). This miR-mRNA interaction happens with
either complete or incomplete matching via a Watson-Crick
base-paring mechanism (33, 34). Successive research has
shown that each miR has the ability to silence hundreds
of different target genes, estimating that miRs regulate
gene expression of >60 % of the mRNAs. Moreover, one
mRNA can be targeted by more than one miR, thus adding
complexity to the regulatory networks (33-35).

4. MIRS IN VASCULAR DEVELOPMENT AND
INJURY

In recent years, the importance of miR gene
regulation for vascular development and function in
patients with diabetes has been widely studied (36).
Furthermore, Dicer silencing significantly impaired the
angiogenesis capacities of endothelial cells (ECs) (37).
Given that Dicer is an important regulator in the production
of miRs, we can conclude that miRs play critical functional
roles in vascular development. Chronic hyperglycemia
leads to vascular disease, and several studies in patients,
animal models and in vitro studies have revealed that
hyperglycemia and AGEs alters endothelial metabolism
and function, causing vascular injury (3). It has been
proposed that diabetes alters the expression and function
of many of the aforementioned miRs. Circulating miRs
have emerged as novel biomarkers of diabetes (38).
Many inflammatory processes are involved with miRs.
For example, miR-126 was one of the first miRs found to
have altered circulating concentrations in T2DM (21, 39).
It is suggested that endothelial hypoxia-inducible factor
(HIF)-1a promotes atherosclerosis inflammation, and the
process is regulated by miR-19a (40). Moreover, miR-19a
regulates lipopolysaccharide-induced endothelial cell
apoptosis through modulating the expression of apoptosis
signal-regulating kinase 1 (41). miR-21 is involved
with fibrosis, and promotes renal fibrosis in diabetic
nephropathy by targeting phosphatase and tensin
homologue (PTEN) and mothers against decapentaplegic
homolog (SMAD) 7 (42). Recently, a meta-analysis
confirmed that 40 miRs are significantly dysregulated in
T2DM. miR-29a, miR-34a, miR-375, miR-103, miR-107,
miR-132, miR-142-3p and miR-144 are potential circulating
biomarkers of T2DM (43). Down-regulation of miR-34a
alleviates mesangial proliferation in vitro and glomerular
hypertrophy in mice with early diabetic nephropathy by
targeting growth Arrest Specific-1 (GAS1) (44). Chen
et al. have demonstrated that miR-34a is an important

regulator in vascular SMC (VSMC) function and neointima
hyperplasia, suggesting its potential therapeutic
application for vascular diseases (45). miR-34a may be
further investigated as a therapeutic target to reduce
B-cell death and dysfunction (46). miR-135a promotes
renal fibrosis in diabetic nephropathy by regulating
transient receptor potential-canonical 1 (TRPC1) (47).
miR-135a targets insulin receptor substrate 2 (IRS2)
levels by binding to its 3’ untranslated region and this
interaction regulates skeletal muscle insulin signaling,
which provide more information about aberrant miRs-
135a signatures associated with diabetes (48). miR-138
might promote proliferation and migration of smooth
muscle cell (SMC) in db/db mice through suppressing the
expression of silent mating-type information regulator 2
homolog 1 (SIRT1) (49). Khamaneh et al. suggest that
changes in the expression of miR-155 may participate in
the pathogenesis of diabetes-related complications (50).
They showed that miR-155 expression was significantly
decreased in diabetic kidney, heart, aorta, peripheral
blood mononuclear cells, and sciatic nerve compared
with the controls (50). Furthermore, Huang et al. found
that high glucose levels induced over-expression of
miR-155 and miR-146a in human renal glomerular
endothelial cells, which in turn increased tumor necrosis
factor (TNF)-a, transforming growth factor (TGF)-$1,
and nuclear factor (NF)-kB expression (51). miR-346
regulates SMAD3/4 expression in renal tissue, which
influences renal function and glomerular histology in DN
mice (52). miRs are expressed abundantly in quiescent
endothelial cells and can suppress abnormal endothelial
activation through targeting multiple angiogenic signaling
pathways specifically in the endothelium (53). Caporali
et al. demonstrated that miR-503 regulates pericyte—
endothelial cell crosstalk in microvascular diabetic
complications (54). Knockdown of miR-378a increases
expression of vimentin and 3 integrin, which accelerates
fibroblast migration and differentiation in vitro and
enhances wound healing in vivo (55). From all the above
(Table 1), it is evident that miRs are associated with
diabetic vascular alterations. However, this subject needs
further investigation.

5. MIRS REGULATING EPC FUNCTION AND
VASCULAR REPAIR

Endothelial dysfunction depends on the extent
of the injury, as well as the capacity for repair (56). The
endothelium has a weak capacity for self-repair, because
it is formed mostly of terminally differentiated cells with
low proliferative capacity (35). Bone-marrow-derived
mononuclear cells that are capable of regeneration
circulate in the peripheral blood (57). As a group, these
different cell populations were initially classified as EPCs,
which have the capacity to differentiate to endothelial
cells (19). EPCs play an important role in vascular
homeostasis and repair in patients with T2DM (19, 58).
EPCs migrate toward injured endothelial regions, where
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Table 1. miRs expressed in vascular development and injury

miRs Up/Down regulation Targets Function regulated References
miR-19a Up CXCL1 Monocyte adhesion (40)
miR-21 Down SMAD7/PTEN Glomerulosclerosis (42)
miR-34a Down Notch1 VSMC proliferation/neointima formation (45)
miR-135 Down TRPCA1 Renal fibrosis (47)
miR-138 Down SIRT1 VSMC proliferation (49)
miR-155/146 Down - Migration, angiogenesis (51)
miR-503 Down CXCR4, DLL4, FZD4 Inflammation-mediated glomerular endothelial injury (54)
miR-346 Down SMAD3/4 Ocular neovascularization (53)
miR-378a Down Vimentin and B3 integrin Matrix accumulation, glomerular hypertrophy and (55)
mesangial cell proliferation
Table 2. miRs expressed in EPCs related to vascular repair
miRs Up/Down regulation Targets Function regulated References
miR-21 Down WWP1 Proliferation (68)
miR-22 Down AKT3 Senescence (69)
miR-31 Down TBXA2R Angiogenesis/vasculogenesis (23)
miR-126 Up Spred-1 Migration, apoptosis, proliferation, angiogenesis (12,17)
Down PIK3R2 Inhibit EMT (71)
miR-130a Down Runx3 Proliferation, migration, differentiation, apoptosis, colony and tubule formation (21)
Down MAP3K12  |Apoptosis (70)
miR-150 Down c-Myb Migration, tube formation, homing, thrombus recanalization and resolution (72)
miR-206 Down VEGF-A Migration, Tube Formation (73)
miRs-221 Up c-kit Neovasculogenesis (74)
miR-720 Down VASH1 Migration and tubule formation (23)

chemokine signals are released, such as stromal cell-
derived factor (SDF)-1a (59), intercellular adhesion
molecule (ICAM)-1 (60), and vascular cell adhesion
molecule (VCAM)-1 (61). Homing to the injured sites
takes place through interactions axes such as SDF-1a/
chemokine CXC receptor (CXCR)4 (62), ICAM-1/
CD18 (60), and VCAM-1/integrin a (61). Once embedded
in the injured site, EPCs are involved in endothelial
repair either by proliferation or forming new endothelial
cells (63). Increasing research suggests that diabetes
and other chronic metabolic disease affect the number
and function of EPCs (64). The differences in miRs in
EPCs between patients with and without diabetes have
been verified by other researchers (64-67). Zuo et al.
suggested that miR-21 suppresses EPC proliferation
by activating the TGF-B signaling pathway via
downregulation of WW domain-containing E3 ubiquitin
protein ligase 1 (WWP1) (68). EPCs also play an
important role in postnatal neovascularization, and the
process is also regulated by miRs. Zheng et al. indicate
that miR-22 induces EPC senescence by downregulating

AKT expression, providing a potential novel target for
the reversal of EPC dysfunction in angiogenesis (69).
Moreover, our previous study proved that downregulation
of miR-130a contributes to EPC dysfunction in patients
with diabetes via runt-related transcription factor 3
(Runx3) (21). Downregulation of miR-130a may underlie
endothelial dysfunction in diabetes through the activation
of the c-Jun N-terminal kinase signaling pathway (70).
Zhang et al. showed that miR-126 targets PI3K regulatory
subunit p85 beta (PIK3R2) to inhibit endothelial-to-
mesenchymal transition (EMT) in EPCs, and this process
involves regulation of the PI3K/Akt signaling pathway (71).
miRs have the potential to be used as biomarkers for
early diagnosis of intimal hyperplasia in cardiovascular
disease, and as therapeutic tools for cardiovascular
diseases mediated by the EMT process (71). Other
miRs, such as miR-31, miR-126, miR-206, miR-221
and miR-720, play an important role in regulating EPC
migration, proliferation and apoptosis (12, 23, 72-74).
We summarized the content about miRs regulating EPC
functions and vascular repair in Table 2.
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6. MIRS IN PLATELET FUNCTION AND
INFLAMMATION IN DIABETES

DM can be regarded as a metabolic syndrome,
containing complex risk factors such as dyslipidemia,
elevated blood pressure, and raised plasma glucose,
representing  prothrombotic  and proinflammatory
states (75). Platelets are the core component of the
prothrombotic process. Although platelets are anuclear,
they are capable of protein synthesis and contain different
mRNAs and miRs (76-79). Platelets contain large
amounts of miRs that are altered by disease, in particular,
DM (80, 81). Platelet-derived miRs can regulate platelet
protein expression (76). Elgheznawy et al indicated that
B1 integrin and FXIII-A were downregulated by platelet
miR-223 (80). This was confirmed by other studies (82-84).
Hyperglycemia activates platelet function through miR-144
and miR-223, which downregulates IRS-1 and upregulates
P2Y receptor 12 (P2Y12) expression in the platelets of
patients with T2DM, through the IRS-1/PI3K/Akt signaling
pathway (85). Cystatin expression is downregulated by
platelet-derived miR-92a in patients with T2DM and lower
limb ischemia (86). However, Stratz et al. did not find any
differences in platelet miRNA profiles between patients
with and without diabetes (87). In Stratz et al. study, drugs
used to treat coronary artery disease may have influenced
the results. Some studies have a found marked reduction
of miRs after anti-platelet therapy (88-92). It is suggested
that circulating miRs can be novel biomarkers for platelet
activation (93), and platelet-derived miRs have been shown
to be novel biomarkers the early diagnosis of T2DM (94).

miRs are associated with inflammatory status
in patients with T2DM. Recent studies have suggested
that miR-146 inhibits the inflammation associated with
diabetic retinopathy. miR-146 inhibits NF-kB activation
and subsequent inflammatory responses in human
retinal endothelial cells (95). Fulzele et al. found that
ectopic expression of miR-146 suppressed adenosine
deaminase-2 (ADA2) expression and activity, and
TNF-a release in amadori-glycated albumin (AGA)-
treated human macrophages related to retinal
inflammation (96). Decreased serum level of miR-
146a is a sign of chronic inflammation in patients with
T2DM (97). Circulating angiogenic cells from patients
with T2DM and major cardiovascular events have high
levels of miR-21, which demonstrates that circulating
miR -21 is a biomarker of systemic inflammatory
status (98). Figure 2 shows the mechanism of
inflammation and platelet hyperactivity in T2DM,
showing the possible targeting sites for miRs.

7. MIRS AS POTENTIAL PROGNOSTIC
BIOMAKERS AND THERAPEUTIC TARGETS
IN DIABETIC VASCULOPATHY

Our understanding of how these miRs function
in cellular networks provides new molecular targets for

therapy of diabetic vasculopathy, and the first examples of
miR-based therapy in animal models are well underway.
Zampetaki et al. identified two angiogenicmiRs,
miR-320a and miR-27b, as potential biomarkers for
diabetic retinopathy (38). Liu et al. presented direct
evidence suggesting that miRs are intrinsic suppressors
of pathological ocular angiogenesis in endothelial
cells (53). Suppression of endogenous miRs in
pathological neovascularization may induce endothelial
activation to trigger pathological angiogenesis. miRs as
endothelium-specific intrinsic inhibitors of pathological
ocular angiogenesis suggest the potential of modulating
miRs for the treatment of neovascular eye diseases
and potentially other vascular diseases (53). Garcia
et al. suggested that patients with diabetic retinopathy
had higher expression of miR-221 than those without
retinopathy, and identification of biomarkers of diabetic
complications might be useful for monitoring disease
progression and potential therapeutic targets (65). DM
is a high risk factor for stroke and leads to more severe
vascular and white-matter injury than stroke alone.
Cheng et al. provided evidence for epigenetic regulation
of gene expression and function in chronic experimental
diabetic neuropathy (99). They also showed that miR-
126 may contribute to human umbilical cord blood cells
(HUCBC)-induced neurorestorative effects in T2DM
mice (100). Yousefzadeh et al. found that deregulation
of miR-146a may be involved in the pathogenesis
of diabetic neuropathy (101), which suggests that
miR-146a is a potential biomarker in diabetic retinopathy.
Another serious microvascular complication is diabetic
nephropathy. Liu et al. suggested that urinary miR-126
was significantly higher in patients with T2DM with diabetic
nephropathy (102). Successful treatment significantly
reduced urinary miR-126 in patients with T2DM with
diabetic nephropathy (102). So, miR-126 could be used
as a biomarker of diabetic nephropathy and to monitor
the treatment response (102). Other current studies have
proved that EPCs are biological markers of peripheral
arterial disease (103). And now studies have proved
that endothelial progenitor cells as a biological marker of
peripheral artery disease (104). Riches et al. suggested
that increased expression of miR-143/5 in saphenous
vein SMCs from patients with T2DM induces persistent
changes in phenotype and function, indicating that
miR-143/5 play an important role in diabetic peripheral
vascular disease (105, 106).

miR-21 overexpression enhances TGF-B1-
induced EMT by targeting SMAD7, which aggravates
renal damage in diabetic nephropathy (107). miR-34a
alleviates mesangial proliferation in vitro and glomerular
hypertrophy (44), and miR-135a promotes renal fibrosis in
diabetic nephropathy (47). miR-346 attenuates SMAD3/4
expression in renal tissue and ameliorates renal function
and glomerular histology in mice with diabetic nephropathy,
which paves the way for clinical studies of miR-346 in
diabetic nephropathy (52). Bhatwadekar et al. used
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autologous CD34+ cells for vascular repair in spatients
with diabetic microvascular disease, and restoring levels
of miR-92a enhanced the usefulness of CD34+ cells in
autologous cell therapy (106). Endothelial HIF-1a promotes
atherosclerosis by triggering miR-19a-mediated CXC ligand
(CXCL)1 expression and monocyte adhesion, indicating
that inhibition of the endothelial HIF-1a/miR-19a pathway is
a therapeutic option againstatherosclerosis (40). So, as in
animal experiments, miR-98 upregulated TRB2 in targeting
way, which plays important roles in the pathogenesis
of diabetic complications (108). Thus, miR-98 may be
regarded as a novel therapeutic strategy for early large
artery defects in T2DM. In summary, experiments in vitro
and in vivo indicate that miRs are potential prognostic
biomakers and therapeutic targets in diabetes.

8. CONCLUSIONS AND PERSPECTIVES

miRs are involved in vascular injury and
repair, and fibrosis, and have many pathological effects
in diabetes. One single miR can possibly modulate

dozens of target genes simultaneously, and one gene
can be targeted by multiple miRs, thus, it is necessary
to understand better the integration of miRs within gene
regulatory networks. Although researchers have made a
lot of progress, there is a need to learn how to prevent
or delay T2DM vasculopathy with molecular-based
therapies. There is a need to find miR-based biomarkers
and diagnostic strategies useful for the early detection of
these complications in asymptomatic patients.
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