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1. ABSTRACT

Methyl jasmonate (MeJA), a vital cellular 
regulator, mediates diverse developmental processes 
and defense responses against environmental stresse. 
Recently, a novel gasotransmitter, hydrogen sulfide 
(H2S), was found to have similar functions, but the 
interactions between H2S and MeJA in the acquisition 
of cadmium (Cd) tolerance have not been reported. 
Treating foxtail millet with 1 microM MeJA not only 
enhanced Cd tolerance and alleviated growth inhibitions 
but also decreased the contents of hydrogen peroxide, 
malondialdehyde and Cd in seedlings under 200 microM 
of Cd stress. Exogenous application of MeJA inhibited 
the transcript levels of the Natural Resistance-Associated 
Macrophage Protein (NRAMP1 and NRAMP6) and 
intensified Cd-induced expression of the homeostasis-
related genes (MTP1, MTP12, CAX2 and ZIP4, besides 
HMA3). In addition, treatment with MeJA induced the 
production of endogenous H2S. Fumigation with sodium 
hydrosulfide (H2S donor) significantly enhanced MeJA-
induced Cd tolerance, but this ability was weakened 
when H2S biosynthesis was inhibited with hydroxylamine. 
These results suggest that pretreatment with MeJA 
alleviated Cd stress and that this improvement was 
mediated by H2S in foxtail millet.
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2. INTRODUCTION

Hydrogen sulfide (H2S) is a colorless gas that 
can be toxic to living organisms. After nitric oxide (NO) 
and carbon monoxide, H2S was reported as the third 
signaling gasotransmitter (1). In humans, H2S plays 
various roles in different systems, including blood 
flow, neurotransmission, immune reactions, hormone 
secretion and muscle contraction (1, 2). H2S is mainly 
synthesized by cystathionine ß-synthase (EC 4.2.1.2.2.) 
and cystathionine γ-lyase (EC 4.4.1.1.) in mammals, 
while its formation is mostly catalyzed by L-cysteine 
desulfhydrase (EC 4.4.1.1.), D-cysteine desulfhydrase 
(EC 4.4.1.1.5.) and ß-cyanoalanine synthase (EC 4.4.1.9.) 
in plants (2-4). In addition, O-acetylserine(thiol)lyase, a 
cysteine synthase-like protein, also possesses cysteine 
desulfhydrase activity (5). In general, aminooxyacetic acid 
(AOA), potassium pyruvate (PP) and hydroxylamine (HA) 
are used as H2S biosynthesis inhibitors and hypotaurine 
(HT) is used as a H2S scavenger (6, 7). Recent studies 
have indicated that H2S has extensive regulatory 
functions in physiological and biochemical processes (4). 
In the growth and development of plants, H2S participates 
in seed germination (8), photosynthesis  (9), lateral root 
formation  (10), flower senescence (11) and stomatal 
movement (12). H2S can also alleviate various abiotic 
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stresses, such as drought, heat, cold, osmosis, salt and 
heavy metals (4, 7, 13-15). Our previous study showed 
that H2S might be a critical component in abscisic acid 
(ABA)-induced stomatal regulation by ion channels 
in Arabidopsis (13). H2S also interacts with other 
phytohormones, including auxin, gibberellic acid and 
salicylic acid (SA) (6, 10, 16). Although there have been 
several studies regarding the interactions between H2S 
and methyl jasmonate (MeJA), they are still unclear.

MeJA and jasmonic acid (JA), members of the 
cyclopentanone compound family, which are synthesized 
from linolenic acid via the octadecanoic pathway, exhibit 
signaling functions and are cellular regulators for defense 
responses against biotic and abiotic stresses (17). MeJA 
could alleviate plant damage, inhibit metal uptake and 
enhance the antioxidative capacities in plants (18-20). 
Cadmium is a typical poisonous metal for plants, and 
excessive uptake of Cd not only damages photosynthesis, 
root elongation and enzymatic systems but also induces 
or inhibits gene expression, disrupts normal homeostasis 
of essential metals, and alters ultrastructures (21, 22). 
Therefore, it is worthwhile and necessary to investigate a 
Cd detoxification strategy in cereal crops. Treatment with 
sodium hydrosulfide (NaHS, H2S donor) enhanced Cd 
tolerance in rice and wheat seedlings (23, 24). However, 
to the best of our knowledge, a cross between MeJA and 
H2S in the improvement of Cd tolerance in foxtail millet 
(Setaria italica) seedlings has not yet been reported.

Foxtail millet is the second most widely planted 
species of millet in arid and semi-arid regions of Asia and 
Africa and is known for its drought-tolerance, dense root 
system, small genome, and low repetitive DNA content. 
As a result, it may represent an appropriate model for 
studying crop species (25). Cd in soil affects crop yield 
and grain quality; therefore, there is an urgent need 
to find a novel alleviation strategy for Cd stress. Based 
on the above-mentioned studies, we hypothesized that 
the interaction between MeJA and H2S might enhance 
Cd tolerance in foxtail millet seedlings. In this study, we 
investigated the roles of H2S on MeJA responding to Cd 
stress through changes in growth status, reactive oxygen 
species (ROS), Cd accumulation, and expression levels of 
several genes of metal transporters in foxtail millet roots.

3. MATERIALS AND METHODS

3.1. Plant materials and treatments
Seeds of foxtail millet cultivar, ‘Jingu-21’, were 

from a local market (bred from the cash crops research 
institute, Shanxi Academy of Agricultural Sciences, 
Shanxi Province, China). Seeds were sown and grown in 
pots containing perlite and vermiculite (1:3, v/v) in growth 
chambers at 23°C, with a cycle of 16 h of 160 μE m−2s−1 
illumination and 8 h of dark at a 60% relative humidity. 
Our pre-experiments revealed that treatment with 
a 200  µM cadmium  chloride (CdCl2, Sigma-Aldrich, 
Shanghai) solution could inhibit seedling growth. 

Therefore, a 200  µM CdCl2 solution was used to treat 
the seedlings. After germination, seedlings were treated 
according to the following descriptions: 1) control check 
(Ck), 2) Cd, 3) MeJA+Cd, 4) H2S+Cd, 5) H2S+MeJA+Cd, 
and 6) HA+MeJA+Cd. All of the agents (NaHS, AOA, PP, 
HA, HT, and MeJA, Sigma-Aldrich, Shanghai) used in this 
study were of analytical pure (A.P.) grade. Thirty plants 
per pot were arranged by the different treatments in the 
growth chamber with three replicates for each treatment.

3.2. Determination of H2S content
The endogenous H2S content was determined 

using a Four-channel Free Radical Analyzer instrument 
(TBR4100 WPI, Sarasota, FL, USA). The seedlings 
(200 mg) were homogenized with 2 mL of extraction buffer 
(50 mM phosphate buffer, pH 6.8., 0.2. M ascorbic acid, 
and 0.1. M ethylene diamine tetraacetic acid (EDTA)) (7), 
and then the H2S content in the tissue homogenate was 
determined using tissue electrodes. NaHS was used in 
the available H2S standard curve measurement and all of 
the steps were in accordance with the instruction manual.

3.3. Histochemical detection of hydrogen 
peroxide (H2O2) and the superoxide (O2

-) anion 
in the roots

The histochemical detection of H2O2 and 
the O2

-  anion used 3,3′-diaminobenzidine (DAB) and 
nitrotetrazolium blue chloride (NBT) as chromogenic 
substrates, respectively. The determination assay was 
performed as described in Kumar et al. (2014) (26). After 
staining with DAB or NBT, the roots (~2 cm long) were 
extensively washed with distilled water and photographed 
on color film (EOS 70D, Canon Photo Film, Tokyo, Japan).

3.4. Histochemical localization of lipid 
peroxidation and determination of the 
malondialdehyde (MDA) content in the roots

The histochemical detection of lipid peroxidation 
was performed with Schiff’s reagent as described by 
Pompella et al. (1987) (27). The stained roots were 
extensively washed and then photographed on color 
film (EOS 70D). The MDA content was expressed 
in  nmol g-1 (fresh weight) according to the previously 
described method (28). Roots were weighed and 
homogenized with 5% trichloroacetic acid (TCA), and 
then, an equal amount of 0.6.7% 2-thiobarbituric acid 
(TBA) was added to the supernatant after centrifugation 
at 1,662 ×g for 5  min at 20°C, followed by boiling the 
mixture at 100°C for 30  min. After cooling to room 
temperature and centrifugation at 11,238 ×g for 10 min, 
the absorbance at 450, 532 and 600 nm was measured.

3.5. Analysis of mRNA levels
The total RNA of the roots was extracted with 

TRIzol Reagent (TaKaRa, Tokyo, Japan) and cDNA 
was synthesized using M-MLV reverse transcriptase 
(TransGen Biotech, Beijing, China). The transcription 
levels of the metal transporter related genes were 
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detected using RT-qPCR performed on a CFX96TM 
C1000 Thermal Cycler System (Bio-Rad, Hercules, CA, 
USA). RT-qPCR was conducted in a 20-µL reaction 
containing 2 µL of diluted cDNA, 6.4. µL of distilled water, 
0.8. µL of each primer and 10 µL of SYBR Green Real-
time Master Mix (Toyabo, Japan). The primers for q-PCR 
are listed in Table 1. Annotation was performed using the 
foxtail millet database (http://foxtailmillet.genomics.org.
cn/page/species/index.jsp).

3.6. Analysis of Cd accumulation
Determination of the Cd concentration 

was performed according to a previously described 
method  (22). Briefly, the leaf and root samples were 
deactivated for 30 min at 100°C and then dried for 48 h at 
80°C, weighed, ground into a fine powder, digested with 
HNO3 and HClO4 (3:1, v/v), and dissolved in deionized 
water. The Cd concentrations were determined using an 
atomic absorption spectrophotometer (AA240 VARIAN, 
Palo Alto, CA, USA).

3.7. Statistical analyses
All data are shown as the mean ± standard 

error (M±SE). Statistical analyses were performed using 
SPSS 17.0. software (IBM SPSS, Chicago, IL, USA). 
The statistical significance between the control and other 
treatment groups was determined by one-way analysis 

of variance, and different letters indicate significant 
differences at p < 0.0.5 according to Duncan’s test.

4. RESULTS

4.1. Changes in H2S content under different 
treatments

In this study, the effects of gradient concentrations 
of NaHS (25, 50, 100 and 200 µM) or MeJA (0.0.1, 0.1., 
1 and 10 µM) and various H2S modulators (HT, AOA, PP 
and HA at 1000 µM) on the endogenous H2S concentrations 
were analyzed in seedlings. The results indicated that 
50 μM NaHS significantly increased H2S accumulation, 
while 100 or 200 μM NaHS had no effect (Figure  1A). 
MeJA (0.1., 1 and 10 µM) also substantially increased the 
endogenous H2S concentrations (Figure 1B). Thus, 50 μM 
and 1 µM were selected as the effective concentrations 
for NaHS and MeJA, respectively. Meanwhile, the data 
indicated that HT, AOA, PP and HA treatment could 
significantly decrease the endogenous H2S concentration 
compared to that of untreated seedlings (Figure 1 C). We 
chose 1000 μM HA as the treatment based on the change 
in endogenous H2S.

4.2. Effects of MeJA and NaHS on plant growth
To investigate the relevance of MeJA and H2S 

on seedling growth, the effects on shoot height and 

Table 1. The specific primers used for real‑time quantitative PCR
Gene Gene notation Primer sequence Length/(bp)

ACTIN Millet_GLEAN_10003390 F: GGTATGGAGTCGCCTGGAATCC R: GCGGTCAGCAATACCAGGGAAC 110

NRAMP1 Millet_GLEAN_10005347 F: CCCTGGATACGGAATCTTGT R: CCCCATCTTTGTTTTGCTAC 183

NRAMP6 Millet_GLEAN_10031864 F: TGAAGAAATGGCTGAGGAAC R: GCAACCACGAGAACACGATG 231

MTP1 Millet_GLEAN_10025755 F: GCACTCCCCGTGAGATTGA R: AGCTTCCCTTGCGATTGTT 146

MTP12 Millet_GLEAN_10002633 F: TTCTGCTGAAATTCTGTTGC R: GTGAAAAGTGCCTACGATGT 154

CAX2 Millet_GLEAN_10017989 F: CTTGGCTGTGCTTTCTTTGC R: ACATACTGCGGTGGCTCTTT 259

HMA3 Millet_GLEAN_10013711 F: TCTCGTCGGGCTATTTTCA R: CTGCTCCTGTGCGTGCTT 139

ZIP4 Millet_GLEAN_10013362 F: GTCCGCTCTGTCGTCGTGT R: GCCATTAGAACCGCTGAAA 209

Figure 1. H2S changes in different treated seedlings. (A) NaHS concentrations (25, 50, 100 and 200 µM), (B) MeJA concentrations (0.0.1, 0.1., 1 and 
10 µM) and (C) H2S inhibitors or scavengers (1000 μM) used in 12 h treatments. Data represents the mean ± SE of 30 seedlings with at least three 
independent repeats, and the different letters indicate the significant differences at p < 0.0.5.
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root length were measured under different treatments 
(Figure 2). Compared to the control, treating with 200 μM 
Cd resulted in 6.8.% and 15% decreases in shoot height 
and root length, respectively. In the shoots and roots, both 
single and combined with MeJA and NaHS treatment 
significantly increased the shoot height and root length 
compared to Cd treatment. However, the root length was 
shorter than the MeJA+Cd treatment in the presence of 
HA, while the shoot height had no significant difference 
(Figure 2, A and B).

4.3. Histochemical staining
The effects of NaHS and MeJA on the 

alleviation of Cd-induced oxidative damage were 
examined by histochemical staining. DAB and NBT 
staining indicated H2O2 accumulation and O2

- production 
in root, respectively. ROS accumulated in the root tips 
of Cd-treated seedlings compared to the control group, 

and H2S and MeJA markedly decreased the ROS content 
under Cd stress (Figure 3, A and B). Roots treated with 
Cd alone were stained extensively with Schiff’s reagent 
(Figure  3 C), whereas the NaHS+Cd or MeJA+Cd 
treatment led to slightly reduced staining depths. As shown 
in Figure 3 A, B and C, the staining of H2O2, O2

- and lipid 
peroxidation was deeper than the MeJA+Cd treatment in 
the presence of HA. All of the results were consistent with 
the changes in MDA formation (Figure 3 D), a biomarker 
of lipid peroxidation for oxidative stress (28).

4.4. Effects of MeJA and H2S on Cd 
accumulation

When seedlings were treated with 200 µM 
Cd treatment for 48  h, 79.1.9  mg g-1 (dry weight) Cd 
accumulated in the roots and the Cd content in the shoot 
was 44.1.6 mg g-1 (dry weight), which was dramatically 
higher than in the control group (p < 0.0.1) (Figure  4). 
Compared to the Cd-treated seedlings, the Cd content 
in the roots and shoots was significantly reduced in 
the MeJA+Cd and NaHS+Cd treatments (p < 0.0.5). 
Furthermore, the NaHS pretreatment decreased the Cd 
content by 34.3.% and 24.1.% in the roots and shoots, 
respectively, compared to the MeJA+Cd treatment alone. 
However, in the presence of HA, the reduction of the Cd 
content in the roots was partly reduced compared to the 
NaHS+MeJA+Cd-treated group (Figure 4 A), and there 
was no effect on the shoots (Figure 4 B).

4.5. Transcriptional expression changes of 
genes involved in metal uptake

To better determine molecular mechanism 
behind the altered Cd accumulation in the roots that 
underwent different treatments, the mRNA transcription 
levels of the genes involved in metal uptake were 
analyzed (Figure 5). Among the NRAMP-encoding genes 
in foxtail millet, we detected the mRNA transcription 
levels of SiNRAMP1 and SiNRAMP6 in the roots 
and found that their mRNA expression levels were 
significantly up-regulated by the Cd treatment (p < 0.0.5). 
Furthermore, compared to the Cd treatment alone, the 
MeJA+Cd, NaHS+Cd and NaHS+MeJA+Cd treatments 
down-regulated the expression of SiNRAMP1 and 
SiNRAMP6. However, an HA pretreatment attenuated 
the decreased mRNA expression of those genes in the 
MeJA+Cd treatment group (Figure 5, A and B).

4.6. Transcriptional expression changes of 
genes involved in metal homeostasis

To understand the changes of intracellular Cd 
homeostasis in roots, the mRNA expression levels of 
the genes involved in metal homeostasis were further 
analyzed under different treatments (Figure  6). Five 
genes, including MTP1 and MTP12 encoding metal 
tolerance proteins, CAX2 encoding a cation exchanger, 
HMA3 encoding a heavy metal ATPase 3 and ZIP4 
encoding an iron-regulated transporter protein, were 
selected. Compared to the control group, the expression 

Figure 2. Effects of different treatments on the growth of the foxtail millet 
seedlings. (A) Shoot heights and (B) root lengths of the seedlings that 
underwent different treatments. Seedlings were treated with NaHS or HA 
for 12  h and then with MeJA+Cd or Cd for 48  h. Data represents the 
mean ± SE of 30 seedlings with at least three independent repeats, and 
the different letters on the columns indicate the significant difference at 
p < 0.0.5. Ck, untreated control; Cd, 200 μM CdCl2 treatment; MeJA+Cd, 
1 μM MeJA and 200 μM CdCl2 co-treatment; NaHS+Cd, 50 μM NaHS 
pretreatment followed by 200 μM CdCl2 treatment; NaHS+MeJA+Cd, 
50 μM NaHS pretreatment followed by 1 μM MeJA and 200 μM CdCl2 
co-treatment; HA+MeJA+Cd, 1000 μM HA pretreatment followed by 1 μM 
MeJA and 200 μM CdCl2 co-treatment.
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levels of these genes were increased to varying degrees 
after Cd exposure for 12  h (Figure  6 A  -  E). However, 
both MeJA+Cd and NaHS+Cd treatments up-regulated 
the CAX2, MTP1 and MTP12 expression levels; down-
regulated HMA3 expression; and had no effect on ZIP4 
compared to the Cd treatment (Figure  6). Compared 
to the MeJA+Cd treatment, the NaHS pretreatment did 
not affect the MTP12 expression, but induced 1.2.-, 
2.4.- and 4.6.-fold increases in the expression levels of 
MTP1, CAX2 and ZIP4, respectively, and reduced HMA3 
expression 2.7.-fold. However, in the presence of HA 
pretreatment, these effects were negatively correlated.

5. DISCUSSION

Several previous studies have found that 
the addition of exogenous MeJA was associated with 
Cd tolerance in plants (18-20). Seedling growth was 
hampered by Cd-induced oxidative injury, including the 
rise of H2O2 or O2

- levels and increased lipid peroxidation. 
In the present study, seedlings that underwent MeJA 
pretreatment had significantly decreased Cd levels 
(Figure  4), and similar findings were demonstrated for 
Kandelia obovata and Capsicum frutescens (18, 19). 
Interestingly, the addition of MeJA partially reversed 
the inhibitory effects of Cd on root and shoot growth 
(Figure 2). However, MeJA (50 µM) inhibited root growth 
of Phaseolus coccineus, Allium cepa and Zea mays, and 
this inhibition lasted throughout the experiment; however, 
there was no effect on Allium cepa leaf growth  (29). 
Therefore, MeJA might have different regulatory 
mechanisms involved in Cd2+ inhibitory actions for root 
and leaf growth, which could be due to the diversity of 
plant species and the exogenous MeJA concentration.

Heavy metal stresses are the major limiting 
factors for crop productivity and grain quality. MeJA 
exhibited protective effects in plants against Cd 
stress  (20), but the signal transmission mechanism for 
MeJA-reduced Cd toxicity was unclear in the different 
plant species. MeJA significantly reduced the Cd content 
in roots and shoots and that H2S enhanced the role of 
MeJA, further reducing its accumulation (Figure 4), while 
the role of MeJA-reduction in roots was weakened by 
HA pretreatment. H2S signaling participated in MeJA-
induced Cd tolerance in foxtail millet, and H2S acts as 
a downstream molecule of SA-transmitted signals to 
regulate Cd tolerance in Arabidopsis and the NO-activated 
H2S response to Cd stress in bermudagrass (6, 7).

The reduction in Cd toxicity may be primarily due 
to a regulatory mechanism involved in metal homeostasis 
(uptake, transport and efflux) and metal detoxification. 
Recent reports showed that MeJA decreased the 
Cd uptake in rice and inhibited its translocation in 
K. obovata seedlings for antidotal actions (18, 30). MeJA 
weakened the up-regulated expression of SiNRAMP1 
and SiNRAMP6, which were markedly induced by 
Cd in roots, and H2S affected the functionality of 
MeJA (Figure  5). Both AtNRAMP6 in Arabidopsis and 
OsNRAMP1 in rice accelerated Cd toxicity (31, 32). 
Accordingly, H2S transmitted the effects of MeJA on the 
Cd-uptake reduction and NRAMPs are partly responsible 
for Cd uptake in the roots of this species (Figure 5). To 
cope with intracellular Cd, plants possess a strict metal 
homeostasis mechanism (21). Thus, the expression 
levels of other metal transporter genes, such as MTP1, 
MTP12, CAX2, HMA3 and ZIP4 in foxtail millet root were 
up-regulated by Cd, and MeJA via H2S further enhanced 
the functions of MTPs and CAX2 in transporting metal 
ions into vacuoles for  antidotal  actions (Figure  6). H2S 

Figure 3. Effects of different treatments on several indexes of oxidative 
damage to the foxtail millet roots. Histochemical staining of (A) H2O2, 
(B) O2

-, (C) lipid peroxidation and (D) MDA content in the roots that 
underwent different treatments. Seedlings were treated with NaHS or HA 
for 12  h and then with MeJA+Cd or Cd for 48  h. Data represents the 
mean ± SE of 30 seedlings with at least three independent repeats, and 
the different letters on the columns indicate the significant differences at 
p < 0.0.5. Ck, untreated control; Cd, 200 μM CdCl2 treatment; MeJA+Cd, 
1 μM MeJA and 200 μM CdCl2 co-treatment; NaHS+Cd, 50 μM NaHS 
pretreatment followed by 200 μM CdCl2 treatment; NaHS+MeJA+Cd, 
50 μM NaHS pretreatment followed by 1 μM MeJA and 200 μM CdCl2 
co-treatment; HA+MeJA+Cd, 1000 μM HA pretreatment followed by 1 μM 
MeJA and 200 μM CdCl2 co-treatment.
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can also regulate Zn homeostasis involving the ZRT, IRT, 
NRAMP, MTP and HMA4 genes in Solanum nigrum (33). 
Thus, H2S might act as an important factor in the 
signaling network mediating the plant response to heavy 
metal stress. Due to the metal efflux direction in the roots, 
which depends on the metal accumulation phenotype of 
the plant, the foxtail millet system can be considered 
to be a novel research model that involves some efflux 
proteins such as PCR1, PCR2, PDR8 and HMA4 (21).

In addition to controlling cellular metals, plant 
cells possess a comprehensive metal detoxification 
system. Numerous molecules, such as glutathione 
(GSH), metallothioneins (MTs), phytochelatins (PCs) 
and amino acids, participate in Cd detoxification (21, 34). 
Exogenous H2S applications usually affect intracellular 
responses, which increases the GSH levels, alters enzyme 
activities and regulates H2O2 metabolism (4). Meanwhile, 
MeJA also activates plant defense mechanisms, such 

as antioxidative capacity, AsA-GSH cycle and ROS 
metabolism, in response to Cd stresses  (17-20). The 
relationship between H2S and MeJA was due to their 
similar functions, which were involved in the induction of 
the Cd detoxification system. Other reports showed that 
H2S could mediate signal transduction, along with other 
molecules such as NO, abscisic acid, gibberellic acid, 
H2O2 and SA (6-8, 13, 14), in response to many stresses.

Based on the aforementioned findings, we 
suggested that an interplay between MeJA and H2S 
might exist during Cd stress. H2S is a free signal element 
that is generated via either non-enzymatic or enzymatic 
mechanisms and performs its functions across cellular 
membranes. In the current study, treatment with 1 µM 
MeJA not only significantly increased endogenous H2S 
content in seedlings (Figure  1) but also dramatically 
caused H2S accumulation under Cd stress. Adversely, 
MeJA-induced Cd tolerance was weakened by the 

Figure 4. Effects of different treatments on the Cd content in the foxtail millet roots and shoots. Cd content in the (A) roots and (B) shoots of the seedlings 
that underwent different treatments. The seedlings were treated with NaHS or HA for 12 h and then with MeJA+Cd or Cd for 48 h. Data represents 
the mean ± SE of 30 seedlings with at least three independent repeats, and the different letters on the columns indicate the significant differences 
at p < 0.0.5. Ck, untreated control; Cd, 200 μM CdCl2 treatment; MeJA+Cd, 1 μM MeJA and 200 μM CdCl2 co-treatment; NaHS+Cd, 50 μM NaHS 
pretreatment followed by 200 μM CdCl2 treatment; NaHS+MeJA+Cd, 50 μM NaHS pretreatment followed by 1 μM MeJA and 200 μM CdCl2 co-treatment; 
HA+MeJA+Cd, 1000 μM HA pretreatment followed by 1 μM MeJA and 200 μM CdCl2 co-treatment.

Figure 5. Expression levels of gene encoding metal uptake transporters in the roots that underwent different treatments. The seedlings were treated with 
NaHS or HA for 12 h and then with MeJA+Cd or Cd for 12 h. Data represents the mean ± SE of 30 seedlings with at least three independent repeats, 
and the different letters on the columns indicate the significant differences at p < 0.0.5. Ck, untreated control; Cd, 200 μM CdCl2 treatment; MeJA+Cd, 
1 μM MeJA and 200 μM CdCl2 co-treatment; NaHS+Cd, 50 μM NaHS pretreatment followed by 200 μM CdCl2 treatment; NaHS+MeJA+Cd, 50 μM NaHS 
pretreatment followed by 1 μM MeJA and 200 μM CdCl2 co-treatment; HA+MeJA+Cd, 1000 μM HA pretreatment followed by 1 μM MeJA and 200 μM 
CdCl2 co-treatment.
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HA pretreatment (Figures 2, 3, and 4). Thus, all of the 
data indicated that H2S participated in the alleviation 
mechanism by which MeJA improved Cd tolerance in 
foxtail millet. Further studies are needed to investigate 
the regulatory mechanisms of endogenous JA and 
endogenous H2S.
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